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Abstract:

The purpose of this paper is to introduce a new type of compact spaces, namely
semi-p-compact spaces which are stronger than compact spaces; we give properties
and characterizations of semi-p-compact spaces.
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Introduction:

Let (X,tr) be a topological space
and let A be a subset of X. We denote
the closure of A (the interior of A) by
cl A (int A) respectively.

A subset A of (X,1) is called pre-
open set, see [1], [2] and [3], if A
cint(cl A). The complement of a pre-
open set is called a pre-closed set; see
[1], [2] and [3]. The intersection of all
pre-closed sets containing A is called
the pre-closure of A and is denoted by
pre-clA, [2].

A subset A of (X,1r) is called
semi-p-open, [1] if there exists a pre-
open subset U of X such that U c A ¢
pre-clU. The complement of semi-p-
open set is called semi p-closed set, see

[3].

The family of all semi-p-open
subsets of X is denoted by S-P-O(X).
The intersection of all semi-p-closed
sets containing A is called the semi-p-
closure of A and is denoted by semi-p-
cl A, see [1,3].

We study and define many
concepts in this paper in order to give
properties and characterizations of
semi-p-compact spaces, like cluster
and semi-p-cluster points, compact
spaces, nets, filters, T, and semi-p-T,

and semi-p-irrsolute functions. For
more details of these concepts see [4],
[2], [5], [6], [7] and [8].
Semi-p-Compact Spaces:

In this section, we define and
study the concept of semi-p-
compactness.

1 Definition

A family A of semi-p-open
subsets of a topological space (X,t)
which covers X is called semi-p-open
cover of X.

2 Definition

A topological space (X,t) is said
to be semi-p-compact space if and only
if every semi-p-open cover of X has a
finite semi-p-open subcover.

Notice that every semi-p-compact
space is compact, since every open
subset of X is semi-p-open, but the
converse is not true in general as the
following example shows:

3 Example
Let X = N U{0}
1={UcX|UcNor(eUAnxUis

spaces, regular GEESEE—————— finitc)}
spaces, almost GGG
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F={FcX|0eFor(FcNAFis
finite)}
S-P-O(X) = P(X)\ {{0}}
Then (X,1) 1s a compact space but not
semi-p-compact space.

Semi-p-compactness is a weak
hereditary property, as shown in the
following proposition.

4 Proposition

A semi-p-closed subset of a semi-
p-compact space is a semi-p-compact
subspace.

Proof:

Let A be a semi-p-closed subset
of a semi-p-compact space (X,tr) and
let {G,: G, IS semi-p-open subset of X,
aen} be a semi-p-open cover of A.
Since A° is a semi-p-open set in X, so
{Giaen} U {A} forms a semi-p-
open cover of X which is a semi-p-
compact space, then there exist finitely
many members of index set A say au,

n

d, ..., an such that X:_ulGai UA°,
i=

But Ac Xand A N A° = ¢,

n
therefore A c U Gai . Thus A is semi-

i=1

p-compact.

In the following theorem we give
a characterization of definition of
semi-p-closure of a set.

5 Definition

Let A be a subset of a topological
space (X,t). The semi-p-closure of A
(semi-p-cl A) is the intersection of all
semi-p-closed subsets of X which
contain A.
We shall call x, where x € X, a semi-p-
closure point of A if x € semi-p-cl A.

6 Theorem

Let (X,t) be a topological space
and let A be a subset of X. A point x in
X is a semi-p-closure point of A if and
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only if every semi-p-open nbd
(neighborhood) of x intersects A.
Proof:

The "only if"part

Assume that x is a semi-p-closure
point of A, then x e K= {F|Fis a
semi-p-closed subset of X containing
A}. Suppose that there exists a semi-p-
open nbd U of x such that UnA=¢,
therefore A < U° where U® is a semi-p-
closed subset of X with x ¢ US, that is,
x ¢ K which is a contradiction. Hence
every semi-p-open nbd of x must
intersects A.
The "if" part

Assume that every semi-p-open
nbd of x intersects A, and suppose that
X is not a semi-p-closure point of A,
therefore x ¢ K, that is there exists a
semi-p-closed subset F of X with A
F such that x ¢ F, it follows that x € F*
which is a semi-p-open set in X and A
M F° = ¢. That implies a contradiction
with our assumption. Hence x must be
a semi-p-closure point of A.

7 Definition

Let (X,7r) be a topological space
and let ( f, X,A>) be a net in X. A
point xo in X is called a "semi-p-cluster
point of f " if for each a € A and for
each semi-p-open nbd U of xq there
existsb € Asuchthatb>aandf (b)
U.

8 Definition

Let (X,tr) be a topological space
and let ( f, X,A,>) be a net in X, then f
is said to be "semi-p-convergent” to a
point X, in X if for each semi-p-open
nbd. N of xo there exists an element
age A such that f, € N for each a > ay.

9 Theorem

Let (X,7r) be a topological space
and let ( f, X,A,>) be a net in X. For
each acA, let Ma={f(X):x>ain
A} then a point p of X is a semi-p-
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cluster point of f if and only if p €
semi-p-cl M, for each acA.
Proof:

The "only if"part

Assume that p is a semi-p-cluster
point of f and let N be a semi-p-open
nbd. of p, then for each aeA, there
exists an element x > a in A such that f
(x) € N.
Hence M s n N #¢ for each acA.
Since N is an arbitrary nbd., so by
theorem 2.6 p € semi-p- ¢l M, for
each acA.
The "if" part

Assume that p € semi-p-cl M, for
each aeA and suppose, if possible, p is
not a semi-p-cluster point of f , then
there exists a semi-p-open nbd. N of p
and an element acA such that f ()
¢ N for every x > a in A. This implies
that N n M ,=¢, it follows that p ¢
semi-p-cl M , for this a which is a
contradiction. Hence p must be a semi-
p-cluster point of the net f. W

10 Definition

Let (X,7r) be a topological space
and let F be a filter on X. A point x in
X is called a "semi-p-cluster point of
F " if each semi-p-open nbd. of x
intersects every member of F .

Notice that, every semi-p-cluster
point of a filter is a cluster point.

11 Theorem

Let (X,7) be a topological space
and let F be a filter on X. A point p in
X is a semi-p-cluster point of F if and
only if p € semi-p-cl F foreach F € F

Proof:

The "only if"part

Let p be a semi-p-cluster point of
F, then each semi-p-open nbd. of p
intersects every member of F, that is,
for each semi-p-open nbd. U of p, U N
F #¢ for each F € F . It follows that, p
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e semi-p-cl F for each F € F, by
theorem 6.

The "if" part

Assume that p € semi-p-cl F for
each F € F, then by theorem 6 every
semi-p-open nbd. of p intersects F for
each F € F, that is every semi-p-open
nbd. of p intersects every member of

F . Hence p is a semi-p-cluster point of
F. N

In the next theorem we give two
characterizations of semi-p-compact
spaces.

12 Theorem

Let (X,tr) be a topological space
then the following statements are
equivalent:

1. X'is a semi-p-compact space,

2. Every collection of semi-p-closed
subsets of X with the FIP (finite
intersection property) has a non-
empty intersection,

3. Every filter on X has a semi-p-
cluster point.

Proof:

(1 = 2) Assume that X is a semi-p-

compact space and let {F,.aen} be a

collection of semi-p-closed subsets of

X with FIP. Suppose that n F,=¢,

then by De-Morgan Laws X= U FS

aEN

where F' is a semi-p-open set for each

aen. Therefore {F :aen} is a semi-

p-open cover of X which is a semi-p-
compact space, then there exist finitely
many members o, oy, ..., o, such that

n
X= UFS,
i=1 7

it follows by De-Morgan

n
Laws that _mlFai =¢p which is a
1=

contradiction with our assumption that
{Fo:aen} has a FIP. Hence m F,#o.

2=13)
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Let F be a filter on X, then F has
a FIP. In particular the collection
{semi-p-cl F:FeF } of semi-p-closed
subset of X has the FIP, so by 2 there
exists at least one point xe n{semi-p-cl
F: FeF}, that is, xesemi-p-cl F for
each Fe F . Hence by theorem 11 x is a
semi-p-cluster point of F .
B=1

Assume that every filter on X has
a semi-p-cluster point. To prove X is a
semi-p-compact space. Let 3 be a
semi-p-open cover of X and suppose, if
possible, 3 has no finite subcover. The
collection g ={X - G : Ge3} has the
FIP. For if there exists a finite
subcollection {X - G; | 1<i<n}of
@ suchthat " {X-G; [1<i<n}=4¢.
This implies that U {G; |1 <i<n}=
X which contradicts our supposition
that 3 has no finite subcover. Thus
must have the FIP. It follows that there
exists an ultra filter F on X
containing . By 3 F has a semi-p-
cluster point x € X, then by theorem
11 x e semi-p-cl F foreach F € F . In
particular X € semi-p-cl (X — G)
for each G €3. But X — G is a semi-p-
closed subset of X for each G € 3,
then semi-p- ¢l (X-G)=X-G for
each G € I. Thisimpliesx e N { X -
G:Ge3JI}=X-uU{GIG e 3}
Hence x ¢ U {G| G e 3} which
contradicts the fact that 3 is a semi-p-
open cover of X. Thus 3 must have a
finite subcover and consequently X is
semi-p-compact space. l

13 Proposition

Let (X,1) be a topological space.
If X is a semi-p-compact space then
every net in X has a semi-p-cluster
point.

Proof:

Let ( f, X,A,>) be a net in X. For
each a € A, let M ;={f (x):x > a} since
A is directed by >, so the collection
{ M, a € A} has the FIP, in particular
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the collection {semi-p-cl M ;: a € A}
of semi-p-closed subsets of X is also
has the FIP. It follows by theorem 12
that n {semi-p-cl M ;: acA} =¢, let
pen{semi-p-cl M 5. a € A}, then
pesemi-p-cl M , for each a € A, thus
by theorem 9 p is a semi-p-cluster
pointof f. H

It seems that the converse of
proposition 13 is not true in general,
but we could not get a counter
example.

14 Definition [3]

Let f :(X,1) — (Y,7') be any
function, then f is said to be "semi-p-
irresolute function™ if the inverse
image of any semi-p-open subset of Y
is a semi-p-open subset of X.

15 Proposition

The semi-p-irresolute image of a
semi-p-compact space is a semi-p-
compact.

Proof:

Let f be a semi-p-irresolute
function from a semi-p-compact space
(X,1) onto a topological space (Y,t).
To prove Y is a semi-p-compact space
let {G,:aen} be a semi-p-open cover
of Y, then {f "1 (G,):ae A} is a semi-p-
open cover of X which is semi-p-
compact space, then there exist finitely
many members of A say oy, ay, ..., oy

n
such that X= _glf (G,,), it follows

n
that Y = _ulGO[i . Thus Y is a semi-p-
1=

compact space. l

16 Corollaries

1. The semi-p-irresolute image of a
semi-p-compact space is a compact
space.

2. Semi-p-compactness is a topological

property.
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17 Definition

A topological space (X,t) is said
to be "semi-p-T,-space” if for each two
distant points x and y in X, there exists
two semi-p-open subsets U and V of
X, such that x € U, y € V and
UnV=4.

18 Proposition

A semi-p-compact subset of a T,-
space is semi-p-closed.
Proof:

Let A be a semi-p-compact subset
of the T,-space (X,t), so A is compact
since  every semi-p-compact s
compact, but X is a T,-space (given) so
A is closed in X [5,p.156,prop.11] but
every closed subset of A is semi-p-
closed, so A is semi-p-closed. H

Notice that, a semi-p-compact
subset of semi-p-T,-space need not be
semi-p-closed as the following
example shows:

19 Example

Let X={1,2,3}, © = {X,0,{2,3}},
F={x¢{1}}.
S-P-O(X) =
X.0.{2,3}{2},{3}.{1,3}.{1.2}}
S-P-C(X) =
{X.0.{1}3{1,3},{1.2} {2}.{3}}
Clear that X is semi-p-T, space. If A =
{2,3} then A is semi-p-compact subset
of X, but not semi-p-closed.

20 Definition [3]

A topological space (X,t) is said
to be:
1. 'semi-p-regular space™ if and only if
for each point x € X and for each
closed subset F of X such that x ¢ F,
there exist two disjoint semi-p-open
subsets U and V of X such that x € U
and Fc V.
2. "Almost semi-p-regular space” if
and only if for each point x in X and
for each semi-p-closed subset F of X
such that x ¢ F, there exist two semi-p-
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open disjoint subsets U and V of X
suchthatx e Uand F c V.

3. "semi-p-normal space” if and only if
for each two disjoint closed subsets F;
and F, of X, there exist two disjoint
semi-p-open subsets U and V of X
such that FicU and F, < V.

Notice that, every regular space is a
semi-p-regular and every normal space
IS a semi-p-normal.

21 Proposition

A compact T, — space is a semi-p-
regular space.
Proof:

Clear.

22 Corollary

A semi-p-compact T,-space is a
semi-p-regular.
Proof:

Clear.

23 Proposition

A semi-p-compact T,-space is an
almost semi-p-regular space.
Proof:

Let (X,t) be a semi-p-compact T,-
space and let F be a semi-p-closed
subset of X and x be any point in X
with x ¢ F, then x #y for eachy € F.
Since X is a T,-space, so
there exist two disjoint open subsets Uy
and Vy of X such that x € Uyand y €
Vy. Then the family { V,:y € F} forms
an open cover of F, but it is compact
set, since every semi-p-compact set is
compact and F is semi-p-compact by
proposition 4 therefore, we get finitly
many elements ys, ..., ¥, of F such that

n n
Fc uV,. . Now,letV = vV, and
i=1 i i=1 Yi

n
U= _m1UYi, then U and V are two
=

disjoint open subset of X such that x e
U and F < V. But every open set is
semi-p-open, so X is an almost semi-p-
regular space.
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24 Proposition

A compact T, — space is a semi-p-

normal space.
Proof:

Clear.

25 Corollary

A semi-p-compact T,-space is a

semi-p-normal (normal) space.

Proof:
Clear.
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