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Abstract:

We study in this paper the composition operator of induced by the function
¢(z)=sz+t where |S| <1, |t| <1 and ‘S‘—!—m <1.
We characterize the normal composition operator C, on Hardy space H* and other

related classes of operators. In addition to that we study the essential normality of C,,
and give some other partial results which are new to the best of our knowledge.
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Introduction:

Let U denote the unite ball in the
complex plane, the Hardy space H? is
the collection of holomorphic

(analytic) functions f(z)= 3 f(n)z"

n=0
with f(n) denoting the n-th Taylor
coefficient of f such that
- 2
3 f(n)‘ <.
n=0
More precisely,

o
f(z)= Yf(Nz"eH? =
n=0

w0 2
[ =] )| <ee.
n=0
The inner product inducing the H?

norm is given by <f,g>=i f(n)a(n)
n=0

(foge HZ).

The particular importance of H? is
due to the fact that it is a Hilbert space.
Let w be a homomorphic function that
take the unit ball U into itself ( which
is called homomrphic self-map of U ).
To each holomorphic self-map y of

U, we associate the composition

operator C,, defined for all feH® by
Cl// f="foy.

In this paper, we discuss some
links between the function theory and
the operator theory and investigate the
relationship between the properties of
the function ¢ and the operator C, .
Composition operators have been
studied in many different contexts. A
good source of references on the
properties of composition operators on
H? can found in [1].

We state very loosely some basic facts
on composition operator on H.

Theorem 1, [1] : Every composition
operator C,, is bounded.

Theorem 2, [1]: C,, is normal if and
only if w(z) =2z, |4<1.

Theorem 3, [1]: C; Cy = Cyoo
Theorem 4, [1]: C, is an identity

operator if and only if y is the identity
map.

For each a.eU, the reproducing kernel
at o, denoted by k, is defined by

Shapiro [2] as follows
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1

l-az
He proved [2] that for each acU and

Ky (2)=

fe H? f(2)= Z?(n)z” that (f K, )
n=0

=3 f(n)a" =f(a)-

The reproducing kernels for H? will
play an important role in this paper.
Shapiro gives the following formula
for the adjoint C“,* of a composition
operator C,, on the family {ky }ocu.

Theorem 5, [1]: Let y be a
homomorphic self map of U, then for
all acU
kaa = kw(a).

Next, Cowen gave an exact value of
the of composition operator induced
by ¢(z)=sz+t.

Theorem 6, [3]: Let @(z)=sz+t, then
the norm of C, on H’is defined as
follows

2 .
Co.l=
o \/1+Sz—t2+\/@—52+t2)2—4t2

This paper consists of two sections. In
section one, we characterize the normal
composition operator C, on H? and
other related classes of operators. In
section tow, we characterize the
essential normality of C,. To the best
of our knowledge, these results are
seemed to be new.

1. The Characterization for
normality of C,
In this section we give a

characterization of normal composition
operator C, on Hardy space H?,

induced by ¢(z)=sz+t where ‘S‘Sl,
| <1 and |s+[t|<1. Moreover, we
study other related classis of operators.

1276

Recall that an operator T on a
Hilbert space H is said to be normal if
TT = T'T where T is the adjoint of T.
Also, T is said to be isometric if T T=I,
where | is the identity operator.
Moreover T is called unitary if TT =
T'T=I [4]. We start this section by the
following result.

Theorem 1.1: Let ¢(z)=sztt where
s/ <1, t| <1 and |s|+[t| <1. 1f |5 =1,
then C,, is an isometric operator on H?
Proof:

Assume that |S|:1. But
|S|+[t| <1, then it is clear that t=0.

Therefore ¢(z)=sz. To prove that C,, is
isometric, it is enough that to show that

C;sz | . LetoaeU, then
CyCok.(D)=Cik (9(2))
=Ko (9(2))

1
~1-9la) p2)
1

T1-stsz
1

for

Hence C;C(pka(z):ka(z)
each aeU. But it is well known that

the span of the family {k, }.cu Iis
dense subset in H?. This implies that

* _ 2 .
C,C,=1 on H. So, C, is an
isometric operator on H* m

The following theorem gives the
necessary and sufficient condition for
the normality of C, .

Theorem 1.2: Let ¢(z)=sztt where

where |S|£l, t|<1 and |s+[t|<1.
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Then C, is a normal operator on H? if
and only if t=0.
Proof:

Assume that C, is normal.
Trivially case when C, is the identity
operator, then by theorem (4) we have
¢ is the identity self-map of U, hence
¢(z)=z. Thus t=0. Therefore we may
assume that is not the identity operator,
then by theorem (4) ¢ is the not
identity self-map of U. To prove that

t=0, we suppose that t#0. Thus
¢(0)=t#0.
Since. is C, normal then

C¢C;=C;C¢. It follows that
Cq)C;ko(Z):C;Cq)ko(Z)-

But C,k,=k, ’C;kf K (o) (0¥

theorem (5)).Thus

C,K,0@= C;ko(z). This implies
that
K p0)(2(2)) = K y(0)(2) - Hence,

1 1
1-9(0) p(z) 1-9(0)z e
¢(0) ¢(z)= (0) z. But ¢(0)=0, then
¢(z)=z, which a contradiction.
Therefore, t=0.
Conversely, if t=0, then
@(z)=sz, |9 <1. So, by theorem

(2) we have C, is normalm

The following consequence gives the
description of the unitary operator C,
on Hardy space H%

Corollary 1.3: Let ¢(z)=sztt where
where [§ <1, [t{<1 and |s|-+[t|<1.
Then C, is a unitary operator on H® if
and only if |s|=1.
Proof:

Assume that is C, unitary, then

c.,C,=C,C,=1. But every
unitary operator is normal, then by
(1.2) we have t=0. This implies that

1277

is

¢(z)=sz,

enough to show that [s|=1. Let aeU,
then

C,C,k.(2)=Cik,(0(2)
Ko (@(2))

S|<1. Hence, it

1
1-9(a) ¢(z)

But
C.C,k.®=1k,(2))=k, ).
Hence 1 = !
1-gla) p(z) 1-az

Therefore

_1_ = 1_ Hence
l-stsz l1-az

12_ __1 This implies
1-|saz l-az
that |s|=1.

Conversely, if |s|=1, then t=0 (since
|| +[t| <1). Therefore by (1.2) we get

C, is normal. On the other hand, since
Is|=1, then by (1.1) we have C, is
isometric. Thus it is clear that

C¢C;=C;C¢= I . 1t follows that

C, is a unitary operator on H’m

2. The characterization of essential
normality of C,

Recall that an operator T on a
Hilbert space H is said to be compact if
it maps every bounded set into a
relatively compact one (one whose
closure in H is a compact set).
Moreover, T is called essentially
normal if T T-TT is compact [5].
To study the compactness and essential
normality of C, we need some
preliminaries.

Let that T be a bounded operator on a
Hilbert space H. The norm of T is
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defined as follows
[T =sup{ e[| 1 eH,|f]=1)

Calculating the exact value of the norm
of a composition operator can be
difficult. Cowen [3] gave an exact
value of the norm of C, (see theorem

(6)).
Recall that a holomorphic self-map
is called an inner function if

w(z)=1 ae. onou. so one

can get the following consequence.
Proposition 2.1: ¢ is an inner function

if and only if |S|-+[t|=1.
Proof:
Assume that ¢ is an inner function,

then p(z)=1 ae. ondU.

Hence |sz+t|=1. So,
I= |sz+t] < |S|Z1HU=sHE <L. This

implies that |s|+[t|=1. On the other

hand the converse is clearm

The norm of composition operator
induced by inner function is computed
by Nordgren [6].

Theorem 2.2: y is an inner function if

. 2 1+|y(0)
and only if HCWH =1_|W(0)|.
Corollary 2.3: HC H2=1+|t| if and
o1
only if |S|+[t| =1.
Proof:

By (2.1) we have ¢ is an inner

function if and only if [s|+|t|=1.
Therefore by (2.2) that

2 _ 1+|¢>(0)| ) ]
HC«J _1_|(p(0)| if and only if
S+t =1 m

Corollary 2.4: Let |s|+[t| =1, then
(1) HC«)H 1 if and only if t=0,

1278

2) chu >1 if and only if 0.

Proof:

1) Follows immediately from
(2.3).
@) Follows from (2.3)
2 1+|t| .
ch :1——|t|' Since
1—[t| <1+(t], then it clear
that |C | > 1

Recall that the spectrum of an operator
T on a Hilbert space H, denoted by
o(T) is the set of all complex numbers
A for which T-Al is not invertible.The
spectral radius of T, denoted by r(T) is
defined as
r(T)=sup{|4:Aec(T)}.

The right spectrum of an operator T on
a Hilbert space H, denoted by o,(T) is
the set of all complex numbers A for
which T-Al is not right invertible. The
left spectrum of an operator T on a
Hilbert space H, denoted by o)(T) is the
set of all complex numbers A for which
T-Al is not left invertible [7].

Cowen [8] gave an easy estimate of the
spectral  radius of  composition
operator.

Theorem 2.5: Suppose that y is a
holomorphic self-map of U and
suppose that y has a fixed point c, then

rC,)=1  where |g<1 and

rcC,) =‘y/'(c)‘ M2 where c/=1.

By (2.5) we can compute the spectral
radius of composition operator C, by
determine the position of fixed points
of ¢.

Proposition 2.6:
(1) ¢ has an interior fixed point in U if
and only if [t|< p.— S‘ where

s+t <1.
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(2) ¢ has a boundary fixed point in OU
if and only if [t|= p.— S‘ where

S+l =1
(3) ¢ has 1o fixed point outside U in

¢ (where U is the closure of U).
Proof:

Assume that ¢ has a fixed point c.
Thus ¢(c)=c. This implies that sc+t=c,
then C=t/(1—S). It follows that

(1) ¢ has an interior fixed point in U if
and only if |c|<I. So, ¢ has an
interior fixed point in U if and only

if [t < ‘1—5‘ where |S|+|t| <1.

(2) ¢ has a boundary fixed point on OU
if and only if |c|[=1. Thus ¢ has a
boundary fixed point on OU if and

only if [ =‘1—S‘. Hence it
remains to prove that |S[-+[t| =1.
Note that |t|:ﬂ—s\2\l—|s|\21—|s|,
so |s|+[t|=1. But |g/+t[<1,
then |s|+[t =1.

(3)If ¢ has fixed point ¢ outside U .
Hence [c|>1, and then [t >[1—s].
so [t|>[L—s[>[l—[s|>1—s|.
Thus [s[+[t| >1. But |s|+t|<1,
then we get a contradiction. H_ence
¢ has no a fixed point outside U m

Now we are ready to compute the
spectral radius of composition operator
C, on Hardy space H?.

Corollary 2.7:

1) rCy)=1 if and only if
|| +[t| <1 where [t| < ‘1— S‘ .

@  r(Cy=[s|** if and only if
t|= ‘1— S‘ where |8 +[t| =1.

Proof:

1) The proof follows directly by

(2.6)(1) and (2.5).

1279

(2) By (2.6)(2) we have ¢ has a

boundary fixed point on OU if
and only if |t|:\1—s\ where
8| +[t| =1. (2.5)
rcC,)=

boundary fixed point of ¢ on oU.
Thus it easily compute that

[(Co)=s|m

Hence by

172 .
@'(c)| " where c is a

Now we can give the necessary and
sufficient condition for compactness of
C,. Recall that a holomorphic self-map
of U is called linear-fractional if
(2)= az+b
+d
complex numbers. Shapiro [1] studied
the compactness of the linear-fractional
self-map of U.

where a,b,c and d are

Theorem 2.8: If y linear-fractional
self-map of U. Then C,, is not compact
operator if and only if y maps a point
of unit circle U into a point of oU.

Corollary 2.9: C, is a not compact
operator if and only if ‘S‘ +‘t‘ =1.
Proof:

If ‘S‘Ht‘ =1, then by (2.1) we get

¢ is an inner function. Clearly ¢ is a
linear-fractional self-map of U, thus by
the definition of inner function and
(2.8) C, is not compact.

Conversely, if C, is not compact. To

show that ‘S‘Ht‘ =1, we assume that
|s|+[t| <1. since C, is not compact,
then by (2.8) there exists zoedU such

that lp(zo)|=1. But
0(zo) = |52 +1| <|s|zo|+ 1t =|s|+[t] <1
Hence  |p(z0)|[<1, which a

contradiction m

Definition 2.10 [8]: Let B(H) be a
Banach space of all bounded operators
on a Hilbert space H, and K(H) be the
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ideal of all compact operators on H,
then the Calkin algebra is the quotient
space B(H)/K(H). If TeB(H), then the
canonical  projection TI(T) onto

B(H)/K(H) will be denoted by T. The
essential norm of T is ”T He = ”T H The

essential spectral radius of T is
re(T): r(T). The essential spectrum

of T is og(T)=0fl) The left
essential  spectrum of T s
O'Ie(T):o-I(T), or  equivalently

c1e(T)={u | range(T-p) is not closed, or
dim ker(T-u)=c}. The right essential

spectrum of T is ope(T)=0, ('F) or

equivalently o(T)={u | range(T-p) is
not closed, or dim ker(T - 1 )=c0}.

One can show that if T is an
essential normal operator on a Hilbert
space H if T T - T T'=0 in Calkin
algebra. It follows easily from the
definition of the essentially normal
operator that every normal operator
and compact operator is essentially
normal.

Shapiro [7] proved a holomorphic self-

map vy is inner if and only if
lc,]e =], | and r(c, )=r(c,).
Now we end this paper by the

following main result.

Theorem 2.11: C, is an essentially
normal operator on H? if and only if

‘S‘ +‘t‘ <1 or|s|=1.
Proof:

Suppose that C, is essentially
normal, then by [4] O"re(T):O"e(T)-

If we assume that ‘S‘Ht‘ =1, then we

must show that |s|=1. Assume the
converse, hence |s|<1, then it is clear
that t#£0. It follows by (2.4)(2) that

HC(,)H>1- But|s|+[t| =1, this implies

1280

by (2.1) that ¢ is inner. Therefore
re(C(p):r(Cq)) and
ch,”e =HC(/,H>1. Now by (2.6) we
have the following cases:

Case 1: ¢ has an interior fixed point in
U. Thus by (2.7)(1) we get that
r(Cy)=1. But C, is essentially normal,

then by [6] re(T):||'I'||e.Hence
1<r (T)=[T|, =r(C,)=1, which is

a contradiction.
Case 1: ¢ has a boundary fixed point
on OU. Thus by (2.7)(2) we get that

r(C(,,):|S|_]/2. Since |s|<1, then
r(Cy)>1. Butre(C(/,):r(Cq)), then

re(C(,,):|S|_]/2 >1. It was proven in [9]
that if C, is essentially normal, then for
any p in the interior of og(C W), Co 1t
is onto. Hence C, —p has a closed
range, and then rangelc ,— u)=H?. But
it is well known [4] that
rangelc,,—« +ker(c;—ﬁ):H2- Thus it
easily seen that dim ker(C¢—y):0.
Hence u ¢ oye(T), this implies that
contradiction. Thus from previous
cases we have |s|=1.

Conversely, if ‘S‘Ht‘ <1, then by
(29) we have C, is a compact
operator. Hence it is essentially
normal. Moreover if |s|=1, then by

(1.3) we have C, is a unitary operator
on H? . This implies that C, is a normal

operator. Hence it is essentially
normalm
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A (ya Cinall 3 )b plid o S ) il

o+l <1 sff <1,

S

<1 Lie @(z)=sztt

*lpe S Pla)

) padloalain il 1 ad - slal) S _3laay daalat

-

<duadAll

slof ] <1 AN (e Caiadl (o2 jla clizmb o oS G sl U o sl aa
)5V Gy ae ke W) G Jigall o lbia s Whe | a8l o(72)=sz-+tlotic s[<1, ff <1

@A sall Galie V) Jigall Ly o elly 1) ALYl Lo ddasi yall <l Sisall (e 5 AY)
By lide Cuas o8 3 (5 AV il amy Ushae |
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