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Abstract: 
We study in this paper the composition operator that is induced by φ(z) = sz + t. We 

give a characterization of the adjoint of composiotion operators generated by self-

maps of the unit ball of form φ(z) = sz + t for which |s|≤1,  |t|<1 and |s|+|t|≤1. In fact 

we prove that the adjoint is a product of toeplitz operators and composition operator. 

Also, we have studied the compactness of Cφ and give some other partial results. 
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Introduction: 
Let U denote the unit ball in the 

complex plan, the Hardy space H
2
 is 

the collection of holomorphic 

(analytic) function f(z) =  ∑  ̂ 
   (n) z

n
 

with  ̂(n) denoting the n-th Taylor 

coefficient , for which ∑   
   | ̂(n)|

2
< . 

The norm is defined by  

║f║
2
 =  ∑   

   | ̂(n)|
2
 ( f  H

2
 ). The 

particular importance of H
2
 is duo to 

the fact that it is a Hilbert space. Let φ 

be a holomorphic  function that take 

the unit ball U into itself ( which is 

called homomorphic self-map of U). 

The composition operator Cφ induced 

by φ is defined on H
2
 by the equation  

Cφ f = f  φ ( f  H
2
) [1]. 

 We state very loosely some 

basic facts on composition operator on 

H
2
. 

Theorem 1:- Every composition 

operator Cφ is bounded. 

Theorem 2:- Cφ is normal  if and 

only if φ(z) = λz, |λ|≤1. 

Theorem 3:- Cφ Cψ =     . 

 Furthermore an important 

special family of function in H
2
, 

namely {Kα}α Є U. For each α  U, 

Shapiro in [1], defined Kα =
z1

1
= 

∑   ̅  
    z

n
. 

 It is clear for each f  H
2
, f(z) =  

∑  ̂ 
   (n) z

n
 that < f, Kα > = ∑  ̂ 

   (n) 

α
n
 = f(α). Shapiro in [1] gives the 

adjoint of a composition operator on 

{Kα}α Є U in the following theorem. 

Theorem 4:- Let φ be a holomorphic 

self-map of U, then for all α  U, Cφ
*
 

Kα= Kφ(α). 

 Finally, Bourdon in [2] gives an 

exact value of the H
2
-norm of 

composition operators induced by φ(z)  

║Cφ║=
222222

4)1(1

2

ttsts 

 

 

The adjoint of composition 

operator Cφ 
 Let H

∞
 denote the collection of 

bounded holomorphic functions on U. 

The norm on H
∞
 is defined by ║f║∞ = 

      |f(z)| [1]. 

 Recall that for g  H
∞
, the 

toeplitz operator Tg is the operator on 

H
2
 given by (Tgf)(z) = g(z)f(z), f  H

2
, 

z U [3]. 

In this section we will try to calculate 

the adjoint of composition operator Cφ 

*Department of mathematics/ College of Science for women / University of Baghdad 
 



Baghdad Science Journal  Vol.7(3)2010 
 

6611 

induced by φ(z) = sz + t   for which 

|s|≤1,  |t|<1 and |s|+|t|≤1. 

Theorem 5:- Cφ
*
 = Tg Cδ , where 

g(z) = (1 -  ̅z), δ(z) = 
zt

zs

1
 . 

Proof:- Since |s|+|t|≤1, then |1-  ̅z | > | 

1 - |t| | ≥ |s| ( |z| < 1 and |t| <1 ). Hence | 

δ(z) |<1 ( z  U). Thus clearly δ maps 

U into itself. Moreover, ║g║∞ = 

      |1-  ̅z | < ∞  

( since |t| <1). Thus g  H
∞
. This 

means that the formula makes sense . 

Now, for each α  U , we have  by 

theorem 4  Cφ
*
 Kα(z) = Kφ(α)(z)= 

zts )(1

1

 
=

zts )(1

1

 
=

zszt 1

1
= (1 - ̅z) 

zt

zs




1
(1

1



  

Let g(z) = (1 - ̅z), δ(z) =
zt

zs

1
 . Thus 

Cφ
*
 Kα (z) = Tg Cδ Kα (z). Therefore, 

Cφ
*
 Kα (z) = Tg Cδ Kα (z). ( z  U). 

Since  {Kα}α Є U span a dense subset of 

H
2
, the desired equality holds. 

Proposition 6:- Cδ
*
 =   ̃

  Cφ where 

  ̃ = 1 - ̅z. 

Proof:- By theorem (1.) , Cδ
*
 Kα (z) = 

Kδ(α)(z) = 

z
t

sz
)

1
(1

1

)(1

1











= 

zst

t

t

zst 





 






 1

1

1

1

1
   =   

= (1 –t  ̅) 

)(1

1

)1()(1

1

zttsz  






 

   

=   ̅̃ Kα(φ(z))    

=   ̃
  Cφ Kα (z)  (since Th

*
f =   ̅ f, by 

[2]). 

 Since  {Kα}α Є U span a dense subset of 

H
2
, the desired equality holds. 

 

The compactness of 

composition operator Cφ 

induced by φ(z)=sz+t, for which 

|s|≤1,  |t|<1 and |s|+|t|≤1, on 

Hardy space H
2
. 

Recall that an operator T on Hilbert 

space H is compact if it maps every 

bounded set into a relativity compact 

one (one whose cloure in H is compact 

set) [1]. We start this section by the 

following result which is proved in [1] 

by Shapiro. 

Theorem 7:- Let ψ be a liner 

fractional self-map of U, that is ψ(z) = 
    

    
 where a,b,c and d are complex 

numbers. Then Cψ is not compact if φ 

maps a point of the unit circle  U to a 

point of    U. 

 Now, we give the sufficient and 

necessary condition for compactness of 

Cφ. 

Proposition 8:- Cφ is not compact if 

and only if |s|+|t|=1. 

Proof:- Assume that Cφ is not compact, 

then by theorem 7 there exist z1,z2  
 U such that φ(z1) = z2. Hence 1 = 

 | φ(z1)| = | sz1 + t | ≤ |s| |z1| + |t| = 

|s|+|t|≤1. Therefore |s|+|t|=1. 

 Conversely assume that |s|+|t|=1. Since 

|φ(z)| = | sz + t | ≤ |s| |z| + |t| = |s|+|t|≤1, 

then by Maximum principle of analytic 

function [4]. We have for each z   U, 

then there exists z1   U such that 

|φ(z1)| =1. Hence by theorem 7 Cφ is 

not compact. 

Notation :- We use the notation φn = 

        ( n times). To denote the 

n-th iterate of φ for n a positive integer.  

Remark 9:- By theorem 3 we can 

conclude that Cφ
n
 = Cφn for each 

positive integer. 

Now, we study the compactness of n-th 

power of Cφ. 

Theorem 10:- Cφ
n
 is compact 

operator for every positive integer n if 

and only if |s| + |t| < 1 where  |s| < 1 

and  |t| < 1. 
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Proof:- By using mathematical 

induction of φ(z) we get                  

φn(z) = s
n
z + ( n

n s 0 )t. Since the 

geometric series  0
n

S
n
 is 

convergent if |s| < 1. Then φn is a 

linear-fractional self map of U where 

|s| < 1. First suppose that |s| + |t| < 1, 

then by proposition 8 Cφ is compact, so 

Cφ
n
 is compact for every positive 

integer n. 

 Conversely, assume that Cφ
n
 is 

compact for every positive integer n. 

To show that |s| +|t| < 1, assume the 

converse that |s| +|t|   1. This implies 

by proposition 8 Cφ is not compact 

which is a contradiction. Thus  |s| +|t| < 

1. 

 Now, we give the following 

results. 

Proposition 11:- Suppose that Ф is 

a linear-fractional self-map of U. Then 

CФ Cδ is compact if and only if CФ Cφ
*
 

is compact, where   Cφ
*
 = Tg Cδ. 

Proof:- Suppose CФ Cδ is compact. 

Note that, CФ Cφ
*
= CФ Tg Cδ  =     Cφ 

Cδ (by theorem 5 and  CφTg =     Cφ). 

Since CФ Cδ is compact operator. 

Moreover,     is bounded, then CФ 

Cφ
*
 is compact. Conversely, if CФ Cφ

*
 

is compact.  

Note that  CФ Cδ = CФ (Cδ
*
)

*
  

= CФ (   ̃
  Cφ)

* 
( by proposition 6).  

= CФ Cφ
*
   ̃

    

= CФ Cφ
*
   ̅̃ ( since   ̃

  =   ̅̃ ).  

Since CФ Cφ
*
  is compact and   ̅̃ is 

bounded then CФ Cδ  is compact. 

Proposition 12:- Suppose that Ф is 

a linear-fractional self-map of U. Then 

CФ Cδ
*
 is compact if and only if CФ Cφ 

is compact. 

Proof:- Suppose that CФ Cδ
*
 is 

compact. Then 

 CФ Cφ = CФ ( Cφ
*
)

*
 = CФ (Tg Cδ)

* 
( by 

theorem 5) 

 = CФ Cδ
*
 Tg

*
 

 =  CФ Cδ
*  ̅    ( Tg

*
 =    ̅) 

Since CФ Cδ
*
 is compact and   ̅ is 

bounded it follows that CФ Cφ is 

compact. 

Conversely, if CФ Cφ is compact, CФ 

Cδ
*
 = CФ  ̃

  Cφ ( by proposition 6) 

=  CФ   ̅̃ Cφ  ( since   ̃
  =   ̅̃ ) [3] 

=   ̅̃   CФ Cφ  (CФ   ̅̃ =   ̅̃   Cφ )[3] 

Since CФ Cφ   is compact and CФ Cφ   

is bounded, then CФ Cδ
*
 is compact. 

Proposition 13:- Let Ф be a linear 

fractional self-map of U. Then Cδ CФ is 

compact, if and only if Cφ
*
CФ is 

compact, where Cφ
*
 = Tg Cδ. 

Proof:- suppose that Cδ CФ is compact. 

Then Cφ
*
CФ =  Tg Cδ CФ ( by theorem 

5). Since Cδ CФ is compact, then 

Cφ
*
CФ is compact. 

Conversely, assume that Cφ
*
CФ is 

compact. Since the family {Kα}α Є U 

span a dense subset in H
2
, then it is 

enough to prove the compactness on 

this family. Hence for each α  U,      

Cδ CФ Kα(z) = (Cδ
*
)

*
 CФ Kα(z)  

= (  ̃ Cφ)
*
 CФ Kα(z)  (Cδ

*
 =   ̃

  Cφ) 

= Cφ
*
   ̃

  CФ Kα(z)  

= Cφ
*   ̅̃CФ Kα(z)    (since   ̃

  =   ̅̃ ) 

[3] 

= Cφ
*   ̅̃ Kα(Ф (z)) 

= Cφ
*     ̃̅̅ ̅̅ ̅̅  Kα(φ (z))(  ̃

  Kα=     ̃̅̅ ̅̅ ̅̅  Kα) 

=     ̃̅̅ ̅̅ ̅̅  Cφ
*
 CФ Kα(z)  (  Cφ

*
 is linear) 

Since Cφ
*
CФ is compact, moreover , g 

 H
∞
, then Cδ CФ is compact on {Kα}α 

Є U. But {Kα}α Є U span a dense subset 

in H
2
. Hence Cδ CФ is compact on H

2
. 

Similarly to the proof of the previous 

proposition we can get the following 

result. 

Proposition 14:- Let Ф be a linear-

fractional self-map of U. Then Cδ
*
 CФ 

is compact, if and only if CφCФ is 

compact, where Cφ
*
 = Tg Cδ. 

Corollary 15:- Suppose that Ф is a 

linear fractional self-map of U such 

that CФ Cδ
*
 is not compact, then there 

exist w1,w2   U such that φ  Ф (w1) 

= w2. 
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Proof:- By proposition 12, if CФ Cδ
*
 is 

not compact, then CФ Cφ
 

is not 

compact. But each of Ф and φ are 

linear- functional self-map of U, then 

also φ  Ф. Then by theorem 7       = 

Cφ  CФ is not compact, if and only if φ 

 Ф maps a point of the unit circle onto 

the unite circle. So, there exist w1,w2 

  U such that φ  Ф (w1) = w2. 

Similarly to the proof of corollary 15. 

We have by proposition 14 and 

theorem 4 the next result. 

Corollary 16:- Suppose that Ф is a 

linear-fractional self-map of U such 

that 

 Cδ
*
 CФ is not compact, then there exist 

w1,w2   U such that Ф  φ (w1) = w2. 
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 s|+|t|≤1|و  s|≤1,  |t|<1|لكل  φ(z) = sz + tالمؤثر التركيبي المتولد بالدالت 
 

 *سميرة ناجي كاظم
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 الخلاصت:
  ,s|≤1|تحيث اى   φ(z) = sz + tالوتولد تواسطح الدالح  Cφفي هذا الثحث أعطي وصف للوؤثز هزافق للوؤثز 

|t|<1  و|s|+|t|≤1  تالحقيقح تزهي اًه الوزافق هو عثارج عي ضزب الوؤثزاخ ًتوتلتز هع هؤثز تزكيثي . و .

 هع تعض الٌتائج التي هي حسة علوٌا جديدج. Cφكذلك درسٌا تزاص الوؤثز التزكيثي  


