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ABSTRACT

The current investigation concentrated on even-even nuclei forms to isotopes that have masses number less than 100
(A > 100) to (58−68

28 Ni )elements . This includes a look at deformation parameters (β2) derived from reduced electric
transition probability (E2) ↑ as well as distortions parameters(δ) derived by intrinsic electric quadrupole moment (Q0).
A Roots mean square Radius 〈r2〉1/2 . We studied the most important deformation parameters (δ, β2), and major and
minor of ellipsoid axes (a,b) in addition to the difference between these axes (1R) All these parameters were calculated
using the deformed shell model equations and applied theoretically in a special program. Differences in nuclei forms
were observed for selected isotopes via drawing two 2-dimensional shapes. According to the current findings. Thus the
distortion coefficients decrease as the number of neutrons approaches the magic number. Thus it was observed that the
most distorted and inclined isotopes of the elliptical shape are the isotopes with numbers of protons and neutrons far
from the magic numbers Also, the obtained results were compared with the theoretical results from Raman source by
“single-shell Asymptotic Nilsson Model” (SSANM), and noticed that was little change in the results. Also observed from
the results that (58

28Ni) is the most stable isotope and has a clear spherical shape because (Z) is equal to (28) a magic
number and (N) is equal to (30) a number close to the magic number.

Keywords: A deformation parameters(β2, δ), An electric quadruple moment Qo, A probability of the transition B(E2:0+ →
2+), A Roots mean square Radius < r2 >1/2

Introduction

The protons and neutrons that make up the shell
structure of the atomic nucleus are mirrored by
the shape of the nucleus.1 If the shells are filled,
we are talking about a “magic” nucleus, which is
spherical in shape.2 However, most cores tend to
be that deformed because their shells are only par-
tially filled. The most common shapes encountered
are oblate (flat, pancake and pillow) or prolate (elon-
gated, cigar- and rugby-ball-shaped).3 In some cases,
rearranging the neutrons or protons within the nu-
cleus itself is enough to change a shape, so a nucleus
can take Various shapes depending on different en-
ergies.4 If the energy between these states is close,

the other shapes can combine.5 Depending on the
relative pivot values of the ellipsoid shapes, it can
subdivide deformed nuclei into oblate, prolate, and
triaxial deformed nuclei. It can be observed that there
are different shapes of nuclei in the ground state
and only a few have a spherical shape, predomi-
nating in the same nucleus 5. The arrangement of
valence nucleons in an empty shell is what causes
the nuclear deformation, hence a deformation, only
happens whenever both the proton (p) & neutron (n)
shells are half filled.6 Quadruple deformations pa-
rameter which is degree of nucleus shape difference
from the sphere, as shown in Fig. 1.7

The main objective of the study is to calculate the
radii of even-even nickel isotopes by using the special
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Fig. 1. Diagram showing oblate, spherical and prolate shapes. The arrows for the oblate and prolate shapes indicate the symmetry.7

deformation equation and applying it theoretically in
matlab programs, and through it also calculate the
deformation coefficients, through which the shape of
the nuclei was determined.

Deformation parameter

According to the liquid-drop model, nuclei may be
pliable and soft, this indicates that the shape of the
nucleus may differ significantly from the spherical
shape. The researchers found a large number of nu-
clei in regions with neutron number (N) and proton
number (P) away from the magic values that have a
noticeably distorted charge distribution.7

The assumption of independent nucleon motion
in an average potential well serves as the theoreti-
cal underpinning of the chance model. the specific
nucleon’s interactions with every, other nucleon in
nucleus are represented by this potential well.8

The transition probability B(E2) is used to calcu-
late the deformation parameter β2 for the 2+

→

0+ transition. In the second (2+) and first excited
states 0+, there is an alternative to quadratic anal-
ysis. Basic nuclear information that supplements our
understanding of nuclide level energies.8,9 The (E2)
↑values, in general, Confirmation of the large range,
of quaternary, distortion in nuclides, estimated using
the Global Beast Fit equation:

B(E2) ↑= 2.6Eγ−1Z2A−2/3, (1)

Where: Z is the atomic number,
A is the mass number of a nucleus, and
Eγ 0 energy of gamma ray transitions in units of

KeV.

This indicates, that (E2) values in that equation are
fundamental on experimentally-measured amounts
(Eγ , Z, A) instead of relying on nuclear models.10

The parameter of the deformation β2 is an effective,
model that depends on quantum mechanics and is
simple to visualize.10 Assuming this potential well
describes the interactions of a particular nucleon with
all other nucleons in the nucleus:10

β2 = 4π/3ZRo2[B(E2) ↑ e2b2/e2]1/2
, (2)

Where: Ro: is the nuclear average radius, which is
derived from the equation:

Ro2 = 0.0144A2/3barn (3)

The deformation parameter δ is calculated using
intrinsic quadrilateral electrical moments QO, which
is used as it provides important information about
shape and deformation because it measures the de-
viation of the charge distribution from spherical
symmetry.11

δ = 0.75Qo/(〈r2〉Z), (4)

Through the following equations, the mean radius
<r2>: can be calculated

〈r2〉 = 0.63Ro
2(1+ 10/3(πao/Ro)2)/

(1+ (πao/Ro)2)(A ≤ 100) (5)

〈r2〉 = 0.63
(
1.2A1/3)2 (A > 100) (6)

Where: Ro: The radii potential parameters are
Ro = 1.07 A1/3 fm and, ao = 0.55(fm), and ao is
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derived from the information on fast electron scat-
tering. An self-quadruple moment, Equation-based
calculation via:9

Qo = [(16π/5)B(E2)e2b2/e2]1/2 (7)

Nuclear shape

When nuclei are stable their shape is generally
spherical. The goal of this effort reduces the en-
ergy of surface. As a result, little spherical sections
are noticed such as in the region 150 < A < 190
and only the ratio can be utilized to define these
irregularities:12

δ = 1R/R, (8)

Where:
1R denotes the variance between the semi-, minor

and semi-, major axis
R is an average of the nuclear radius.

1R =
(
b− a

)
, (9)

Where:
a, b: major and minor of ellipsoid axes.

Radius of the root mean square charge (isotope
transformation)

(rms) is the radius of the nuclear charge R =
〈r2
〉
(1/2), together with other nuclear ground state

properties, and is considered one of the keys to infor-
mation about the main nuclear materials that indicate
the effectiveness of the nuclear structure, for exam-
ple: closure crust and start to deform.13

Direct inference of the root square radius (rms),
〈 r2
〉
(1/2), is made from the scattering electron distri-

bution; The radius of charge distribution for an evenly
charged sphere is squared:14,15

〈r2〉 =
3
5
R2
=

3
5
R2

0 A
2/3 > 100, (10)

Where:
A: number mass
R: spheres radius.
= R0A1/3

A probability of reduced electric quadrupole
transition (E2) ↑

The best way to create a nuclear structure and to
test models of nuclear structures is through radiated
electromagnetic transitions between nuclear states.16

The magnitude of the critical electric quadruple

moments the energy of the lower nucleation levels the
average periods of nucleation states and the nuclear
distortion coefficient β depend on B (E2), transition.
The collective effects, that multiple, nucleons can be
involved in are referred to as large quadruple mo-
ments and vector forces.13 Determines the transition
probability of the lower electric qua -driupole B(E2) of
ground spin state for a first excite spin 2+ state:17

(E2 : 0+→ 2+) = 5/16πe2Q0
2, (11)

where:
(E2) ↑: Reduced chance of an electric quadruple

transition in unit of (e2b2).
Q0: the intrinsic quadruple mountain in barn (b)

units.
If Q0 Calculate elliptically charged and homoge-

nously charged with Z charge and (b) and (a). by sign
(b) relative to x-axis’s, Q0 may be18

Q0 =
2Z
5
(
a2
− b2) (12)

Eq. (9), can be used to calculate the average, radius:
R =, 1/2 (a + b) and 1R = (b – a), with =,1R/R,
by Eq. (9), the quadruple moments is given if the
deviation from sphericity is not very significant:19

Q0 =
4
5

ZR2 δ (13)

A, values of Q0 are, determined via the equation.

δ = 0.75Qo/(〈r2〉Z) (14)

The two following equations yield the semi-axes (a)
and (b).20

a =
√
〈r2〉

(
1.66−

2δ
0.9

)
(15)

b =
√

5〈r2〉 − 2a2 (16)

Results and discussion

Several characteristics for elemental nickel (Ni) and
its isotopes, 58Ni, 60Ni, 62Ni, 64Ni, and 68Ni required,
have been estimated in the current study for double
nuclei with masses and numbers fewer than 100 (A
> 100). The following criteria must be met for this
research:

From Table 1, we observe that the lowest value of
the deformation Parameter (β2) is for the (6828Ni) equal
to (β2= 0.1530) and the largest value of deformation
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Table 1. The number of the mass for isotopes (A) Nickel, neutrons number (N), the energy of gamma to the first
level E γ , average nuclear radius (R0

2), low electrical transition potential (B (E2) ↑ in e2 b2 unit, moment Tetrapolar
electrode (Qo) in barn unit, and the parameters of the deformation (β2, δ) to Ni.

The Theoretical Values

(B(E2) ↑ β2for Present Work B(E2)
E_γ (e2 b2) (SSANM) ↑

Z A N (KeV) for (SSANM) (P.w) δ β2 Qo (b) (e2b2) R2
0

28

58 30 1454.28 0.016 0.0877 0.1491 0.2121 0.96320 0.0935 21.576
60 32 1332.518 0.036 0.1286 0.1513 0.2142 1.0017 0.0998 22.069
62 34 1172.9 0.054 0.1541 0.1568 0.2209 1.0561 0.1109 22.557
64 36 1354.84 0.068 0.1693 0.1420 0.1991 0.9723 0.0940 23.04
66 38 1424.8 0.079 0.1788 0.1348 0.1883 0.9384 0.0876 20.15561
68 40 2033 0.084 0.1807 0.1100 0.1530 0.7778 0.0602 23.99

Fig. 2. Shows the relationship of the number of neutrons as a
function of the distortion parameter δ for the element nickel (28Ni).

Fig. 3. Shows the relationship of the number of neutrons as a
function of the distortion parameter β2 for the element nickel (28Ni).

parameters for (6228Ni) (β2 = 0.2209). The remaining
values of β2 is, ranging, between, these (2 values).
We also note that the lowest value of the deformation
Parameter (δ) for the (6828Ni) is equal to (δ = 0.1100)
and the largest value of deformation parameters for
(6228Ni) (δ = 0.1568). We also notice from Table 1,

Fig. 4. Shows the relationship of the number of neutrons as a
function of the intrinsic electric quadrupole moment (Q0) for the
element nickel (28Ni).

Fig. 5. Shows the relationship of the number of neutrons as a func-
tion of the low electrical transition potential (B (E2) for the element
nickel (28Ni).
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Fig. 6. Shows the relationship of the number of neutrons as a
function of the average nuclear radius (R0

2) for the element nickel
(28Ni).

that the values deformation Parameter (δ) of the
elements increase with mass numbers (58, 60, and
62) and then begin to decrease with mass numbers
(64, 66, and 68). It was also noted that the values
of (Q0) range from the highest value is (1.0561) to
the lowest value is (0.7778) in Table 1, All of these
results are represented graphically in Figs. 2 to 4.
Also, by using the results in Table 1, a relationship
between the number of neutrons as a function
to (B(E2)) and (R2

0), as shown in Figs. 5 and 6.
Also, a,relationship,between (δ, β2) as a function
of neutrons number was represented graphically as
shown in the Fig. 7. This is because the nucleus of the
(5028Ni) is one of the nuclei with double magic numbers

(Z = 28, N = 50), and therefore this nucleus is more
stable than others as shown in the Fig. 8. Also Fig. 7,
shows the correlation between the neutron counts
and the deformation parameters. Also, through the
results shown in Table 1, the relationship was drawn
for low electrical transition potential (B (E2) Between
the present work (P W) through the results above and
the theoretical study obtained from the Raman source
by “single-shell Asymptotic Nilsson Model” (SSANM)
and it was observed from the drawing that there is
agreement between the two axes and this is due to
the convergence of the values obtained in the current
work with the experimental values as show in Fig. 8.

In Table 2, we note that the highest value of
transition potential T(s) is equal to 8.9416*106

at 66Ni where and the lowest value of T(s) is
9.6248*10–13 at 58Ni and the highest value of the
average half-life is 1.0390*1012 at 58Ni. The lowest
value is 1.1184*10–7at 66Ni, and the highest value for
the gamma energy is 2033 at 68Ni. Also, the gamma
energy values shown in the above table were relied
on to calculate the electrical transmission probability
B(E2), and through (B(E2), it was calculated the
deformation coefficients (β2, δ) through which the
shape of the nuclei was determined, depending on
the deformation equation on which it was based on
our current study.

Observing a root mean values the squared charge
values of radius〈 r2〉 1/2 in the Table 3, We discov-
ered that values rose as mass number A increased. It
was discovered that computed values 〈r2〉1/2 present
work (P w) correspond well with the experimental
value of 〈r2〉,1/2 by the reference’s for comparison
purposes.21

Fig. 7. Illustrates the relationship between the Deformation Parameters (δ, β2) for the element nickel (28Ni) as a function of the number of
neutrons.
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Fig. 8. Shows the relationship between Low electrical transition potential (B (E2) ↑ for (SSANM)&(P.W) in e2 b2 unit as a function of neutrons
number for element nickel (28Ni).

Table 2. A masses numbers (A), the neutrons numbers (N), a gamma energy of the ground level, the
probability of the transition (T) and the average half-life (τ (s)) to Nickel (Ni) isotopes.

Z A N Ei(kev) Er(kev) t1/2 ’(s) T (s) τ (s)

28

58 30 1454 1454.28 (667 fs)6.67*10–13 9.6248*10–13 1.0390*1012

60 32 1332.501 1332.518 (0.713 ps)7.13*10–13 1.0289*10–12 9.71995*1011

62 34 1172.91 1172.9 (1.45ps) 1.45*10–12 2.0924*10–12 4.7793*1011

64 36 1354.75 1354.84 (0.88ps)8.8*10–13 1.22698*10–12 7.8750*1011

66 38 1424.8 1424.8 (54.6h)61.965*105 8.9416*106 1.1184*10–7

68 40 2033 2033 (0.86 ms) 860 1.241*103 8.0581*10–4

Table 3. Number’s masse (A), the numbers of neutrons (N), a root mean’s squares of the radius 〈r2〉1/2, the
minor & major axies (b, a) additionally, what separates them (1R) in two ways for isotops of Nickel (Ni).

A theoretical value Present work

z A N 〈r2
〉
,1/2 fm [21] 〈r〉2 fm 〈r2

〉
1/2fm a (Fm) b (fm) 1 R1 1 R2 1 R3

28

58 30 3.7757 17.4237 4.1741 2.3610 3.1181 0.6175 0.7572 0.9320
60 32 3.8118 17.7345 4.2112 2.3670 3.1385 0.6338 0.7715 0.9519
62 34 3.8399 18.0414 4,2475 2.3663 3.1685 0.6640 0.8022 0.9927
64 36 3.8572 18.3444 4.2830 2.4057 3.1370 0.6076 0.7314 0.9043
66 38 — 18.6438 4.3178 2.4296 3.1279 0.5830 0.6983 0.8639
68 40 — 18.9398 4.3519 2.4879 3.0629 0.4804 0.5750 0.7090

Conclusion

We conclude from the results obtained in the cur-
rent study that the closer the nuclei, i.e. the atomic
numbers or the number of neutrons for the nuclei,
are to the magic numbers, the less distorted and more
stable they are. Also, Nuclei show more stability and
sphericality as the mass number A increases, and
the energy of the first excited state (2+) steadily
declines as A increases, except sites close to closed
shells where energy values are rather high.
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.سنوت،سقافص،سقافصةعماج،مولعلاةیلك،ءایزیفلامسق1
.قارعلا،دادغب،دادغبةعماج،ةفرصلامولعللمثیھلانباةیبرتلاةیلك،ءایزیفلامسق2

ةصلاخلا

هوشتلاتلاماعمةساردمتثیح100نملقاةیلتكدادعااھليتلاولكینلارئاظنلةیجوز-ةیجوزىونلالاكشاةساردىلعيلاحلاثحبلازكر

(β2)يئابرھكلالاقتنلااةیلامتحانمةقتشملاوB(E2)هوشتلاتلاماعمكلذكو)δ(بطقلايعابريئابرھكلامزعلانمةقتشملاQ0متو

<r2>رطقلافصنعبرمطسوتمةسارد جذومنتلاداعممادختسابامھنیبقرفلاو(a,b)ىربكلاوىرغصلارواحملاىلاةفاضلااب1/2,

جئاتنلاللاخنموداعبلااةیئانثوةیثلاثلاكشامسرللاخنملكینلارئاظنلىونلالاكشايففلاتخلااةظحلاممتثیحةھوشملاةرشقلا

تانورتینلادادعلااتاذرئاظنلايھيجیلیلھلاالكشلاذاختاورارقتسلاامدعللایمواھوشترثكلاارئاظنلاناظحولاھیلعلوصحلامتيتلا

ثیح(SSANM)ردصملانمةیرظنلاجئاتنلاعماھیلعلوصحلامتيتلاجئاتنلاةنراقممتكلذكوةیرحسلادادعلاانعةدیعبلاتانوتوربلاو

.اماعوناھلةبراقماھناظحول

B(E2:0لاقتنلااةیلامتحا:ةیحاتفملاتاملكلا
,β2)هوشتلاتاملعم،Qoبطقلايعابريئابرھكلامزع،(+2→+ δ)،عیزوتعبرمطسوتم

.<r2>رطقلافصن،ةنحشلا
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