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Abstract: 
 As the bit rate of fiber optic transmission systems is increased to more than 

Gbps 10 , the system will suffer from an important random phenomena, which is called 

polarization mode  dispersion. This phenomenon contributes effectively to: increasing 

pulse width, power decreasing, time jittering, and shape distortion. The time jittering 

means that the pulse center will shift to left or right. So that, time jittering leads to 

interference between neighboring pulses. On the other hand, increasing bit period will 

prevent the possibility of sending high rates.  

 In this paper, an accurate mathematical analysis to increase the rates of 

transmission, which contain all physical random variables that contribute to determine 

the transmission rates, is presented. Thereafter, new mathematical expressions for: 

pulse power, peak power, time jittering, pulse width, and power penalty are derived. 

On the basis of these formulas, one can choose a certain operating values to reduce or 

prevent the effects of polarization mode dispersion.     
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Introduction: 
Polarization mode dispersion 

(PMD) arises in single mode fiber and 

fiber optic components due to a small 

difference in refractive index 

(birefringence) for a particular pair of 

orthogonal polarization states [1,2]. 

This index difference results in a 

difference in the propagation time 

called differential group delay (DGD) 

for waves traveling in these two 

polarization modes [3]. The 

propagation of a pulse through a long 

fiber can be very complicated since the 

birefringence varies randomly along 

the fiber. However, there are two 

special orthogonal polarization states, 

called principal states of polarization 

(PSP’s),  at the fiber input for which 

the output pulse is undistorted to first 

order, in spite of random changes in 

fiber birefringence [4,5]. An optical 

pulse polarized along a PSP does not 

split into two parts and maintains its 

shape. In practice, the launched pulses 

are rarely polarized along one of PSP's, 

each pulse then splits into two parts 

that are delayed with respect to each 

other by a random amount [6,7].  

This kind of PMD is commonly 

known as first-order PMD. Under first-

order PMD, a pulse at the input of a 

fiber can be decomposed into two 

pulses with orthogonal states of 

polarization (SOP). Both pulses will 

arrive at the output of the fiber 

undistorted and polarized along 

different SOP’s, the output SOP’s 

being orthogonal [8,9]. Both the PSP’s 

and the DGD are assumed to be 

frequency independent when only first-

order PMD is being considered [10]. 

Second-order PMD effects account for 

the frequency dependence of the DGD 

and the PSP’s. The frequency 

dependence of the DGD introduces an 

effective chromatic dispersion of 
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opposite sign on the signals polarized 

along the output PSP’s [11].  PMD 

induced pulse broadening can move 

bits outside of their allocated time 

slots, resulting in errors and system 

failure in an unpredictable manner 

[1,5].   

When the signal channel bit 

rates reached beyond 10 Gb/s, PMD 

became interesting to a larger technical 

community. PMD is now regarded as a 

major limitation in optical transmission 

systems in general, and an ultimate 

limitation for ultra-high speed signal 

channel systems based on standard 

single mode fibers [7,12]. PMD arises 

in optical fibers when the cylindrical 

symmetry is broken due to noncircular 

symmetric stress.  The loss of such 

symmetry destroys the degeneracy of 

the two eigen-polarization modes in 

fiber, which will cause different group 

velocity dispersion parameters for 

these modes. In standard single mode 

fibers, PMD is random, i.e. it varies 

from fiber to fiber. Moreover, in the 

same fiber PMD will vary randomly 

with respect to wavelength and 

ambient temperature [6].  

 Disorder in single mode fibers 

arises in many different ways and has a 

negative effect. For example, amplifier 

noise[9], and random fiber 

birefringence (PMD)[8] that lead to 

random shifts in the pulse position 

(timing jitter), pulse broadening, and 

so to cause inter-symbol interference 

(ISI) impairment of a single digital 

transmission channel . The ISI 

impairment is caused by the DGD, 

, between the two pulses propagating 

in the fiber when the input polarization 

of the signal does not match one of the 

PSP’s of the fiber PMD impairments 

due to inter-channel effects that occur 

in polarization-multiplexed 

transmission systems. However, all 

PMD effects eventually cause 

destruction of bit patterns and lead to 

an increase of bit error rate, the most 

important parameter describing 

performance in fiber communications 

systems [8,10]. The description of data 

stream degradation requires the use of 

statistical methods and opens a new 

field that may be called statistical 

physics of fiber-optic communication.  

 Our objective in this paper, is 

to model the PMD (at first order in w ) 

density distribution and determined the 

probability of DGD that exceeds a 

particular value. Initially, the treatment 

will be quite general, involving 

standard equations for impulse 

response and density distribution of 

PMD. This general treatment will 

make it possible to estimate the density 

distribution of impulse response and 

power penalty. We will then consider 

the effect of all random variables on 

the output pulse. Due to the difficulty 

of the mathematical analysis, assuming 

the pulses are Gaussian form. The 

parameters that maximize density 

distributions of PMD, impulse 

response, and power penalty are 

determined. We proposed that the time 

jittering and pulse broadening effects 

may be reduced to minimum values by 

controlling on the angle between the 

PMD and input SOP vectors.    

 

Theory 

The effects of PMD are usually 

treated by means of the three-

dimensional PMD vector that is 

defined as ˆ
pmd p  , where p̂  is a 

unit vector pointing in the  direction of 

slow PSP, and 
pmd  is the DGD  

between the fast and slow components 

which is defined as [4] 

 

 

The PMD vector 


 gives in 

Stokes space the relation between the 

output SOP, ŝ , and the frequency 

derivative of the output SOP: 

)(ˆ)(/)(ˆ wswdwwsd 


. The PSP’s 

are defined as the states that 

 (1)   ...         || 2
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, so that no changes in 

output polarization can be observed 

close to these states at first order in w . 

To the first order, the impulse response 

of an optical fiber with PMD is defined 

as [7] 

 

 

where   are the splitting ratios. The 

factors    and 
pmd  vary depending 

on the particular fiber and its 

associated stresses, where the splitting 

ratios can range from zero to one. Note 

that, the function ( )pmdh t  is 

normalized in the range (  to  ). 

 

1 Splitting Ratios 

For compactness in notations, 

the Jones vectors are written in the 

form  p| , p| , and s| , to 

distinguish them from the 

corresponding Stokes vectors p̂ , 

p̂ , and ŝ . Any Stokes vector â  is 

related to another one a|  in Jones 

space as  aaa ||ˆ 


, where |a  

is the conjugate transpose of a|  and 

),,( 321  


 is the Pauli spin 

vector, which is their components are 

defined as  [8] 

  

 

 

It is important to note that the angle 

between p̂  and ŝ  in Stokes vector is 

 ,  while the angle between p| and 

s|  in Jones space is 2/  . That is; if 

two vectors are perpendicular in Jones 

space then the corresponding two 

vectors in Stokes space are antiparallel.  

Consider that the PSP's occur 

with a uniform distribution over the 

Poincare sphere, and that ŝ  is aligned 

with the north pole of the sphere as 

shown in Fig.(1). The probability 

density of PSP's being in the range d  

about the angle   relative to ŝ  is 

proportional to the differential area 

2 sin d    sketched in the figure. As 

there is north/south symmetry in the 

differential area, the ranges ( 0  to / 2

) and  ( / 2  to  ) of   are combined 

to obtain the combined probability 

density 

 

 

For the effective range ( 0  to / 2 ) 

describing the occurrence of PSP's 

with angle   (and   ) relative to 

ŝ . The distribution ( )p   is 

properly normalized through the range 

0  to / 2 .  

 
Fig.(1): Sketch of differential area on 

Poincare sphere as a function of 

elevation angle   [5]. 

 

The analyses of splitting ratios have 

led to a number of advances important 

from fundamental as well as the 

technical point of view. The splitting 

ratios   can be determined from the 

polarization vectors. In other words   

represent the projection of p| and 

p|  onto s| . Formally, 
2|||   ps , where s| , | p  , 

and | p   are the input SOP and the 

two PSP's  vectors. If the PSP’s are 

defined as t

yx ppp ] [|   , where t  

is the matrix transpose, then we can 

write    

 

where | p  are the transpose 

conjugate of  p| . Now, it is 

straightforward to show that  
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Comparing Eqs.(4) and (5), we can 

extract 

 

 

 

In turn, the splitting ratios can be 

calculated by using Eq.(6) and the fact 

that apapa ˆˆ|ˆ|  


  

  

 

 

 

To this end, the relationship between 

the splitting ratios and elevation angle 

was calculated. Also, showing how the 

angle will be determined the values of 

  that we have been calculated for 

this point.  

 

2 Statistics of DGD  

Throughout this subsection, the 

PMD statistics have been carefully 

analyzed that causes the variation in 

pulse properties. A proper measure of 

pulse width for pulses of arbitrary 

shapes is the root-mean square (rms) 

width of the pulse defined as 
2 2

rms t t       . The PMD 

induced pulse broadening is 

characterized by the rms value of 
pmd ,

rms  obtained after averaging over 

random birefringence changes. The 

second moment of 
pmd  is given by [6] 

 

 

where 
c
 is the correlation length that 

is defined as the length over which two 

polarization components remain 

correlated, 1 1

1 gx gy       is related to 

the difference in group velocities along 

the two PSP's. For distances 1L km , 

a reasonable estimate of pulse 

broadening was obtained by taking the 

limit 
cL   in Eq.(9). The result is 

given by [7] 

 

 

where 
pD  is known as the PMD 

parameter that takes the values 

(0.01 10) /ps km . The variable 

pmd  has been determined to obey a 

Maxwellian distribution of the form [6]

  

 

 

The mean of 
pmd  is done simply as 

follows 

 

  

 

Using Eq.(12), the Maxwellian 

distribution will take the form  

 

 

 

A cursory inspection of Eq.(13) reveals 

that the )( pmdp   can be found if 
pmd  

is known. Here, a relationship for 
pmd  

that will maximize )( pmdp   can be 

found . The distribution )( pmdp   has a 

maximum value at  

 

 

 

Eq.(14) provides a method for 

calculating the maximum likelihood 

value of 
pmd  if one knows 

pmd . 
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Typically, if pspmd 2  then 

psm

pmd  77.1 .  

Using Eq.(13), the probability of  
pmd  

exceeds a particular value can be found  

 

  

 

where 
pmdpmdx  /  and erf  is the 

error function. For example, if the 

mean of  DGD is s 2 p , the probability 

for 
pmdpmd  /  exceeding 1  is %46 . 

Expressed another way, if pspmd 2  

then % 45  of the time 
pmd  will be less 

than ps2 .  

 

3 Statistics of Impulse Response 

The rms width of the impulse 

response, 
eff , can be readily 

calculated by substituting Eq.(2) into 
2 2

rms t t         to yield 

  

 

 

 

The result may be simplified by 

substituting Eqs.(8) into (16) to yield  

 

 

 

Using Eqs.(4) and (17), one can 

transform the density distribution for 

  to the density for 
eff as follows 

 

 

 

It is important to note that the 

probability density is a function of 
eff  

and 
pmd . As a consequence of this 

dependence, Eq.(18) can not be 

integrated to determine 
eff because 

presence of the other variable 
pmd . So, 

in the next, we seek about ( )
eff effp   

that is a function of 
eff  only to 

determine the statistical properties of 

output pulses.  

The joint probability 

distribution ( , )eff pmdp    can be 

illustrated using Eqs.(13) and (18) as 

follows 

 

 

Return to Eq.(17), it may be written as 

2
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pmd





 . Since 0 sin 1  , such 

that 2 eff pmd   . The probability 

distribution ( )effp  can be found by 

integrating Eq.(19) about 
pmd  through 

the range 2 eff pmd    to obtain 

 

 

At a basic level, Eq.(18) is the same as 

Eq.(20) but the latter is a function of 

eff  only, which can be integrated to 

obtain 
eff .  However, both equations 

are normalized properly. The mean 

value of  
eff can be determined as  

 

 

So, Eq.(20) may be written as 

 

 

The distribution )( effp   has a 

maximum value at  

 

 

This is equivalent to find the maximum 

likelihood value of 
eff  if one knows 

pmd . Typically, if pspmd 2  then  

pseff  .630max  . Using Eq.(22), the 

probability of 
pmd  exceeds a 

particular value can be found 
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For example, if pspmd 2 , then 

pspmdeff  79.08/    and the 

probability for 
effeff  /  exceeding ps1  

is %45 . That is, if pseff  79.0  then 

pmd  will be less than ps79.0  at % 55  

of the time.  

 

4 Power Penalty 

In the first-order picture, PMD 

splits the input signal entering the fiber 

into two orthogonally polarized 

components that are delayed by 
pmd

  

relative to each other during 

transmission. The impairment caused 

by this effect can be expressed as a 

power penalty of the form [12] 

   

 

where the penalty expressed in dB  is 

assumed to be small, T is the bit 

interval, and K is a dimensionless 

parameter takes the value from 10  to 

70 depend on pulse shape, modulation 

format, and specific receiver 

characteristics. It is straightforward to 

note that the penalty will minimize by 

decreasing DGD, increasing bit period, 

and making the elevation angle around 
0  or   . 

The mean penalty parameter 

can be determined using Eqs.(22) and 

(25) as follows  

 

 

This allow us to easily transform the 

Rayleigh density, i.e. Eq.(22), of 
eff  

to the density for   and obtain the 

following distribution 

 

 

Using this distribution, the probability 

of   exceeding a particular value can 

be found  as follows 

 

 

Typically, if pspmd 2 , 30K , and 

psT  20 , then dB 059.0  and the 

probability for  /  exceeding 1   is 

%37 . That is, if dB 059.0 , then   

will be less than dB 059.0  at % 36  of 

the time.  

 We are particularly interested 

in the relations of max

pmd  to find max

eff and 

then the maximum likelihood penalty 
max . That is; the maximum likelihood 

pmd  will determine the maximum 

likelihood
eff . As a consequence, the 

maximum likelihood penalty will be 

calculated. All variables max

pmd , max

eff , and 

max are depended on the parameters 

pD  and L . For illustration, the 

density distributions of  
pmd , 

eff , and 

  are computed in Fig.(2). 

 

 

 
Fig.(2): density distributions )( pmdp  , )( effp  , and )(p . 
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 Using the PSP’s  as an 

orthogonal basis set, any input or 

output polarization can be expressed as 

the vector sum of two components, 

each aligned with a PSP. Within the 

realm of the first-order PMD, the 

output electric field from a fiber with 

PMD has the form [9] 

  

 

 

where )(tEin  is the input electric field. 

 Before finding the output power 

 )(|)()( tEtEtP outoutout , it is 

important to point out orthogonality 

properties of Jones vectors, that is;  

 0|   pp and 1|   pp . 

Note that, we perform derivation using 

a normalized Gaussian pulse that takes 

the form )2/exp()( 2

0

2 tttEin  . 

Therefore, according to Eq.(29), the 

shifted pulses will reshape as  

 

 

 

 

 

 

 

where 0t  is the initial pulse width.  

Substituting Eqs.(8) and (30) 

into (29), using the output power 

definition, using the orthogonality 

properties of Jones vectors, and 

simplified the result, we obtain the 

following expression  

 

 

The width of the output pulse 1t  can be determined using Eq.(31) as follows 

 

 

 

The time jittering of the pulse can be 

found by determining the maximum 

value of )(tPout . This maximum value 

will happen at 

 

 

The peak power, as a function of DGD 

and an angle  , at the pulse center can 

be determined by substituting  Eq.(33) 

into Eq.(31) as follows 

 

 

At this point, we drive a formulas for 

the output power form, final width, 

time jittering (shifting), and peak 

power as functions of the random 

physical variables   and 
pmd . 

Eqs.(31-34) are considered as the main 

achievement of this work.  

 

6 Special cases 

Now, using Eqs.(31) to (34), 

very important special cases may be 

illustrated 

1. For 0     ,  pmdrandom   (SOP 

enters with random angle, no PMD)  

 

 

Note that, this case does not 

represented any physical fact but it 

introduced for illustration only.  

2. For randompmd    ,0     (SOP 

parallels to PMD vector,  random PMD 

value) 

           

 

3. For randompmd      ,    (SOP 

anti-parallels to PMD, random PMD 

value) 
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4. For randompmd    ,2/   (SOP 

and PMD vectors are orthogonal,  

random PMD value)             

       

 

 

 

 

Determination of power 

formula, pulse width, time jittering, 

and penalty at an angles  ,0  is 

very easy as well as whether the case 

0pmd , while the calculation at  

2/   has some difficulty. Note 

that, the fourth special case is 

presented as an example, but in fact all 

angles other than  ,0  will make 

some mathematical difficulty. All 

details will shown at simulation results 

section. The power formula at 
2/   consists of a multiplication of 

three terms which are: )2/cosh( 2

0tt pmd , 

22 / ott
e


, and 
22 4/ opmd t

e


. Plotting the pulse 

shape depends on t , so the shape is 

affected by )2/cosh( 2

0tt pmd   and 
22 / ott

e


 only, but the term 
22 / ott

e


 does 

not affected by 
pmd . The term 

)2/cosh( 2

0tt pmd  is an even function of 

t , increasing 
pmd  does not changed 

the shape  of )2/cosh( 2

0tt pmd  

significantly but will make the pulse 

curve to raise more on both sides of 

0t . For 
0tpmd  , the term 

)2/cosh( 2

0tt pmd  will lead to make a 

symmetric two lobes around 0t  at 

the points 

 

 

 

For all other angles, except 

 ,2/,0 , the two lobes are not 

symmetric. Thereafter, at  ,0 , the 

lobes will not appear. In other words, 

all angles except  ,2/,0 , will 

distort the pulse shape. The stronger 

distortion is happen at 2/  . 

 

Results and Discussion: 
The parameters used in the 

simulation are as follows: kmL  50 ,

kmpsDp / 5.0 , 30K , pst  50 

, and psT  20 . The bit period is 

selected to be psT  20  to prevent 

any interference between 

neighborhood signals that represent 

distinct bits. Fig.(3) represents the 

pulses shape, where the solid line is the 

original pulse, while the discrete lines 

are the resulted pulses with different 

values of 
pmd  ranging from 0  to ps8 , 

where the closest to 0t  is the pulse 

that has least value of  
pmd . Fig.(4) 

represents pulse width, time jittering 

(shifting), peak power, and penalty as 

functions of  
pmd  and  . At the angle 

0 , one note that the pulse is faced 

only by a displacement  to right at 

2/pmdpeakt  . By rising  , the pulse 

width and distortion will increase, 

while the power and shifting will 

decrease. These variations are greatest 

at 2/  . After 2/  , the 

effects are reversed. At   , again 

the pulse is faced only by a 

displacement  but to left at 

2/pmdpeakt  . It is clear from Fig.(4) 

that the penalty could be greater if 
2/   and will be zero at 

    0 or  .  

Depending on the above 

discussion, we can illustrate the 

following: the input pulse with SOP 

that matches one of the PSP’s will not 

suffer any effects except displacement 

at  2/pmdpeakt  , while the pulse that 

enters the fiber with an angle 2/   

will face a greatest variations but 

without time jittering. According to the 

values used in the simulation, 

pspmd 26.3 , pspmd 28.1max  , 
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pseff 02.1max  , and dB078.0max  . 

In other words, the most frequent of 

pmd  is pspmd 28.1max  , and the most 

frequent of 
eff  is pseff 02.1max  . 

Consequently, seeing from Figs.(3) and 

(4), the changing in pulse shape, width, 

and time jittering are insignificant, 

especially at     0 or . Also, can 

note that, the most frequent penalty is 

dB078.0max  , which is very small 

and does not effect system properties. 

We can not fail to mention that the 

increasing of  PMD parameter and 

fiber length will lead to increase the 

values above and thus adversely 

affecting the functioning of the system 

specifications. Finally, the angle   can 

control an important factors that are 

affecting all physical properties of the  

system, where the best values are 

  ,  0 . Table(1) summarizes all 

cases of Figs.(3) and (4). 

 

Table (1): pulse properties with different values of    and 
pmd . 

pmd    
shape 

distortion 

pulse 

broadening 

time 

jittering 

peak 

value 

power 

penalty 

random 0  No No right 1  No 

random 8/  Yes Yes right 1  Yes 

random 8/2  Yes Yes right 1  Yes 

random 8/3  Yes Yes right 1  Yes 

random 4/  
Yes 

maximum 

Yes 

maximum 
No 1  

minimum 

Yes 

maximum 

random 8/5  Yes Yes left 1  Yes 

random 8/6  Yes Yes left 1  Yes 

random 8/7  Yes Yes left 1  Yes 

random   No No left 1  No 

0pmd  random No No No 1  No 

 

Conclusions: 
Identifying the most frequent value

max

pmd  leads to identify all other random 

variables: max

eff ,    ، 1t  ، peakP  , and 

peakt . As a consequence, the extent 

distortions that are faced the pulse may 

be determined. It is important to note 

that, the system properties did not 

change with
pmd , but will change with 

the most frequent value max

pmd . 

Therefore, the system will work at 

most its time with values that are 

calculated in results section. At very 

small time, the system will use another 

values, which are different from the 

best values pspmd 26.3 , 

pspmd 28.1max  , pseff 02.1max  , 

dB078.0max  ,  and pspmd 28.1max  . 

In other words, the most frequent of 

pmd  is, and the most frequent of 
eff  is 

pseff 02.1max  . Generally, reducing 

PMD parameter, reducing fiber length, 

and preserving the angle values at  

    0 or   will make the system to 

achieve the desired objectives. 
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Fig.(3): pulse shape with different value of 
pmd  and  , the solid line represents 

the original  pulse while the discrete lines represent the resulted pulses for 

different values of 
pmd , where the lower value of 

pmd  is the closest to the pulse 

center. 

 



Baghdad Science Journal  Vol.7(3)2010 
 

1264 

 
Fig.(4): final width, peak shift, normalized peak power, and power  penalty as a 

function of DGD and angle  . 
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ـفردة النمطفي الأليــاف منـ نمورج إحصائي لتشتت نمط الاستقطاب  
 

 

 *حسن عبذ ياسر 
 

 كهيح انعهىو -جايعح ري قاس*

 

 :الخلاصت
كيكاتد/شاَيىح فى ٌ انُمىاو سىىف يعىاَي       10عُذ صيادج َسثح الإسسال في الأنياف انثصشيح إنى  ككصىش يىٍ     

يٍ ظاهشِ عشىائيح يهًح هي ذشرد ًَط الاسرقطاب وانري ذساهى تشكم فعال في صيىادج عىشا انُث،ىح، َقصىاٌ     

عُىي احرًىال حىذوز ذىذايم تىيٍ انُث،ىاخ انًر ىاوسج،        ا، إصاحح يشكضها، وذشىىِ كىكهها. كٌ إصاحىح انًىقى  ذ    قذسذه

وإرا حذدَا فرشج انثد تًقذاس كثيش ف ٌ رنك يعُي عذو إيكاَيح ذحقيى  َسىة إسسىال عانيىح، نىزنك ي ىة و ى   ىي          

 سيا يح دقيقح يٍ كجم صيادج َسة الإسسال.

ذحذيىذ َسىة الإسسىال    في هىزا انثحىس، ذىى ذحهيىم جًيى  انًر يىشاخ انييضيائيىح انعشىىائيح انرىي ذسىاهى فىي             

طاقح انُث،ح، طاقح انقًح، ويقذاس إصاحىح انقًىح، عىشا انُث،ىح،      واسرطعُا و    ي  سيا يح جذيذج نكم يٍ:

وانخساسج انًرحققح. عه  كساط هزِ انصي  انشيا يح يًكٍ ايرياس قيى ذش يم يعيُح نرقهيىم كو يُى  ذى شيشاخ ذشىرد     

 ًَط الاسرقطاب. 

 

 


