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Abstract

Cox regression model have been used to estimate proportion hazard model for
patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases
Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal
stat). A Kaplan-Meier method has been applied to estimate survival function and

hazerd function.
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Introduction:

Survival analysis is a well known and
widely used statistical procedure
correlating time to event data. An
event might be death, developing a
certain disease, or any other condition
if its occurrence can be clearly detected
on time scale. Applying this method it
is  possible to present the probability
[1].

The term survival data refers to the
length of time, t, that corresponds to
the time period from a well-defined
start time tp until the occurrence of
some particular event or end-point t,
le. t=t.-1ty. It is a common outcome
measure in medical studies for relating
treatment effects to the survival time of
the patients. In these cases, the typical
start time is when the patient inters the
hospital, and the end point is when the
patient died or was lost to follow-
up[2]. In the follow-up process, not
every individual ends up having the
event of interest observed. Some have
left the study before the failure
occurred, or were simply lost in the
follow-up, or the study closed. Thus,
their true failure time should be longer
than the observed In practice, survivals
data are often collected from a large
clinical trial are involved .In general,
survival data have two distinctive

features: non-symmetrical distributions
and frequently censored observations
[3]. The frequency plot for most
survival data shows a longer ‘tail’ to
the right (known as positive skew) that
would not meet the assumption of
Normality and survival data are termed
right censored survival times and we
make the assumption that the censoring
event 1s independent of the true
survival time. There are also cases of
left-censored and interval censored
data that will not be covered in this
introduction [4].

Questions for survival data analysis
In substantive fields where a
‘treatment’ (e.g. a drug or surgery)
may be introduced and evaluated in
comparison to a control group, the
main research questions can be
summarized as follows.

1-How long on average are the subjects
going to survive after the treatment?

2- Does a particular treatment result in
a longer survival of subjects than other
treatments?

3-What are the risk factors that may
affect the survival time?

In this study, no particular medical
treatment is involved. The general term
‘survival time’ means the survival days
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in hospital until death or living
(censored). We shall be estimating the
proportion hazard rate and survival
function by using Cox regression
model in order to assess their health
well being.

Materials and Methods
1-Theorical Part

1-1 Survivor function [4]:

The probability that the random
survival time variable T is greater than
or equal to a specific t. Assuming F (t)
is the cumulative Distribution function
of t, the survivor function is the right
tail probability, and So is defined as
St)=P(T=t)=1-F() ....(1)
Where S(t) is survivor function.
1-2Hazard function [5]:

The probability that an individual dies
at or just after time t, Conditional that
having survived to that time. It
represents the Instantaneous death rate
for an individual surviving to time t or
the probability that a case will
terminate at time (t), and is defined as

ht)=Pt<T<t+At)/p(T=1)
=[ F(t + At) - F(t)] / S(t)... (2)
(At — 0)

The term At represents a very small
unit increment of time.
1-3 Cumulative hazard function: The

cumulative sum of the hazard
probability Function that can be
expressed as,

H(t) = - log S(t) ... (3)
1-4 Median survival time:
The time when S (t) = 0.5 This

statistic is termed the life expectancy in
the population see.

1-5 Comparison of mean survival time
or survivor function between groups,
by means of statistical tests such as

Log-rank taking into account the
stratification in the data[6].
1-6Regression analysis for multiple

explanatory variables associated with
the median survival time or survival

function or hazard function, by means
of parametric survival models and
semi-parametric  proportional hazard
models there are many well established
statistical methods for carrying out
these analyses. These are listed under
the categories of non-parametric,
parametric, and semi-parametric
approaches see[2] .

Kaplan-Meier Method

Kaplan-Meier estimate of survivor and
hazard functions Given n individuals
with observed survival times, some of
the observations may be censored and
there may also be more than one
individual who fails at the same
observed time[7]. We suppose that
there are g (g <n) failure times
amongst the individuals, and arrange
these times in ascending order into. 0

<t(l) <t(2) <t(3) <t(4)......... < t(r)
Within  each  interval, calculate
probability of dying within that

interval e.g. Interval 4 is (t(3), t(4)] -
includes t(4) but not t(3)

Probability of dying in interval 4 is(
number of deaths in interval 4)
/(number alive at time t(3) )

So probability of surviving beyond
interval 4 = S( t(4) )

S( t(4)) = probability of surviving
beyond interval 3 x probability of
surviving interval 4

S(4) = S(3) x (1- probability of dying
in interval 4)
Recursive relationship - S (1) =1

We count the total number of
individuals alive at the start of the
interval (ni, 1 = 1, 2... g ) and the
number of individuals who died ( d; )
in the time interval. The Kaplan-Meier
estimate of the survivor function is
given by

2 g P di
Suy =TI™=2) @)
e pi

With the approximate standard error
(Greenwood's formula)
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Once s(t) is estimated, we

estimate the median survival time 7,,
such that s(7,) =05 for different
groups of individuals such as male and
female, we can estimate a survival
function for each group and plot them
for comparison. The hazard rate is

estimated as

l}(r):#
”J('r:u‘ _tﬂ)

Cox Proportional Hazard Model

can

(6)

A Cox model is a well-recognized
statistical technique for exploring the
relationship between the survival of a
patient and several explanatory
variables. Survival ~ analysis  is
concerned with studying the time
between entry to a study and a
subsequent event (such as death)[1].
Censored survival times occur if the
event of interest does not occur for a
patient during the study period. A Cox
model provides an estimate of the
treatment
Effect on survival after adjustment for
other explanatory variables. It allows
us to estimate the hazard (or risk) of
death,
The regression method introduced by
Coxas [2]:

h (1) = ho(t). exp (b Xy)

( b1X|+ ngg + ...
h (t) = [hr) (t) ] e

bulie (D

The quantity hO (t) is the baseline or
underlying  hazard  function, and
corresponds to the probability of dying
(or reaching an vent) when all the
explanatory variables are zero in a Cox
model an arbitrary [3]. The baseline
hazard function is analogous to the
intercept in ordinary regression. The
regression coefficients (B's) give the
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proportional change that can be
expected in the hazard, related to
changes in the explanatory variables
[4]. They are estimated by a complex
statistical method called partial
maximum likelihood. Assumes that
changes in levels of the independent
variables will produce proportionate

changes in the hazard function,
independent of time, or constant

relationship between the dependent
variable and the explanatory variables
is called proportional hazards. If we
divide both sides by ho(t), we get
equation(8) which shows where the
term proportional comes from.

;hlxl- hzxz } ...bkxk} (8)
h(t=e¢
hy (t)

If the hazard ratio = 1 then the variable
does not eftect on survival [8].

If the hazard ratio < 1 then the variable
is associated with

Increased survival.

If the hazard ratio is > 1 then the
variable is associated with Decreased
survival [9].

The equation 8 implies that the i
individual’s survival function is a
constant power of the baseline survival
function.
(bX+bX +...bX )
k k

Sity=[Sot)]*
Log-Relative Hazard
In [

h (t) by X +baXs + ..+ b Xy
hu (t)

A positive regression coefficient for an

explanatory variable means that the

hazard is higher and thus the prognosis

worse.  Conversely, a  negative

regression coefficient implies a better

prognosis for patients with higher
values of that variable [9].

)
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2- Practical part

2-1Data description
1- Recording the data of patients
infected with hepatitis (B) disease from
Gastrointestinal and Hepatic diseases
teaching hospital for the years (2002 -
2005) , the number of patients are
(100) .
2-  The  explanatory  variables
corresponding to each patient are
X denoted the age of the patient.
X, denoted the gender of the patient
(1= male, 2 = female).

X3 Occupation of the patient
(1=working, 0= not working)
Xy survival times (days) of the

patients at the hospital .

X5 status a dummy variable indicating
whether a case is terminal or censored
(1 = death, 0 = censored).

2-2Results and Discussion

I-from applied of Kaplan- Meier
estimate of the survival function, Table
1 shows the survival times arranged in
sending order (column A). The number
of patients who are entering the study
is 100 (column B). Since two patients
die at the first day (column C). the
probability of dying by first day is
2/100  =.0204(column E).So the
corresponding probability of surviving
up to first day is | minus the
probability of dying (1-
.0204=.9796)(column F).Some
survival times are censored(column D).
Cumulative probability of surviving up
to two day is the probability of
surviving at two day and surviving
Throughout all the preceding time
intervals  ie,((9796x.9548=  9353)
(column G). This is the Kaplan—Meier
estimate of the survivor function.
Sometimes there are censored survival
times which occur at the same time as
deaths. The censored survival time is
then taken to occur immediately after
the death time when calculating the
survivor function. A plot of the
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Kaplan—Meier  estimate  of  the
survivor function (Figure 1) is a step
function, of males and females curves.
Figure (1) show that the maiden
survival time (days at hospital) for
males is 10 days and percentage of
staying 75%, for females is 7 days and
percentage  of  staying60%. The
comparison of two survival distribution
using log-rang test show that highly
significant different them.

Statistics ~ (degree of freedom)  significant
df
Log - rank 16.79 1 0000

Figure(2)show that the mortality of
male patients reach a maximum rate in
day 11 ,in which the risk was 95%, for
female patients it was 50% , but in day
12

2- T- test[2] was applied between mean
age of patients have work and patients
with out work and it show that highly
significant different 2- groups.

Meanage Num. T-test df  sig.
Patients working 53 43 2.26 98 0.02
Patients not working 46 57

3- The first feature to note in table (2),
is the sign of the regression
coefficients, A positive sign of age
means that the hazard (risk or death) is
higher, for patients with higher values
of that variable. Estimated hazard or
risk  of  death increases by
exp(0.026)=1.026 with one year of age
adjustment for the effects of the other
variables in the modle.for the second
variable (gender ) the risk of death
increases by exp(.357)=1.428 if the
patients is male because of the males is
more infected than females for third
variable (occupation)risk increases by
exp(.245)=1.27 if the patient is
working.
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Table (1) calculation of Kaplan — Meier estimate of the survival function.

Days (survival times in hospital)

Figure(1) Kaplan — Meier survival

curve .

A B C D E F G
Time Number of | Number of | Number Probability | Proportion | Cumulative
(days) | patients at deat of the of of death survival Proportion
start of patient h censored survival
study
1 100 2 4 0204 9796 9796
2 94 4 11 0452 L9548 .9353
3 79 3 1 0408 9592 8971
[ 63 5 19 0901 9099 8163
5 41 4 9 1096 3904 7269
6 28 2 5 0784 9216 L6698
7 21 1 3 0513 9487 L6355
8 17 1 2 0625 9375 5958
9 14 1 4 0833 9167 S461
10 9 1 1 1176 8824 4819
11 7 1 0 1429 8571 A130
12 6 1 3 2222 7778 3213
13 2 2 0 1.0000 L0000 L0000
The median survival time for these data is 10.72.
Table (2) Cox regression model and
relative risk (exp (B)). .
Variables in th = @ . .
"':::lu;;’i:"l “| B | SE | Wald | sig. | dr | ExpB)
Age 026 | 0134261 | 039 1 1026 &
Gender 357 521 <469 023 )1 1428
Oecupation -245 [ 439 310 | 0171 1.277 o 4 I—‘—‘; GENDER
§ R e e e fermales
% 2 . :_[ + ferm-censored
5 0.0 h - ?f + male-censored
10— 2 4 & 8 10 12
m Days(survival times in hospital
s -
s - Figure(2) Kaplan — Meier estimates
of hazard function .
A GENDER
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0 * male-censored
2 4 6 8 10 12 14

1.Cox, D.R. 1972 Regression Models
and life table. , J. R.Stat.soc. B.34
(2): 187-220.
2.Collett, D.1999. Modeling Survival
Data in Medical Research. Chapman

& Hall,

London,

pp.55-58.

616

Unfiled Notes Page 5

second edition




Baghdad Science Journal Vol.6(3)2009

3.John Fox ,2002 .Cox proportional — Journal of infection diseases,
Hazard Regression for survival data America, 191:182-192.
appendix to an R and S-plus 7.Therneau, T. & Grambsch, P. 2000.
companion to Applied Regression Modeling Survival Data: extending
1:1-8. the Cox model. Springer 4(2):2234-
4.Bhattacharjee,A. Lin,D.Y.1994.Cox 2237.
regression analysis of multivariate 8.Singer and John B. 2008 .Cox
failure time data. The marginal proportional Hazard Model. SPSS
approach. In Statistics Medicine Textbook Examples: Applied
13:2233-2247. Longitudinal Data Analysis London
S.Mario, C.2006.Ordered departures 3(4):1265-12067.
from proportionality. Computational 9.Bhattacharjee, A.2007. A Simple
sati and Data Analysis 47:517-536. Test for the Absence of Covariate
6.Bhattacharjee, A. 2004 Estimation in Dependence in Hazard Regression
hazard regression models under Models .University of St. Andrews,
departures  from  proportionality, 1283-1314.

o gl ) Qlgall) ol jpal oL Ul daalt B plaldiall 3 g il
Gl

* paw glade gliad

ooy Faala /o glad) 48/ 5 jlad) laliall e of il sy Baa g%

Lanal)

O A8all Slaa¥ G35 Gl 3 Hllall #3503 a8l (Cox Regression model ) 4yl cendind
ot el ) Ay il ) anal) sda e S ad g LAl gy g el A8 Rl A ) ) il
Sl gl plcadll i yall i a5 (Gl peall died) Al i all L) il ), iy el
A8k akial (2005-2002 pol giadl shaiy B aagl) Sleadly 2l il jal ke e e g )
L5 kladll Allag olall dlla sl (Kaplan-Meier )

617

Unfiled Notes Page 6



