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for Drug Delivery
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ABSTRACT

In the present study, Tetraethyl orthosilicate (TEOS), polyethylene glycol 5%, and HCl 0.001 N are used to chemically
create silica nanoparticles (SiO2 NPs). The manufacturing of nano silica-gel doxorubicin (DOX) loaded silica nanopar-
ticles (DOX/SiO2), which is commonly applied as part of the drug delivery systems in cancer therapy, was done using
the sol-gel method. The morphology and surface content of the produced DOX/silica loaded nanoparticles were studied
using different techniques including the X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and the Fourier
Transform Infra-Red (FTIR) spectroscopy spectrum. The synthesized DOX/SiO2 has a diameter of 38 nm. The isothermal
adsorption follows the Freundlich isotherm and the adsorption kinetics fit to the pseudo-second order. The R2 values
for the Freundlich and Langmuir models were 0.9931 and 0.9731, respectively, showing that the Freundlich isotherm
tends to be more suitable with the experimental data as compared to the Langmuir model. This study aims at using
nanotechnology in drug delivery. A drug delivery system is characterized as a formulation or a device that facilitates
the delivery of a medicinal substance into the body, enhancing its safety and efficacy through the regulation of the rate,
time, and site of drug release into the body.
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Introduction

It has been commonly agreed upon that cancer
represents one of the worst diseases in the world.
Millions of people are still living with cancer today,
with colorectal cancer being among the most often
diagnosed types of cancer and the primary cause of
fatalities in cancer diagnoses.1

One of the most effective chemotherapeutic
antitumor medications for treating various solid
malignant tumors is the anthracycline antibiotic
doxorubicin (DOX). The DOX is made up of planar
anthraquinone nuclei connected to amino sugars
by a glycosidic link.2 The sugar amino groups
are protonated through the generation of DOX
hydrochloride for promoting aqueous solubility

(DOX-HCl). Given the hydrophilicity of the sugar
portion within the molecule, the flat anthraquinone
portion is of high lipophilicity. The amino sugar in the
DOX-HCl molecule contains a number of functional
groups, including phenolic rings, acids, and bases.
The DOX-HCl molecule is a result of its amphiphilic
and amphoteric nature.3 Its practical applications,
however, have been constrained by severe side effects
such cardiomyopathy and congestive heart failure.4,5

The properties of the object were enhanced by
lowering potential toxicity. The creation of efficient
techniques of targeted medicine delivery is crucial
to reducing potential toxicities and enhancing its
qualities.6

Drug delivery systems, such as nanoparticle-based
ones using polymers, gold nanoparticles, and
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micelles have become of interest to cancer-related
nanomedicine in recent years, being the carrier
for loading and distributing medications for cancer
therapy.7

The optimum cancer chemotherapy, in general,
calls for both adequate drug loading and targeted
drug delivery to the cancer site with minimal redun-
dant drug buildup in the normal tissues. This can be
done by selecting the best compositions and carefully
adjusting the features of the resulting drug delivery
system.8,9

Due to their good drug loading capacity, simplicity
in production and modification, minimal cytotoxic-
ity, and great biocompatibility, silica nanoparticles
are thought to be one of the most commonly used
materials.10,11 Various types of silica nanoparticles
with versatile properties have been developed as drug
delivery systems which have achieved significant suc-
cess. These silica nanoparticles have versatile surfaces
that can be modified with functional groups via chem-
ical reaction and/or physical absorption.12–14

Magnetic nanoparticles offer a considerable poten-
tial for tailored drug administration, as silica surface
changes help them in avoiding agglomeration, in-
creasing stability, and creating connections to other
functional groups. However, the restricted amount
of functional groups present on nanoparticle surfaces
decreases how efficient its drug loading is, typically
below 20%. The limited effectiveness of drug loading
requires a lot of nanoparticle carriers to be used. This
could cause the nanoparticle carrier to become poi-
sonous, biodegradable, or metabolized among other
issues.6,15,16

Mesoporous silica (SiO2) nanoparticles offer a num-
ber of benefits, such as large specific surface areas,
superior biocompatibility, porous architectures, and
surfaces that can be modified. The most widely used
NPs, SiO2, are being thoroughly studied for use in
biomedicine. At astonishing rates, research and devel-
opment have been conducted on their possible uses
for medication delivery.17 The primary components
of SiO2 NPs are siloxane groups, which, following
drug delivery, can be hydrolyzed to produce orthosili-
cic acid in the human body. These goods are easily
eliminated by the urine system and are biocompat-
ible. Due to the high stability of silica in biological
environments, the primary benefits of silica nanos-
tructures in biological applications are their ability to
function as protective layers or as vehicles for drug
delivery. The exceptional biocompatibility and lack
of cytotoxicity of the silica shells greatly increase the
stability of the protected compounds in the cores. Pos-
itively charged medications can be readily absorbed
onto SiO2 NPs pores and surfaces by strong electro-
static contact because of the silanol groups (Si-OH) on

these surfaces, which confer a significantly negative
zeta potential. More significantly, by understanding
this mechanism, one may regulate the drug’s release
at the targets.18,19 Lastly, it’s important to note that
silica shells have the ability to change the optical
characteristics of the dye molecules they contain in
this case, DOX. One of the most widely utilized antitu-
mor medications is doxorubicin (DOX), a broad spec-
trum anticancer agent used in treatment for hema-
tological malignancies and solid tumors. The devel-
opment of efficient treatment strategies for targeted
drug administration is essential to reducing potential
toxicities and improving its characteristics.8,20,21

The drug doxorubicin (DOX) was incorporated into
nanoparticles to showcase its possible use in the de-
livery of tiny molecules. After SiO2 NPs were formed,
the optical characteristics of both the free DOX
molecule and the adsorbed DOX NPs were examined.
Absorption spectra were used to track the drug load-
ing efficiency.22 The outcomes demonstrated that
electrostatic interaction successfully loaded approx-
imately 98% of DOX onto the surface of SiO2 NPs.
Depending on the solution’s pH, the DOX release from
these NPs. These findings demonstrate the efficacy of
the DOX_HCl-SiO2 NPs system as a drug delivery sys-
tem and its considerable potential for clinical use.19,23

The goal of this study was to optimize DOX loading
into the carrier in order to reduce waste during the
drug loading phase. The prepared SiO2 and DOX-
loaded SiO2 are characterized through various tech-
niques such as scanning electron microscopy (SEM),
X-ray diffraction (XRD), and Fourier transform in-
frared (FTIR) spectroscopy spectrum. The adsorption
efficiency of DOX on SiO2 is compared at different pa-
rameters, and the corresponding isotherms, kinetics,
and thermodynamic parameters of DOX adsorption
onto SiO2 are studied. Finally, a plausible adsorption
mechanism is proposed.

Materials and methods

The Doxorubicin Hydrochloride (99.1%) was col-
lected from Hyper Chem, China, Tetraethyl orthosili-
cate (TEOS) (99%) from Germany and Poly-Ethylene
Glycol (PEG) (98) from USA.

Synthesis of SiO2 NPs

Tetraethyl orthosilicate (TEOS) is used as a pre-
cursor material for the hydrolysis and condensation
of pure nano silica gel. The process typically starts
with the selection of silicon alkoxide precursors, such
as tetraethyl orthosilicate (TEOS) or tetramethyl or-
thosilicate (TMOS). TEOS is a commonly used silica
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precursor in the sol-gel method.24 It contains silicon
and can undergo hydrolysis and condensation reac-
tions to form silica nanoparticles. The chosen precur-
sor undergoes hydrolysis in the presence of water and
a catalyst, leading to the formation of silanol groups.

The process is created using TEOS and 5% Poly-
Ethylene Glycol (PEG) and 0.001 N hydrochloric acid
(HCl). PEG is a polymer with excellent solubility
in water and is often used in nanoparticle synthe-
sis for several reasons; PEG can act as a stabilizing
agent, preventing the agglomeration of nanoparticles
during synthesis, can influence the size and morphol-
ogy of nanoparticles. It is biocompatible, making it
suitable for applications in drug delivery or other
biomedical fields. The specific concentration of PEG
(5%) has been chosen to achieve a balance between
stabilization and control over particle size. The con-
centration of PEG can impact the size and stability
of the resulting nanoparticles. The combination of
TEOS with PEG can influence the properties of the
resulting SiO2 nanoparticles. PEG may also serve as
a template or structure-directing agent, affecting the
final morphology of the nanoparticles.25 An amount
of (80 g) of PEG was mixed with 5g of TEOS (solu-
tion 1). A clouded solution was created by adding
(30 ml) of HCl 0.001 N to solution 1 drop-by-drop
over the course of 10 minutes while stirring at a speed
of 250 rpm. The addition of 0.001 N HCl allows the
researcher to control and fine-tune the pH, ensuring
the stability of the sol and preventing premature gela-
tion. The resulting solution was agitated at 250 rpm.
Next, the pH was being tested. At a pH of around 2,
(10 ml) of HCl 0.1 N was added instantly.8,9 Setting
a viscous gel at 80 °C allows for controlled kinetics of
hydrolysis and condensation reactions. This tempera-
ture might be suitable for achieving a stable gel state
before proceeding to subsequent processing steps.
The gelation step is critical for determining the pore
structure and particle size of the final SiO2 nanopar-
ticles. A controlled and viscous gel state at 80 °C can
contribute to uniform particle size and porous struc-
ture.26 The produced samples were heated for three
hours at temperatures between 200 and 1000 °C.
The heating process at temperatures between 200
and 1000 °C likely involves the removal of solvents
and organic components from the gel. This step is
essential for obtaining a porous and stable SiO2 struc-
ture. Crystallization and Phase Transformation: The
heating process promotes crystallization and phase
transformation of the amorphous silica gel to form
well-defined SiO2 nanoparticles. The specific range
of temperatures (200 to 1000 °C) may correspond to
different stages of this transformation, influencing
the final properties of the nanoparticles. The dura-
tion of three hours allows for controlled calcination,

Fig. 1. The structure of the Doxorubicin anti-cancer drug.

influencing the crystallinity, surface area, and other
structural characteristics of the SiO2 nanoparticles.
The choice of temperature range and duration could
be a deliberate attempt to tailor the properties of the
SiO2 nanoparticles, such as their size, surface area,
and porosity, for specific applications, such as drug
delivery or catalysis.27,28

Adsorption of doxorubicin on SiO2 NPs

Doxorubicin (DOX) is a commonly adopted anti-
cancer drug, which is known for the promising
potentials it has in treating solid tumors. Fig. 1 il-
lustrates the structure of the Doxorubicin anti-cancer
drug.

Different concentrations of SiO2 nano-carrier were
mixed with 50 ml of DOX aqueous solution (30 ppm).
Every combination underwent stirring for 10 min-
utes at 25 °C at a pH=6. Next, the isolation of the
SiO2/DOX mixture is obtained via a 10-minutes cen-
trifuging process at a rate of 6000 rpm. The UV-Vis
spectro-photometer is utilized to record the concen-
tration of DOX in the super-natant liquids, The Dox
adsorption on the surface of silica was determined
from the values of optical density of the absorption
band at 480 nm using the Eq. (1) as shown in Figs. 2
and 3 below.

At = (Co − Ct) V/m (1)

Where At is the adsorption at time t, mol/g, Co the
initial concentration of Dox, mol/l, Ct, the concentra-
tion of Dox in a solution at time t, mol/l, V the volume
of solution, and m the batch of silica.

The medication is observed to adsorb on the sur-
face of bigger pores and then diffuse into the smaller
ones as a result of the interaction between positively
charged doxorubicin hydrochloride and negatively
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Fig. 2. UV-visible spectra for different concentrations of Doxorubicin.
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Fig. 3. Calibration curve of Doxorubicin drug at 480 nm.

charged silica centers (pH 6). Additionally, it has
been demonstrated that Dox tends to self-aggregate
on silica surfaces.29

For investigating the isotherms of adsorbing, varia-
tions in the temperature of solutions and initial DOX
concentrations are applied during the experimental
procedures. Eqs. (2) to (4) below are applied for cal-
culating the adsorbing percentage (η) and adsorbing
capacity value at equilibrium and time t (qe and qt,
mg g−1), respectively:

η = Co− Ce/Co × 100% (2)

q e = (Co− Ce/m) . V (3)

q t = (Co− Ct/m) . V (4)

Whereby Co, Ce and Ct (mg L−1) represent the
concentration of DOX at initial, equilibrium and time
t, correspondingly, V (L) represents the solution vol-
ume, and m (g) indicates the mass of the applied
nano-carriers.

Doxorubicin loading into SiO2 NPs

To make 30 ppm solutions, doxorubicin was dis-
solved in distilled water. An amount of (15 mL) of a
10 mg/ml SiO2 solution was combined with a 5 mL
DOX solution. For 24 hours, the combined solution
was maintained at 4 °C to get the highest doxorubicin
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loading. After being properly rinsed twice with dis-
tilled water, the dispersion underwent centrifuging
at a speed of 6000 rpm for ten minutes for separat-
ing the loaded nano particles. By means of a UV
Spectro-photometer having a detection wave length
of 480 nm, the amount of pharmaceuticals that are
loaded into the nano particles is calculated via de-
ducting the amount of drugs in the super-natant from
the amount found within the loading solution.6

Characterization techniques

Scanning electron microscopy. The morphology of
the resultant formulations was assessed using a scan-
ning electron microscope (SEM; XL30 FEG; Philips).
Using Image J software, 300 particles were sized
for each created formulation in order to calculate
the population’s average diameter, standard devia-
tion, and particle size distribution. JEM 2100 used
transmission electron microscopy (Carl Zeiss EM900,
Germany) to investigate the material’s complex inter-
nal morphology. Using the X-ray diffract pattern, the
crystalline structure, location, and structural proper-
ties of MCM-41 with 10 in the range of 0°–100° and
scan rate 10 (deg/min) were found. The source of
the X-ray radiation was Cu K (=1 0.541oA) (XRD:
PW1730: Philips).

Using a (SHIMADZU FT-IR 8400S) in transmission
mode, the (FT-IR) infrared spectra under ambient
conditions were diluted with KBr, with regions having
a resolution of 4 cm−1. Ultraviolet-visible (UV-vis)
reflectance spectrum of Dox adsorbed on mesoporous
silica was registered in the 350–600 nm spectral
range.

Results and discussion

The fourier transform infra-red (FTIR) spectroscopy
spectrum

The goal of FTIR characterization is to identify the
materials’ wave loading pattern. Fig. 4 displays the
FTIR spectrum features of the DOX, DOX-loaded SiO2,
and raw as-prepared SiO2 Fig. 4a, Fig. 4b and Fig.
4c. The analysis findings, as well as the matching
of the sample’s functional groups to infrared ab-
sorption patterns at wavelengths of 465–475 cm−1,
800–870 cm−1, and 3000–4000 cm−1, revealed the
absorption patterns of the Si–O functional group, the
-OH group of SiO2, and the O–H group. These absorp-
tions matched the features of the silica’s absorption
pattern, similar to the findings obtained by.30–32

The peaks at 3500 and 2933 cm−1 in Fig. 4b
and Fig. 4c correspond to hydrogen-bonded N-H

stretching and C-H stretching vibrations, respectively.
N-H bending vibrations are related to the bands
seen at 1620 and 1525 cm−1, whereas C-C vibra-
tions are related to the band seen at 1412 cm−1. Two
other distinctive DOX peaks are located at 870 and
805 cm−1, and they signify N-H wagging vibrations.33

When compared to SiO2 Fig. 4a, the intensity of the
1414 cm−1 peak dramatically increased following ad-
sorption with DOX, Fig. 4c, which may be due to
the fact that DOX contains C-C. The distinctive bands
at 2930, 1733, 1620, 1285, and 1575 cm−1 that are
conspicuous for DOX loading SiO2 relate to DOX. In
Fig. 4c, the broadband of about 3700 to 2100 cm−1

indicates the vibrating motions of the -OH groups.34

X-Ray diffraction (XRD)

The X-ray diffraction patterns of all three SiO2,
DOX and DOX-SiO2 nanoparticles are illustrated in
Fig. 5. It shows the diffraction pattern data for the
chemically synthesized SiO2. Fig. 5a shows the single
peak at the position of (2 thata) 21.6 °. This silica
powder diffraction pattern shows that it was in an
amorphous state. The crystallite size of the produced
SiO2 nanoparticles is determined by means of the
Debye-Scherrer formula below using the Eq. (5):

D = (0.89 λ) / (β cos θ ) (5)

It was determined that the sample’s average crys-
tallite size is 14.3 nm.

Thus, all subsequently surface-modified materials
preserved the seven diffraction peaks that were first
seen for DOX Fig. 5b, as well as the 2 theta values at
30.4 o, 35.6 o, 37.3 o, 47.3 o, 56.2 o, 63.5 o, and
68.8 o that were seen on all samples, Fig. 5b and
Fig. 5c. This indicates that the DOX’s first creation
was successful. The XRD patterns of DOX-SiO2 nano
particles after loading with a silica layer resembled
those of the SiO2 nanoparticles.35–37

Scanning electron microscopy (SEM)

Fig. 6 in this study illustrates the shape of silica
as the outcome of chemical synthesis. It can be seen
that the particles were relatively smaller and spher-
ical; however they have a tendency towards an oval
shape. The grain boundary was also clearly defined,
and the estimated particle size was around 38.00 nm.
According to Fig. 6a, the particles resembled a ball
and a crystal box.38

Fig. 7 below displays the SEM scans of SiO2, DOX,
and SiO2 that are loaded onto the DOX. It illustrates
the dramatic differences in the product surface
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Fig. 4. FTIR spectra for the functionalization of (a) SiO2 NPs, (b) Doxorubicin, and (c) DOX/SiO2 nanoparticles after Doxorubicin adsorption.

Fig. 5. XRD for (a) SiO2 NPs, (b) DOX, and (c) Loading DOX-SiO2 NPs.
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Fig. 6. SEM images of SiO2 NPs at (a) 10µm, (b) 1µm, (c) 200 nm, and (d) 500 nm.

Fig. 7. SEM images of (a1) SiO2 NPs at (10µm), (a2) SiO2 NPs at (200 nm), (b1) DOX at (10µm), (b2) DOX at (200 nm), (c1) loading
DOX-SiO2 NPs at (10µm), and (c2) loading DOX-SiO2 NPs at (200 nm).

morphology before and after being loaded with DOX.
According to Fig. 7c1 and Fig. 7c2, the diameter of
the bare SiO2 NPs is 38 nm, which is less than the
diameter of the more grain-structured, DOX-loaded
SiO2 particles. Additionally, due to interactions
between surface charges, the earlier nanoparticles

are agglomerated.39 After loading with DOX,
partially thick and viscous substances are observed,
intertwining among grainy nano-particles. The rough
surface could be traced back to the loading of DOX
particles which subsequently cause the SiO2 surface
to grow.
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Fig. 8. Histogram displaying the distribution of (a) SiO2 NPs, and (b) loading DOX-SiO2 NPs by diameter.

As an additional provision in this part, provide
Fig. 8a and Fig. 8b by using the image J software
to compute the catalyst. According to SEM zoom
200 nm. The size distribution histograms shown in
Fig. 8a, Fig. 8b depicts the average size of the Si NPs,
which is found to be 16.5 nm, 15.0 nm for Si NPs
and DOX-SiO2 NPs, respectively. Further, there is a
significant increase in the yield of DOX-SiO2 NPs as
compared to SiO2 NPs.

The adsorption properties of SiO2-DOX

The initial influences of DOX adsorption over SiO2
are shown in Fig. 9. A pH of 6.0 in an aqueous
solution has essential variables, given its impact on
the dynamic destinations of nano-adsorbents and the
level of ionization and speciation of the adsorbate.
The increasing adsorption productivity along with
pH suggests that the surface of functionalized SiO2
has a more negative charge. It has been noted that
DOX adsorption increases along with increases in the
adsorbent doses. Also, the increase in ensnarement
productivity, with an increase in adsorbent dosage,
may be attributed to the accessibility of a large
surface area and a more noticeable number of free
adsorption sites.

With further increases in adsorbent dosage concen-
trations, the rate of adsorption does not increase fun-
damentally. This phenomenon may be due to the fact
that both the surface of the adsorbent and the solution
concentration of the DOX settle down in order to har-
monize with each other. As can be seen in Fig. 9, in-
creasing the SiO2 concentration from 2 to 10 mg ml−1

lead to a corresponding increase in the adsorption
percentage. These results may be due to the fact that

at high SiO2 concentrations, the ratio of active sites
on the surface of the adsorbent to the overall ad-
sorbate (DOX molecules) concentration is relatively
high. On the other hand, when the SiO2concentration
decreases, the numbers of active adsorption sites are
not enough to accommodate drug ions.

Kinetics of doxorubicin adsorption

The formulae below which are applied in the fitting
of the experimental data can also be used to de-
fine the adsorption kinetics as pseudo-first order and
pseudo-second order by using the Eqs. (6) and (7),
respectively.26,40

Ln (qe − qt) = ln qe − k1t (6)

t/qt = 1/k2qe2 + t/qe (7)

whereby qe (mg/g) and qt (mg/g) represent the
DOX adsorbing capacity at a time t (min) and at
equilibrium respectively, K1 min−1 represents the
equilibrium rate constant of pseudo-first sorption,
and K2 (g/mg ·min) represents the pseudo second-
order rate constant.

Equations of Lagergren were used to assess the
dependences of Dox adsorption on the silica surface
on the time of contact for pseudo-first- and pseudo-
second-order kinetic models, as shown in Table 1.
The linear relationships for solutions with a pH of 6
are plots of lg(qe_qt) (or qe) versus t Figs. 10 and 11.
The adsorption of Dox on silica surface at pH 6.0
can be better explained by a pseudo-second-order
kinetic model than by a pseudo-first one, according
to comparatively high correlation coefficients. The
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Fig. 9. (a) Effect of SiO2 concentration on adsorption efficiency, and (b) Effect of contact time on the adsorption of Doxorubicin and its
removal by SiO2: Doxorubicin concentration 10 ppm.

Fig. 10. Plots of the pseudo-first-order kinetic model, for adsorbing 30 ppm Doxorubicin onto SiO2, at 25 °C, with adsorbent dose of 10 mg/ml
and pH of 6.

slope and intercept of linear plots were used to com-
pute kinetic rate constants and the quantities of Dox
adsorbed from phosphate buffer solutions at equilib-
rium Figs. 10 and 11. These adsorption isotherms can
be used to understand the mechanism of interaction
between the adsorbent and the adsorbate. Adsorption
and release behavior are crucial for the effective use
of any anti-cancer medication; for this reason, the
substance now absorbed with DOX was examined
using this method.

The kinetics research was fitted using the
experimental data that was acquired. As shown
in Table 1. illustrates how the pseudo-second order
adsorption represents the optimal match for DOX
adsorption.

Table 1. Kinetics factors for pseudo-first and -second order mod-
els for the DOX adsorption on SiO2.

Pseudo first order Pseudo second order

K1 (min−1) R2 K2 (min−1) R2

0.007 0.9386 0.0122 0.9477

Adsorption isotherms

The Langmuir and Freundlich isotherm models
have been used in analyzing the equilibrium data.
They could be illustrated by means of Eqs. (8) and (9)
below, respectively.41

Langmuir 1/qe = 1/qm + 1/KLqmCe (8)
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Fig. 11. Plots of the pseudo-second-order kinetic model, for adsorbing 30 ppm Doxorubicin onto SiO2, at 25 °C, with adsorbent dose of
10 mg/ml and pH of 6.
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Fig. 12. Linear Langmuir adsorption isotherms for Doxorubicin adsorption by SiO2.

Freundlich logqe = log KF + 1/nlogCe (9)

where by Ce (mg/L) represents the concentrations of
the DOX solution in equilibrium after reaction, qe
(mg/g) represents the adsorbing capacity in equilib-
rium, qm (mg/g) represents the maximal adsorbing
capacity, KL (L/mg) represents the Langmuir adsorb-
ing constant, 1/n and KF (mg/L1/1−n g) represents
the intensity of the adsorbing isotherm constants and
adsorbing capacities, respectively.

These adsorption isotherms can be applied for com-
prehending the mechanism according to which the
adsorbents and adsorbates interact. Adsorption and
release behavior are crucial for the effective appli-
cation of any anticancer medication. Therefore, the

current material absorbed onto DOX is tested using
this method. As a statistical indicator, the linear cor-
relation coefficient (R2) value ranges from 0 to 1.
It displays the level of correlation between several
factors. There is no correlation between the projected
values and the experimental data whenever the cor-
relation coefficient appears to be relatively lower,
maybe closer to zero. On the other hand, a value of R2

that is equal to or nearly equal to 1 indicates excellent
fitting.42,43

The experimental data utilized in the calculation
of the kinetic and thermodynamic features were all
obtained from Figs. 12 and 13. The values of R2 for
the Freundlich and Langmuir model were 0.9931 and
0.9731, respectively. This creates the indication that
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y = 0.7671x - 0.853R² = 0.9931
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Fig. 13. Linear Freundlich adsorption isotherms for Doxorubicin adsorption by SiO2.

the Freundlich isotherm is a more suitable fit for the
experimental data in comparison with the Langmuir
model. The value of n=2.4188, qm=70.942 mg/g,
KL=0.5872 L/mg and KF=26.9720 mg/g were cal-
culated, indicating that the DOX adsorption took
place in form of multi-layer adsorbing onto the sur-
face of SiO2. Furthermore, the value of 1/n implies
that the DOX adsorption is dominantly chemical.

Conclusion

The present study examined the loading of Doxoru-
bicin (DOX) onto modified SiO2 using single-vessel
hydrogen bonding reactions. It was observed that
the SiO2 surface modification provides an opportu-
nity to realize a drug delivery system sensitive to
catalysts. The formation and properties of the nano-
formation were investigated using microscopy and
spectroscopy. This study showed that DOX is effi-
ciently loaded onto nanostructures and exhibits lower
release in the physiological environment in compar-
ison with unmodified nano-particles when found in
acidic conditions. The resulting data implies that the
prepared nanostructures are promising nano-carriers
for the purpose of drug anti- cancer. For the DOX
delivery system, a unique carrier is created with ex-
cellent anti-cancer activity and pH-triggered release,
kinetics of Dox adsorption on silica surface at pH
6.0 agrees with the kinetic model of pseudo-second
order, which is found to have a considerable signif-
icance in the treatment of cancer. The adsorption
efficiency of the nanoparticles reached to a max-
imum of 100% for the drug. These systems also
offer controlled release therapy and the ability to

administer drugs to particular regions. By delivering
the medication in a targeted and sustained manner,
the toxicity associated with the treatment is reduced,
and patients comply with fewer doses. In addition
to improving diagnostic tests, nanotechnology has
shown promise in the treatment of numerous dis-
eases, including AIDS, cancer, and other conditions.
In light of the outcomes, we suggest fostering a pro-
ductive methodology for creating transferrin-formed
Fe3O4/SiO2 nanoparticles, with high DOX loading,
for designated anticancer medication conveyance and
concentrating on their construction and biomedical
properties.
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يناثلةیونانلاتامیسجلاىلعنیسیبروسكددیرولكزازتماوصیخشتوریضحت

ءاودلالیصوتلاكیلسلادیسكوا

1مساجرابجءارھزلاةمطاف،2ىسیعيداھرون،1يدامحمشاھءامسا

.قارعلا،ةلحلا،لبابةعماج،ةلدیصةیلك،تاینلادیصمسق1
.قارعلا،ةلحلا،لبابةعماج،ةلدیصةیلك،ةیربتخموةیریرسمولعمسق2

ةصلاخلا

يلامرون0.001كیرولكوردیھلاضمحو%5لوكیلاجنیلیثیإيلوبلاو(TEOS)تاكیلیسوثروألیثیإيعابرمادختسامت،ةساردلاهذھيف

SiO2)ایئایمیكةیونانلااكیلیسلاتامیسجءاشنلإ NPs).نیسیبوروسكودبةلمحملاةیونانلااكیلیسلاتامیسجعینصتمت(DOX) (DOX
/ SiO2)،ةساردتمت.لجلوسةقیرطمادختساب،ناطرسلاجلاعيفةیودلأالیصوتةمظنأنمءزجكعئاشلكشباھقیبطتمتیيتلاو

ةینیسلاةعشلأادویحكلذيفامبةفلتخمتاینقتمادختسابةجتنملااكیلیسلا/DOXبةلمحملاةیونانلاتامیسجلليحطسلاىوتحملاولكشتلا

(XRD)،حساملاينورتكللإارھجملاو(SEM)،ءارمحلاتحتةعشلأابيفیطلالیلحتلافیطو(FTIR).رطقغلبیDOX / SiO2بكرملا

میقتناك.فئازلايناثلابیترتللةبسانملازازتملااةیكرحوFreundlichةرارحلايواستمةرارحلايواستمزازتملااعبتی.رتمونان38

R2جذامنلFreundlichوLangmuir لیمیFreundlichةرارحلايواستمنأىلعلدیامم،يلاوتلاىلع،0.9731و0.9931

،ءاودلالیصوتيفونانلاةینقتمادختساىلإةساردلاهذھفدھت.Langmuirجذومنبةنراقمةیبیرجتلاتانایبلاعمةمءلامرثكأنوكینأىلإ

.ةعئاشلاDDSبویعىلعبلغتلايلاتلابو

.لجلوسلاةقیرط،يونانلااكیلسلادیسكواتائیزج،يئاودلالیصوت،نیسبروسكد،زازتما:ةیحاتفملاتاملكلا
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