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Abstract

This investigation aims to enhance and broaden the mathematical model that governs a dynamic stochastic
SEIRS (Susceptible, Exposed, Infective, and Recovery) epidemic. This complex model integrates crucial
components, including a saturated incidence rate and saturated treatment function, which are fundamental
in molding epidemic dynamics. The objective is to explore the presence and uniqueness of a positive
global solution through the application of a meticulously designed Lyapunov function, facilitating a more
profound analysis of the intricacies of the systems. This analytical framework enables us to uncover the
interactions among disease transmission, treatment dynamics, and stochastic influences. This theoretical
framework assumes that treatment responses are directly related to incidence cases within the healthcare
system as long as they remain within the system. A key aspect of our contribution lies in defining the
stochastic basic reproduction number R, as a critical threshold that determines the course of the epidemic.
Under conditions characterized by low noise levels and R > 1, it establishes the prerequisites for the
appearance of an ergodic stationary distribution, offering insights into the potential long-term trends in

disease dissemination. Conversely, in scenarios characterized by high noise intensity R5 < 1, our analysis
sheds light on the inevitable eradication of the disease. To further enhance the theoretical underpinning,
our research integrates extensive numerical simulations. These simulations not only confirm the validity
of our theoretical findings but also provide a dynamic visualization of the implications of the model. The
dual methodology of theoretical analysis and simulations contributes to a nuanced understanding of
stochasticity and epidemic dynamics.

Keywords: Extinction, Lyapunov function, Mathematical modelling, Stationary distribution, Stochastic
SEIRS epidemic model.

Introduction

Recent research has investigated different epidemic
models for preventing and managing infectious
diseases, including measles, tuberculosis, and the
flul-2. A mathematical model is an important tool for
studying the development and effects of infectious
diseases in epidemiology®“. In addition to identifying
disease trends, analyzing epidemiological studies,

and making general predictions about diseases,
researchers can also use mathematical models to
analyze epidemiological data®"’.

It is one of the prominent topics of population
genetics research to comprehend how mutations and
selection interact with each other. A better part of this
field's research is devoted to deterministic models,
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while a second major part deals with stochastic
models®®. It is possible to formulate deterministic
mutation-selection  equations as discrete or
continuous-time  dynamical systems by using
methods developed for dynamical systems. In
stochastic mutation-selection models, as in the
Moran and Wright-Fischer models®!!, it is also
possible to include fluctuations arising from random
reproduction over very long-time scales. These
fluctuations cannot be captured by deterministic
dynamics.

An existing epidemiological model assumes,
sometimes incorrectly, that one particular pathogen
causes a pandemic. Regardless of this, they ignore
the mutations that occur over time, which results in
the emergence of different strains of the pathogen.
The majority of mutations undertaken have no
significant impact on the pathogen's bio-
epidemiological behavior'?, In some cases,
pathogen mutations result in diseases that are more
contagious, more deadly, and have a higher mortality
rate’®, Our understanding of the structure and
mutation processes of pathogens will help us develop
better medicines and vaccines. Therefore, it is
necessary to incorporate the model in which the
effect of pathogen mutations from epidemiological
documentation based on tests on populations. This
will enhance its accuracy. The spread of epidemics
over time is impossible to capture using these models
if the infectious pathogen is mutated. As an example,
drug resistance to anticancer drugs is systems; tumor
cells sensitive to toxic agents may probabilistically
mutate into cells resistant to the drug's activity over
time. This modeling involves the derivation of a
probability distribution for mutant cells, which is an
important aspect of it. In this scenario, populations
undergo stochastic mutations, births, and deaths. It is
helpful to model drug-resistance based on the
probability distribution of antidrug tumor cells to

transform more effective cancer treatment
strategies.
The efficacy of treatment in halting the

dissemination of various infectious diseases is
widely acknowledged for its noteworthy success. It
is assumed that the spread of infection is proportional
to the number of individuals who are infected in
classical epidemic models. However, in general, the

rate of recovery is influenced by medical resources,
including drugs, immunizations, hospital beds,
isolation areas, and the effectiveness of the
treatment. It is very important to adopt the most
appropriate treatment method for a given disease
since every country or community has limited
resources for treating a particular disease. The
following is a constant treatment introduced by
Wang and Ruan®® in a SIR model:

_(p3, I>0
F(ﬂ)—{o’jzo. 1
It is denoted by p as a positive constant, and I as the
number of infected individuals. This represented a
constrained ability to treat. Furthermore, Wang?®
examined the following piecewise linear treatment
functions:

pl, 0<7<7,
FU)‘{ lo, 7=0
where [, = ply, pand [, are positive constants.
Aside from this, the treatment efficiency will be
seriously affected by the delay in treating infected
individuals. A saturated treatment function was also
proposed by Zhang and Liu '

T(7) = 2

1+b7’

Where p >0, b >0, 'p'is a cure rate and the
parameter ‘b’ evaluates the impact of treatment in the
infected delays. When the number of infected
individuals is very low, this saturated treatment
function produces near linear results, while for
higher values of I, it approaches a fixed limit!-20,
Additionally, this treatment function has a
continuous and finite value for each feasible value of
I. It has been extensively discussed in many
literatures how to model epidemic dynamics using
SIR or SIS models with different types of incidence
rates and treatment functions?. The saturated
treatment function and saturated incidence rate,
however, have not been studied as much in the
stochastic SEIRS epidemic models.

2

This study has serious concerns regarding a
stochastic SEIRS epidemic model including the
recovered compartment R(t) in S(t) along with
saturated incidence rates and saturated treatment
functions. This paper explores the nuances of virus
evolution by analyzing and integrating an
evolutionary epidemic model with stochastic SEIRS
models. This integration captures the stochastic
evolution of susceptible, exposed, infected, and
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recovered populations. Over time, individuals within
this population engage in stochastic interactions and
undergo state transitions. This perspective
characterizes the infectious process as a white noise
interaction, enabling easy recovery from infection
through treatment. Additionally, those who recover
from the disease undergo treatment for disease
mutation and revert to the vulnerable stage upon
recovery. In this study, our aim is to demonstrate the
substantial effects of saturation treatment on a
stochastic SEIRS epidemic model.

This paper continues in the following manner: The
SEIRS treatment function epidemic model Eqg.4 is
described in Section 2 of the paper. The global
positivity and uniqueness of solutions for the
stochastic model Eq 4 with a positive initial value are
established in Section 3. In Section 4, by
constructing a stochastic Lyapunov function to fit the
solutions of the system Eq 4, demonstrating the
ergodic stationary distribution existence and its
uniqueness. The condition for the extinction of the
infections is constructed in Section 5. The theoretical
results are based on examples and numerical
calculations in section 6. A brief discussion and
future work of the main findings are presented in
Section 7.

Model

This paper introduces an exposed class to an
epidemic model, aiming to elucidate the dynamic
aspects of the epidemic and their implications.
Within the SEIR paradigm, individuals highly
susceptible to the disease transition into an exposed
compartment upon contact with an infectious person.
Notably, there is a subsequent non-infectious period
post-exposure, during which the individual remains
non-contagious until the incubation period
concludes. Additionally, individuals who have
recovered from the disease, having undergone
treatment and gained immunity, are permanently
protected against reinfection 4%, Consequently, the
deterministic SEIRS epidemic model, featuring a
saturated incidence rate and saturated treatment
function, can be formulated as follows:

as _ BS7

E—@—Tw—[ls-}-nﬁ,

dE _ (1-v)BST _

dt 1497 (u+ )€,
ﬂ=€g+ﬂ_w_(ﬂ+6)j} 3

dt 1+y7 (1+b7)

dR _ (—¢)y7

o 1inl (L +mR,
by the conditions of non-negative terms
(5(0),£(0),3(0),R(0)) = 0. The detailed

environmental illustrations of the parameters are
given in Tables 1 and 2.

Table 1. Model Variables and Description

Variables Description

S(t) Susceptible population
E() Exposed population
V(3] Infected population
R(t) Recovered population

Table 2. Model Parameters and Description
Variables Description
Recruitment rate
Transmission rate
Saturated factor that measures
inhibitory effect
Fast progression rate
Rate at which peoples become
infectious
Natural death rate
Disease induced death rate
Failure treatment rate
Recovery rate
Treatment effect of infected delayed
measured by saturated factor
n Loss of immunity

T O

S O RSoTm<

At time t, the population densities for susceptible,
exposed, infected, and removed are plotted as
S(t),E(t),I(t),and R(t). In the real world, abundant
and unpredictable environmental noise hurts
population models. The mathematical modelling of
ecological systems is also limited by deterministic
systems, regardless of environmental fluctuations.
There is a lot of difficulty in fitting data to them
perfectly ?’. Thus, stochastic models are receiving
growing attention from researchers. Additionally,
there have been discussions of various stochastic
perturbations with population models 282°. A random
fluctuation in the population dynamics model is
inevitable in real life. An epidemic model of a
stochastic SIRS epidemic was developed by Li et
al.*® to understand the mechanism of influenza A
virus transmission. A study by Feng T et al.*
demonstrated how environmental noise can change
qualitative behaviors. Our paper considers a
stochastic SEIRS epidemic model with a saturated
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.. . R Y
incidence rate based on the above motivations® 1B+—(,07

and continuously differentiable treatment function

T(?)z% produced by® incorporating the

recovered compartment R(t) in S(t) with the
saturation phenomenon of constrained medical

1 . e
resources. Where ool measures the inhibition effect

resulting from the behavioral changes of the affected
people when their number of growths from the
congested affected of the infected individuals, while
BS(t)I(t) measures the infection force of the
disease. If establishing Y ={(S,£,9,R):S+ &+

J+R< % (S,€,9,R) = 0}. There is no problem

verifying that region Y is positively invariant
concerning model Eq.3. The reproduction number is:
BO(e + uv)
e+ A=y +5+p)
In a susceptible population, it is the average number
of secondary transmissions of a single infected
person. It displays the behavior of the solution
according to the value of the threshold R:
e Inmodel Eq 3, if R, < 1, there exists a unique

disease-free  equilibrium £0=(%,0,0,0),

which is globally asymptotically stable.

o When R, > 1 in addition to E,, model Eq 3,
contains a global asymptotically stable positive
endemic equilibrium £*(§*, €%, 7", R™).

The goal of this study is to investigate whether the
stochastic SEIRS epidemic model solution has an
ergodic stationary distribution. In our approach,
stochastic perturbations are incorporated. Keeping
these facts in mind motivates us to keep working
hard. It is assumed in this paper that stochastic
perturbations are of the white noise type, where

S,E,I,and R are directly proportional to each other,
. dS dE a7 dR - .

with ar @’ a' and e mfluencmg the system Eq 3.

Considering the above, proposing the following

stochastic SEIRS epidemic model that integrates

saturated treatment and contact rates:

1. BSI
ds = @—1+lp7—u5+n7€]dt+915d31(t),
[(1-v)BST
de = _%—(u+s)£] dt + 0,EdB,(t), 4
N vBST (14 ¢p)yI
di = _€E+1+l/ﬂ— 1+ b7) —(u+8)7J|dt

+ 037dB3(t),

[(1—¢)y7
T (u+ n)fR] dt + 0,RAB,(t),

where B;'s are standard one- dimentional
independent Brownian motion, o; >0 is the
intensity of the white noise, (i = 1,2,3,4) that is
specified on a complete probability area (Q,F, P)
with  {F}.egs filtration fulfilling the normal
requirements, F, contains all P-null sets, whereas
{F}¢ers value is increasing and continuous *. In all

cases, the coefficients are not negative, © > 0. In this
study, saturated treatment rates and contact rates are
discussed with the stochastic SEIRS epidemic
model. To determine whether the model has a
stationary ergodic  distribution, the model’s
dynamical properties will be investigated.

Existence of a Unique Global Solution

The investigation into the dynamics of an epidemic
model necessitates a comprehensive evaluation of
the solution’s global and positive aspects. In
summary, the subsequent findings confirm the
existence and uniqueness of a positive global
solution. To delve into the dynamic behavior of
model Eq 4, a preliminary analysis of its static
features is indispensable for a thorough
understanding.  Firstly, considering stochastic
differential equations in d-dimensions:

dX = f(QX(t), t)dt + g(X(t),t)dB(t) for

t >t

with the initial value for X(0) = X, € R%. The
differential operator £ associated with the equation
above can be defined as follows:

L=2+ 3 fi(X, )+
35l (X 0900 Oy g
If £ acts on a function V € C%(R% x [t,, o0; R,]),
then
LY(X,t) =V(X, 0)f (X, t) +
%trace[gT(X, ) Vyx (X0, ) g (X, B)].

av av oV av
Where Vt = E’ Vx = (a—xl,a—xz,...,@,),’]]xx =

92 , . 4
(axiaxj)dm. Thus, by Ito’s formula, if X, € R™,

thendV (X (¢t),t) = LV(X(t), t)dt +

Ve (X (@), £)g (X (8), )dB(2).

There are several theories of stationary distributions
that will be discussed in the next section
(Hasminskii?).

Theorem 1: For any initial  value
(5(0),£(0),7(0),R(0)) € R%, there is a unique
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solution (%), £(%),7(%), R(%)) of the model Eq 3,
on £ > 0 and the solution will remain in R% with
probability one.

Proof: It is known that for any initial value
(5(0),£(0),7(0),R(0)) the coefficients in the
system Eq.3, satisfy the local Lipschitz condition,
and that a unique local solution
S(1),E),3(£),R(t)) can be found on [0,7%)
almost surely, where t* is the explosion time %,
The solution must be universally applicable. Only
one thing needs to be proved: 7* = +oco almost
certainly exists. Now, let £, > 0 be a sufficiently
large number such that ($(0), £(0),7(0), R(0)) lies
inside the interval. For each integer [%,i’o] define
the stopping time %,

7, =inf{t €[0,7):5(t) ¢ (5.£) or £(t) &

6,{’) orJ(t) ¢ G,{’) or R(t) ¢ G{’)}

a typical format is set to @ = 4o (Under normal

conditions, @ denotes the empty set). It is clear that

T, IS rising in £ and 1, < t*. Then 7, = }i_)rgu

makes sense, and 7, < T a. . An important step is

to construct a Lyapunov function. Consider that

T < 00, then there are two constants 7 > 0 and € €

(0,1) such that P{r,, < T} > €. Therefore, there is

an integer £; = £, such that, P{t,, < T} = eV ¢ >

£,. Thus, the term is defined by us a C? function

V:R% - R, as follows:

VS, EITR)=8§—1—-InS§+E—-1—-In€E+7T -
1-InfJ+R—-1—-InR. 5

Applying the Ito formula it will be,

aVv =pVdt + 0,(S§ — 1AW, () + 0,(€ —

Daw, () + 03(0 — DdW;(£) + 04,(R —

1AW, (). 6
Therefore,

= (1- H)(0-£2-us +nw) + (1-
(g — o)+ (1- 5) (e +

vBST  (+¢)yI _ 1\ (Q-9)y1
497 (14b7) (u+ 5)‘7) + (1 ya)( 1+b7

(u+ 71)7%)

0 nR
:@+4M+E+T]—M(5+E+7+R)—§—T
€€ BSI 4 BI
I 1+¢7 1+ ¢7
1-9)BsT (@A -9)BsT
1+ ¢d E1+ @T)
1-90)ys 9BsI 9BS

R(A+467) 1+@] 1+@T

(1—-9¢)y o0f+o05+05+0;
R(1 + 47) 2
0%+03+03+05

<0O+4u+e+n+
< K,
where K, is a suitable constant that is independent.

The remainder of the proof of Theorem 1 is similar
to Mao et al.* and it's neglected.

2

The asymptotic behavior of the equilibrium
solution for a disease-free system

The various stability concepts have been explored in
the context of disease-free  equilibrium.
Stochastically asymptotic stability, focusing on
probabilities near equilibrium, elucidates the
asymptotic trajectory of sample paths within a
system, providing insight into almost sure behaviors.
Assuming global stochastic asymptotic stability for
E,, one can employ a Lyapunov function to identify
an equilibrium devoid of disease. Analyzing the
stochastic model Eq 4, up to asymptotic equilibrium
allows for a comprehensive examination of its
asymptotic behavior.

Theorem 2: If &, = (%,0,0,0) is a disease-free

equilibrium of the stochastic model Eq 4, is globally
asymptotically stable on D. Then R, < 1.
Proof. Now define the function €2 isV: R - R, as
follows,

V(S,E,9,R) =In(S,E,9,R)2 + In7.
The Lyapunov function generator £ on V provides
the following result,

Bs7

V(S,E7,R) = (@ — L S
UR) ((5+£fﬂ+7€)) + ((11—:1);;& —

9€) (Grem)

vBSI  (1+¢)yI 2
+ (SE + 1+y7 (1+b7) (‘u + 6)7) (($+8+ J+R)

3)+ (55 - wt mR) (Gremm)
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+1< -2 ) 252
ACETENET DA

et rr)e
2(S+E4 T+ R)2) ™2

4 1( -2
2\(§+E+ T+ R)?
1
2q2
~72) 37
(2 ), 2p2
(2(5+£+ 7+R)2) eiR*.
In order to simplifythat S + €+ 7+ R < 1, in our
case,

(€]
LV=—2u+<%—(1—¢)y—(u+5))

2
-0
503

028? + 02E2% + 0277 + g2 R?
S+E+T+R)?
Then LV(S+E+T+R) becomes a negative
definite on D with a condition R, < 1. The disease
will persist here, so there is only one condition for
R, and the other two are automatically satisfied. The

disease-less equilibrium solution &, = (% 0,0,0) of

the stochastic model Eq 4, is globally asymptotically
stable on D.

Remark 1: The above Theorem 2 provides that the
disease cases exist when R, < 1. From the stability

of the condition ((1 —-P)y+u+ S) > (me , then
the disease will disappear. Taking into account the

_ BO(e+puv) _
Ro = ermagywromm < - Then &
(%,0,0,0) of the stochastic model Eq 4, is

asymptotically stable in the large.

Remark 2: According to Theorem 2, the stochastic
model Eq 4 will approach disease-less equilibrium if
the white noise intensity is high enough. Since the
intensity of white noise o; (fori = 1,2,3,4) is
small, the solutions of stochastic model Eq 4, will
generally fluctuate around the diseases-less
equilibrium of deterministic model Eq 3.

Existence of ergodic stationary distribution

and a function £ (.) with respect to a measure w(.) is
an integral function.

In the analysis of epidemic dynamical models,
assessing the persistence and prevalence of a disease
in a population holds paramount importance.
Deterministic models often establish global attractor
or global asymptotic stability by focusing on their
endemic equilibrium. Notably, model Eq 4, lacks
such equilibrium. This section introduces the concept
of an ergodic stationary distribution, grounded in
Has’minskii’s theory *, providing evidence for the
persistence of the disease.

The following stochastic differential equation
describes X (t) as a homogeneous Markov process in
R%.

k
AX() = F(X(8))dt + Z 3:(00)d W, (8).

i=1
As a result, the diffusion matrix can be defined as
follows:

A() = (a;(2)), ay(x) = T, g (0)gf ().

Lemma 1: * There is a unique ergodic stationary
distribution w(.) for the Markov process X (%) if the
domain D c R} has a regular boundary I'*, with the
following properties:

H,:there is a positive number M such that

4
Z a;j(x) &&= M|E|? forx €D,§;

ij=1
eR: (i =1,2,34).

H,: there exists a non-negative €2 function V(x)and
a positive constant C* such thatVL < ¢* for any
R4\D. Then

T
1
Podtim = [ Facenae = [ f@on
0 R*
= 1'

Define a parameter value RJ corresponding to the
basic reproduction number R, of the system Eq 4, as
follows:

Op%e
RG =

(u+%§)<e+u+%§><(1—¢)y+u+5+%§)

Theorem 3: Assume that 32‘3 > 1, then the model
Eg.4, has a unique stationary distribution I'(.) and it
has the ergodic property.

Proof: Defining the diffusion matrix for a system
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0is? 0 0 0 0
0 262 0 0 0
A = Q2 y s
0 0 033 0 O
0 0 0 0 iR’
There is a positive number
= i 2¢2 2¢2 2292 22
z= (S.SI.I}.%ED{le ,02€%,037%,05R*},
such that

4
2 a;jSiS; = 018%6T + 03765 + 0397 ¢3
ij=1
+Q4R%6% = Z [¢]%,(S,€,9,R)
€ D., G € R, 7
which indicates that Lemma 1 () and Assumption
1(i) are satisfied.
Construct a €2- function V: RY — R in the following
form
AV =Ky(S+E+T+R—a;InS —a,In€
—a3zIn7)

1
—  (S+E+T+ R
+9+1(+++)

—InS§ln-¢&
~lnR +(S+E+T+R)
=7C0V1 +V2 +V3+V4,+VS +V6

Where 6 is a constant satisfying
2

O <0< ey
C) C)
a = 20 =7
& 7}
u+2 s+u+2
_ C)
= 03

(I-d)y+8+p+3

There is an easy way to check that
lim _infT(S,ET,R) = +oo,
i-00,(S5,£,7,R)ERI\T,

where Uy, = (%k) X (%k) X (%/a) X (%/a)

Furthermore, T'(S, €,7,R) is a continuous function.
Hence, I'(S,€&,9,R) must have a minimum point
(8(0),£(0),7(0),R(0)) in the interior of R%. Our
next step is to define non-negative ¢2- function
dV:R% - R, as follows;

dV(S,£,9,R) =T(S,E9,R) —T(So, £, To, Ro)-
As a result of applying the Ito formula, that gives

BST__ o o (1= 0)BST
T+@7 M T ene
e OBST

B
(1 - )y 0
BTG
J 4 4 nR

© o alS

of (1-9)Bs7

2 %1 enE
e€ 9BS
—op(e+ “)_0‘37_0‘3T¢,g

(1 -y
_a3%+—b:7_a3(u+8)

2
+(X3%+(X3%

® (1-9)BST e 9BS
2T ene BT T BTt 7

2171:@_

2
03
+ 2
Using inequality a + b = 2Vab,
1
e(1—9)BS\2
1+ @I

a,b >0,

QVl =-2 <O(20(3
2

9p6
—2(0(10(31+(p7) +0
7 (1-¢d)y
+ o3
1+ @J 1+ b7

of 03
+a1<u+71>+a2<s+u+?2)

2
+a3<(1—¢)y+8+u+%>

+ oy

2
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1
040,0:(1 —9)BOe\% 7
S—4<123( )B >+®+0(1 B

1+ @7 1+ @7
(1-d)y of
Ty talrty
+ a, <s +u+ Qz)
2
03
3(A—d)y+8+pu+— 5
1
4
=—4 2 2 o fpen 2 +
(u+9—1><s+u+9—2><(1—¢)y+8+u+973>/\(1+<p7)
B a-¢)y
40 + o 1t + 3 1+b7
( i
—4@! OPen -

l<u+gj)<s+u+ )((1 ¢)y+8+u+93>/\(1+(p7)

By (1-¢)y
Letay T+ M3 1ipg
_ BI (1-0)y
- 8+a11+ 7T By 9
where,
9 =
1
4
9Bep
10 e? % o} B
(|J.+7><s+p.+7) (1—¢)y+8+u+7 A1+@T)
\
oo
Similarly

V= +E+T+ RO —pus — u€ — (L—9)7
\Y
—uR)+—(5+E+7+R)"_1

x (o2 52+Q E2 4+ 0372 + @5R?)
<SS +E+T+R)[O— (S +E+T+R)]

Vv
+§(5+8+7+R)V+1

x (ef Vo3V eiVel)
=@(5+£+7+R)"—[u—%(ngg%Vg%V

Qﬁ)] S+E+T+R)VHH

<0
1 Voo 20 2 a2 v+l | cvil
_E[H_E(Q1VQ2V93VQ4)](5 + &
+7VHL 4 RV, 10
Where
E=  sup {G)(S+8+7+72)"
(S,£9,R)eR?
1
-5 [H
Vv
—E(eiveﬁveﬁvei)](5+£
+7+ Je)"“},

there is also the possibility of getting

0 BJ nR 91
V= —— &
e A e R
(1-9)ps7 Q3
Rl =2 12
cd+on MrEty o

(1 - )7 0f
Vs = — TR +u+d+n+—, 13

Weg=0—-—puS+E+7+R), 14
our findings

11

2V4:_

Pa; B7  Paz(1— )y
1+ @I

1+ b7
1

v

—E[u—z(ef vo3vaived)

X (5\)+1 + £V+1 + gv+1 +:RV+1)
0, B nR

=
KT~

QV = —PM +

sTT+ @7
(1 —9)BST

e+ @T)
(1—)yI
(1 +bDR

+u+e

+p+8+n+0

—u(5+8+7+72)+—+%

2

0f
* 2
Po4 B
1+ @I

Paz(1— )y

1+ b7

1 Y
—5 -5 @ivaveived)
X (5v+1 + £v+1 _|_7v+1 +fRV+1)

gV = —-PM +

1-9)BST (1—¢)y7 ©

CE1+¢97) (A+bDR S
BI nR

1+7 S

S +E+T+R)+O+5+n

2 2 2
+0%+
+s+3u+w. 15
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In order to construct a closed domain ©, with a
bounded boundary, our steps are as follows:
1
D =|(5,ET,R)ERY g, <SS < e < £
1
1 1 1
<_,£1<5<_,82<$<_,
) € €
where 0 < g1, &, < 1isasufficiently small constant.
In the set R% \ D,, it is possible to choose e small
enough to meet the following conditions.

1
_P (M _ alBSZ _ a3(1_¢)Y) + G S _1 , 17
(0] b
1
—2 (BB T <1, 18
[0)
__(1_¢)Y+PQ_1B+FS_1, 19
be, P
1 9 1
—= u——(Q%VQ%VQ%VQ'ﬁ’VQi)]mH
4 2 £
< -1, 20
~Hu-22ve?veivedvoed)|oms+ W <
M —zlervervezVves Q4_Sz(s+1) =
1
-1, 21
1 9 1 1
—alrmziveivevesved|gatX <
-1, 22
1 9 ] 1
-3 M—E(Q%VQ%VQ%VQgVQﬁ) Zem TV <
- -2
-1 23

Here H, G, T, F, J, W, X, and Y are the positive
constants that are given explicitly in the expression
Eq 16 to Eq 23. For our convenience. It is possible to
divide R% \ D, into eight domains.
D, ={(5,£7,R) ERL:0<S < g},
D, ={S,ET,R)ERY:0<T <, 8> ¢4},
D3 ={S,ELR)ERLS 267> 0<E
<&},
Dy ={(S,ET,R)ERL0< R <e,,T =54},

1
®5 = {(‘SJng;R) € Ris > 8—},
1

1
o= {.69R) ert: 7>

oy

1
{(5, EIR)ERL:E> —},

1
Dg = {(5,8,7,73) ERY:R > —}.

Apparently, R \D.=D;UD, U ..
next step will be to demonstrate that
8V(S,E,I,R) < —1 forany R% \ D..

U®Dg. Our

Thus, it must be proven in each of the eight domains
listed above.

Case-1: Suppose that (S, €,7,R) € D,, according to
Eq 16, here are the results

® Pa,BJ
ay=_2 1P
S 1+l
1 9
—E(H—E(Q%VQ%V@VQE))
X(5V+1+5V+1+7V+1+RV+1)
+0+3u+n+e+d
+e§+e%+ei
) ) 2
S-s+tH<-—+H <-1, 24
1
where,
H
{Poclﬁﬂ
= sup
seamert (1 + @7
1 9
—§<u—5(9%VQ%VQ%VQE))(SVH+8“+1

+ V1 + RV 40 +3u+n+e+ 6
of + 03 + ei}
+ e
2

< oo, 25
Case-2: Suppose that (S, €,7,R) € D,, inview of Eq
18, the result is

PoyBST

1+ ¢7)

Paz(1— )y
(1 + b7)

1 Y
—E[H—E(Q%VQ%VQ%VQi)]
X (5V+1+£V+1+gv+1 _|_:RV+1)
+O+8+1M+e+3p
+Q%+e%+ei

gV < —-PM +

PayBe; |, Paz(1-¢)y

b

@
<-p (M - °‘1££2 + “3(1;"’”) +6<-1. 26

Case-3: Suppose that (S,&,7,R) € D3, by Eq 18,
getting

< —PM + +G

+

1
o (Pa1BusSTNz (1-9)BsI BI
s -2 ( (023 ) + 1+@7 E(1+@T) +O+
2 2 2
Bu4n+e+ 6
1
o (PoaBpeigr)z |, (1-9)Bese,; Beq
= 2( (01 ) + 1+@J ,(1+¢7)

2 2 2
@+3u+n+s+8+—“’1+“’22+94
1

<-2 (P"‘lT’f“El)uTs ~1. 27
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Case-4: Suppose that (S,€,7,R) € D,, by EQq.19,
getting
PoqBI
R(1+¢7)
1 Vin2yv a2
_E[H_E(Ql VeV
Q% Vv szl.)] X (5V+1 + 6V+1 + j\)+1 + :R‘H-l)
< _(-d)y  Paypy

(1-9)y
R(1+b7)

2 2 2
@+B+s+B+$%?%

Wisesr) < — + g +3u+68+

<% * e +F
S_w+Pa1_[3“:Z+F
g,b 12Y0)
< GOy Paby g 28
b @

Case-5: Suppose that (S,&,7,R) € Dg, by Eq 20,
getting

1 \J
Wseam =—7 [ll —5(eiveivesv Qi)] sVt

1
v 2 2 2 2 v+1
—5 (e VQzVQ3VQ4)]5
1
\%
—5Giveivesv od)] et
PoyBe
+ IV 4 RV 4 % +3u

+6+0+B+n+e+p
of + 05 +0f
e
[i-32vaiveived|s ti+)
1
-3 @iveivadved|gm+s< -1
29

S_

S_

N N

Case-6: Suppose that (S,€,7,R) € Dg, by Eq.21,
getting

1 Y
Wisesr) < — 7 [H —5 (@fveiveiVv Qi)] VAR

1

\%
—(etveivedved]s

1

vV
—E(Q%Veﬁveﬁvei)](s"“
Pa4 7
Pups B
1+ o
+3u+6+0+B+n+e

of + 03 + of
A R

+£V+1 +RV+1) +

1 \J
<—ln-zG@vaveived|rt+w

2

1 Y 1
S—Z[H—E(Q%VQ%VQ§VQE)]SF+W
<-1. 30

Case-7: Suppose that (S, £,7,R) € D, by Eq.22, the
result is

1 \Y
Wiseam < =7 [n- S@ivesvesv ed)] v+t

1
\Y
—E(Q%VQ%VngQE)] eVt
1
\%
—5(iveiveiv ed)] (5v+
Po4 B
+.7V+1 +:RV+1 + 1 +
ANCEanY:

+8+0+B+n+e+p
+e%+e%+ei

3u

2
1 Y
S—Z[u—z(e%Ve%Veﬁvei)]S““
+ X
1 Y 1
S—Z[H—E(Q%VQEV@VQE)]@‘H{
<-1. 31

Case-8: Suppose that (S, €,7, R) € Dg, by Eq 23, the
result is

1 Y
Visear) < — 2 [H —5 (@fveiveiv QLZL)] RV

1
\%
—5 (@ veivadved|r
1
\%
— (@t veivadved|(s
Pa,Be
+EVFL 4 VL) 4 % +3u

+84+0+B+n+e+p
+Q%+Q%+Qi

2
1 \Y
< —Z[M—E(Q%Ve%veévczi)]R"“+Y
1 1
S—;[u—%(e%veﬁveﬁvgi)]@+YS—1-

32
Thus, from the above eight cases, our conclusion is
as follows:
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Wisesry < —1 forall (S,€,9,R)€ERE,
where ¢ is sufficiently small. In this case, assumption
1(ii) is satisfied.

Then, according to Lemma 1 (#,), model Eq 4, has
a unique stationary distribution and has an ergodic
property. The proof is completed.

Remark 3:

If :Rg _ 0pV%e

(u+§)<E+u+§>((1—¢)y+u+6+§>

the system Eq.4, has a unique ergodic stationary
distribution I'(.), according to Theorem 3. If the
intensity of white noises is excluded from the
analysis, the expression of R3 corresponds to the
threshold R, of the deterministic system Eq.3. In
particular, when g; = 0,i = 1,2, 3, 4. It shows that
our results generalize those of the deterministic
system.

> 1, then

Extinction of the disease infection

In this section, a different perspective on the
spreading of disease can be gained by considering the
extinction of infection. In a biological sense, the
extinction of diseases indicates that they will
eventually disappear. The stochastic model Eq 4,
establishes the required conditions for disease
extinction.

Lemma 2: Let (S(6),E(0),9(t),R(¢)) be the
solution of system Eq.3, with any initial value
(8(0),£(0),7(0),R(0)) € R%. Then

tlim ¥ =0, tlim (M) =0 almost

surely, 33
2 2 2 2

furthermore, if p > “)1\/922& then

tlim fot S(S)dtSBl(S) =0, tlim fot E(s)dB,(s) _ 0,

fim 25 = 0, iy [ RS =0

almost surely. 34

Since the proof of Lemma 2 is identical to that of
Lemma 2.1 and Lemma 2.2 of Zhao and Jiang %, it
is therefore omitted.

Let us define a parameter

BOCe+i)
Ry =

<s+u)2<(1—¢)v+8+u+§>A<@>
Theorem 4: If §g<1, then the disease will

eventually be eradicated from the system Eq.4 and
also satisfies the following condition

Q]

lim < §(t) = —,

t—>oo IJ‘

tlim <E()>=0,
thm < R(t) >=10,35

and

. 1 [(1=d)yI
lim sup;_, 00 7 In YT

< 9p

+(u+e+ S)R(t)]

2
(s+u)2<(1—¢)y+8+u+%)

T2+ w2

A v%05
2

Proof, The sum of the four variables in model Eq.4,

< 0 almost surely. 36

yields
dS§+E+T+R)
—B(S@®) +E@ + ()
+ R(D))]dt + 015dB, (¢)
+ 02EdB, () + 037dB;3(t)
+0,2dB,4(0). 37

This results in
St)—5(0) N E() — £(0) N () — 7(0)

t
R() —R(0
N ()t (0)
=A-pu<St)>u<&ER)>u<i(t) >u<
tS(s)dB t E(s)dB
R(t)>+91f0M+92-{oM+

t 3(s)dB3(s) t R(5)dB4(s)
Q3fo%+94f0 S)AB4(s) 38

t
let us take, @ = =200 4 (4 + &+ H)E(D).

Our results from applying Ito's formula are
dino (t) =
{B{)SJ—u(£+u)((1—¢)y+p.+8)3(t) B sze%ez(t)((1—¢)v+(s+u)ze%12(t))}

(A-0+)eO+e+s+I@ 2[(A-D)+)e@+(e+u+H)I0)]
+ (1-9)eQa¢(£)
((A-9)+&)E()+(e+p+8)7(t)
(1-d)yeess ()
((1-9)+&)E®)+(e+p+8)7(8) dSBS (t)

< 9B —— [(€+u)2<(1—¢)v+u+5+

dB, (t) +

2(e+p)?
) \ Y% n (1-9)ege ()
2 2 (1-9)+£)E(®) +(e+p+8)I(D)

+ (1-¢)yeess ()
((1-9)+&)E(®) +(e+pn+8)7(t)

dB, (1)

dB;(t).

39
Integrating both sides of Eq 36 from 0 to t and
together with Eq 34 and Eq 35, in order to obtain
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lim supo{(St) +EX) +I(@) + R()) =1
almost surely. 40
Integrating the both sides of Eq 39 from 0 tot,

together with Eq 40, and noting that f(g < 1,0necan
get that

Ine@®) _ 9B —

lim sup;_,00

T [( 2 ((1 :

2
c|>)y+u+8+92—3>/\yﬁ 41

2

which implies that
tlim E) =0, tlim J(t)=0, and
lim R (t) = 0. 42

The implications of Lemma 2, and Eq.41 are as
follows:

Results and Discussion

Numerical Simulation

The extinction and persistence of diseases have been
investigated to the best of our ability. Some
numerical simulations will be performed using the
Milstein scheme® To demonstrate the effectiveness
of our simulation. The discretization equation for
model Eq 4, is as follows:

Seer =Sp+[0 - ff; — 1S + R | At +
15,4/ A&y + QZ—%S{’(ELI - 1)At,

Epr1 =&+ [% —(e+ M)Ef] At +
Q2¢,4/AtE; + Q—%Ee(iﬁz - 1)At,

Tpoy =T + [f";f +eEp— %;J)g‘f" —(u+

8)7¢| At + @33, /BTEs, + S7,(8, - 1)At

(1-d)y7
Rep1 = Rf‘*‘[ Tt = (MR, At

QaR,y/AtEs + 77347(54,1 —1)At,

where the time increment At > 0,and Eiz is the
Gaussian random variable (i = 0,1,2, ..., n).

The parameter values are given in the following
Table 3, which validates our theoretical finding by
examples.

lim ($(©)

The proof has been completed.

0
=—=1 almost surely.
u

Remark 4:
According  to
BO(e+w)
(S+u)2<(1 ¢)v+8+u+93>A(yzQ%>
eventually disappear. Take note of the expression for

R5. It seems that the higher the white noise intensity,
the easier it is to eradicate the disease. Therefore,
adjusting the intensity of environmental noises can
reduce disease outbreaks.

Ry =
< 1, the disease will

Theorem 4, if

Table 3. The parameters used in the simulation of

model Eq 4.

Parameters [, E, Source
(0] 5.00 4.50 presumed

B 0.70 0.70 ref 37
® 0.50 0.45 presumed
9 0.70 0.70 presumed
€ 0.50 0.55 presumed

n 0.50 0.50 ref

Y 0.50 0.50 ref 3
5 0.70 0.50 presumed
¢ 0.40 0.35 presumed

A 030  0.30 ref 3
0.75 0.50 presumed
S(g%g)(ﬂ) 050 050 presumed
R(0) 0.30 0.30 presumed
0.40 0.40 presumed
0.60 0.60 presumed

At 0.01 0.01 ref 37

Example 1: Assume that the environmental white
noise  parameters are  (@q,02,03,04) = 0.2.
Furthermore, Table 3, [E; shows the parameter values
in relation to the biological feasibility results. Then
R}

0Bl

(u+92%)(u+s+%%)<(1—cb)y+u+8+92—§)

= 3.5367 > 1,
satisfies the parameter requirement in Theorem 3, it
may be decided that the stochastic model Eq.4,
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occupies ergodic attributes and a unique stationary
distribution I1(.). It is evident from Figs 1 and 3 that
the solution of the model Eq 4 alternates between
descending and ascending within a small area. It is
evident from Fig 1, that there exists a stationary
distribution from the density functions shown on the
right-hand side.

Example 2: Assume that the environmental white
noise  parameters are  (01,02,03,04) = 0.2.
Furthermore, Table 3, (E,)shows the parameter
values in relation to the biological feasibility results.
Then

~ (e + )
5 B
o= 03\ , (Y?e:
(e+w2| -y +u+5+% | a(2)
= 0.6556 < 1.
Susceptible
12
Z. .
o
e ' ]
K
3.
5] .
2 Stochastic
A Deterministic
0 i " i
0 20 40 60 80 100

)

Z 2

o

0

e

K

)

5)

A :
Stochastic
Deterministic

0
0 20 40 60 80 100

According to Theorem 4, exposed individuals and
infected individuals will go extinct almost certainly
if all parameter conditions are met. The conclusion
of Theorem 4, is validated by Fig. 2. The numerical
values of o; = 0, = 03 = 04 = 0.2 shown in Figs 1
and 4 indicate the possibility of infective individuals
going extinct under a set of large stochastic
parameter values.

The below Figs 2 and 4 below demonstrate that when
the white noise value is large, infectious diseases can
go extinct. This implies that stochastic fluctuations
can suppress disease outbreaks, but small values can
lead to persistent infectious diseases. Further, Figs 1
and 3 illustrate that under appropriate conditions, the
stochastic model Eq 4, has an ergodic stationary
distribution. Consequently, there is full consistency
between the theoretical outcomes of Theorems 3 and
4 and the numerical simulation examples.

0.40 7T =3 sit)
0.35 'Z _\
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0.25 Z Sﬁ
0.20
0.15
0.10
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Figure 1. This diagram consists of a time sequence of stochastic persistence and stationary distribution
of diseases based on the model Eq.4, for both R} and Rj > 1. On the right side of the column, the
probability density function for 8(t), E(t), I(t) and R(t) is shown in the form of a histogram.
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Figure 2. This time sequence diagram illustrates how disease extinction occurs in model Eq.4, for both
R} and Rj < 1. On the right side of the column, the probability density function for §(t), £(t), J(t)
and R(t) is shown in the form of a histogram.
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Figure 3. Comparison of solutions on
§(t),E(),I(t) and R(t) for each class of the
Deterministic vs Stochastic system with R§
greater than 1.

Conclusion

This paper explores the effect of treatment on disease
transmission by considering the stochastic
SEIRS epidemic model with saturated incidence and
treatment function. In addition, there is a bi-linear
incidence rate h(J) = 7 as well as a saturation

Deterministic vs Stochastic

S(t) I(t)
E(t) R(t)

LA

6

=

Population N(t)

solutions on

Comparison of
8(t),E(L),I(t) and R(t) for each class of the
Deterministic vs Stochastic system with R§ less
than 1.

Figure 4.

incidence rate h(J) = %’ An analysis of the global

behavior of the model is presented in this paper,
along with an estimation of the basic reproduction
number R,. As a starting point, our initial findings
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indicated that ($(0),£(0),7(0),R(0)) € R% could
be satisfied by a unique global positive solution.
Furthermore, this research provides the necessary

condition R < 1 for the disease to vanish. Our
study also determines whether the stochastic
Lyapunov function method is effective in
determining whether R§ > 1 exists for stationary
distributions for positive solutions. Further, this
study introduced white noise into our model Eq.4, to
explore the dynamics of an autonomous stochastic
epidemic disease mutation model. In the forthcoming
research, our investigation will delve into Levy
jumps and Markov Switching, as well as an epidemic
model incorporating disease mutation. The
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