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Abstract: 
        The purpose of this paper is to introduce a new type of compact spaces, namely 

semi-p-compact spaces which are stronger than compact spaces; we give properties 

and characterizations of semi-p-compact spaces. 
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Introduction:

        Let (X,τ) be a topological space 

and let A be a subset of X. We denote 

the closure of A (the interior of A) by 

cl A (int A) respectively. 

        A subset A of (X,τ) is called pre-

open set, see [1], [2] and [3], if A 

int(cl A). The complement of a pre-

open set is called a pre-closed set; see 

[1], [2] and [3]. The intersection of all 

pre-closed sets containing A is called 

the pre-closure of A and is denoted by 

pre-clA, [2]. 

        A subset A of (X,τ) is called 

semi-p-open, [1] if there exists a pre-

open subset U of X such that U  A  

pre-clU. The complement of semi-p-

open set is called semi p-closed set, see 

[3]. 

        The family of all semi-p-open 

subsets of X is denoted by S-P-O(X). 

The intersection of all semi-p-closed 

sets containing A is called the semi-p-

closure of A and is denoted by semi-p-

cl A, see [1,3]. 

        We study and define many 

concepts in this paper in order to give 

properties and characterizations of 

semi-p-compact spaces, like cluster 

and semi-p-cluster points, compact 

spaces, nets, filters, T2 and semi-p-T2 

spaces, regular and semi-p-regular 

spaces, almost semi-p-regular spaces 

and semi-p-irrsolute functions. For 

more details of these concepts see [4], 

[2], [5], [6], [7] and [8]. 

Semi-p-Compact Spaces: 

        In this section, we define and 

study the concept of semi-p-

compactness. 

 

1 Definition  

        A family   of semi-p-open 

subsets of a topological space (X,τ) 

which covers X is called semi-p-open 

cover of X. 

 

2 Definition  

        A topological space (X,τ) is said 

to be semi-p-compact space if and only 

if every semi-p-open cover of X has a 

finite semi-p-open subcover. 

 

        Notice that every semi-p-compact 

space is compact, since every open 

subset of X is semi-p-open, but the 

converse is not true in general as the 

following example shows: 

 

3 Example  

        Let X = N {0} 

τ = {U  X U  N or (0  U  U
c
 is 

finite)} 
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F = {F  X  0  F or (F  N  F is 

finite)} 

S-P-O(X) = P(X)\ {{0}}  

Then (X,τ) is a compact space but not 

semi-p-compact space. 

 

        Semi-p-compactness is a weak 

hereditary property, as shown in the 

following proposition. 

 

4 Proposition  

        A semi-p-closed subset of a semi-

p-compact space is a semi-p-compact 

subspace. 

Proof: 

        Let A be a semi-p-closed subset 

of a semi-p-compact space (X,τ) and 

let {G: G is semi-p-open subset of X, 

} be a semi-p-open cover of A. 

Since A
c
 is a semi-p-open set in X, so 

{G:}  {A
c
} forms a semi-p-

open cover of X which is a semi-p-

compact space, then there exist finitely 

many members of index set  say 1, 

2, , n such that 
1
G

n
c

ii



    . 

But     A  X and A  A
c
 = , 

therefore A  
1
G

n

ii



 . Thus A is semi-

p-compact. 

 

        In the following theorem we give 

a characterization of definition of 

semi-p-closure of a set. 

 

5 Definition  

        Let A be a subset of a topological 

space (X,τ). The semi-p-closure of A 

(semi-p-cl A) is the intersection of all 

semi-p-closed subsets of X which 

contain A. 

We shall call x, where x  X, a semi-p-

closure point of A if x  semi-p-cl A. 

 

6 Theorem  

        Let (X,τ) be a topological space 

and let A be a subset of X. A point x in 

X is a semi-p-closure point of A if and 

only if every semi-p-open nbd 

(neighborhood) of x intersects A. 

Proof: 

        The "only if"part 

        Assume that x is a semi-p-closure 

point of A, then x  K =  {F F is a 

semi-p-closed subset of X containing 

A}. Suppose that there exists a semi-p-

open nbd U of x such that UA=, 

therefore A  U
c
 where U

c
 is a semi-p-

closed subset of X with x  U
c
, that is, 

x  K which is a contradiction. Hence 

every semi-p-open nbd of x must 

intersects A. 

The "if" part 

        Assume that every semi-p-open 

nbd of x intersects A, and suppose that 

X is not a semi-p-closure point of A, 

therefore x  K, that is there exists a 

semi-p-closed subset F of X with A  

F such that x  F, it follows that x  F
c
 

which is a semi-p-open set in X and A 

 F
c
 = . That implies a contradiction 

with our assumption. Hence x must be 

a semi-p-closure point of A.  

 

7 Definition  

        Let (X,τ) be a topological space 

and let ( f, X,A,) be a net in X. A 

point x0 in X is called a "semi-p-cluster 

point of f " if for each a  A and for 

each semi-p-open nbd U of x0 there 

exists b  A such that b  a and f (b)  

U. 

 

8 Definition  

        Let (X,τ) be a topological space 

and let ( f, X,A,) be a net in X, then f 

is said to be "semi-p-convergent" to a 

point x0 in X if for each semi-p-open 

nbd. N of x0 there exists an element 

a0 A such that fa  N for each a  a0. 

 

9 Theorem  

        Let (X,τ) be a topological space 

and let ( f, X,A,) be a net in X. For 

each aA, let  M a = { f (x) : x  a in 

A} then a point p of X is a semi-p-
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cluster point of f if and only if p  

semi-p-cl M a for each aA. 

Proof: 

        The "only if"part 

        Assume that p is a semi-p-cluster 

point of f and let N be a semi-p-open 

nbd. of p, then for each aA, there 

exists an element x  a in A such that f 

(x)  N.  

Hence M a  N  for each aA. 

Since N is an arbitrary nbd., so by 

theorem 2.6 p  semi-p-    cl M a for 

each aA. 

The "if" part 

        Assume that p  semi-p-cl M a for 

each aA and suppose, if possible, p is 

not a semi-p-cluster point of f , then 

there exists a semi-p-open nbd. N of p 

and an element aA such that        f (x) 

 N for every x  a in A. This implies 

that N  M a=, it follows that p  

semi-p-cl M a for this a which is a 

contradiction. Hence p must be a semi-

p-cluster point of the net f.  

 

10 Definition  

        Let (X,τ) be a topological space 

and let F  be a filter on X. A point x in 

X is called a "semi-p-cluster point of 
F  " if each semi-p-open nbd. of x 

intersects every member of F .  

 

        Notice that, every semi-p-cluster 

point of a filter is a cluster point. 

 

11 Theorem  

        Let (X,τ) be a topological space 

and let F  be a filter on X. A point p in 

X is a semi-p-cluster point of F  if and 

only if p  semi-p-cl F for each F  F
. 

Proof: 

        The "only if"part 

        Let p be a semi-p-cluster point of 
F , then each semi-p-open nbd. of p 

intersects every member of F , that is, 

for each semi-p-open nbd. U of p, U  

F  for each F  F . It follows that, p 

 semi-p-cl F for each F  F , by 

theorem 6. 

 

The "if" part 

        Assume that p  semi-p-cl F for 

each F  F , then by theorem 6 every        

semi-p-open nbd. of p intersects F for 

each F  F , that is every semi-p-open 

nbd. of p intersects every member of 
F . Hence p is a semi-p-cluster point of 

F .  

 

        In the next theorem we give two 

characterizations of semi-p-compact 

spaces. 

 

12 Theorem  

        Let (X,τ) be a topological space 

then the following statements are 

equivalent: 

1. X is a semi-p-compact space, 

2. Every collection of semi-p-closed 

subsets of X with the FIP (finite 

intersection property) has a non-

empty intersection, 

3. Every filter on X has a semi-p-

cluster point. 

Proof: 

(1  2) Assume that X is a semi-p-

compact space and let {F:} be a 

collection of semi-p-closed subsets of 

X with FIP. Suppose that F

 =, 

then by De-Morgan Laws X=  cF

  

where  cF  is a semi-p-open set for each 

. Therefore {  cF :} is a semi-

p-open cover of X which is a semi-p-

compact space, then there exist finitely 

many members 1, 2, , n such that 

X= 
 c

1
F

n

ii



 , it follows by De-Morgan 

Laws that 
1
F

n

ii



 = which is a 

contradiction with our assumption that 

{F:} has a FIP. Hence F

 . 

(2  3) 
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        Let F  be a filter on X, then F  has 

a FIP. In particular the collection 

{semi-p-cl F:F F } of semi-p-closed 

subset of X has the FIP, so by 2 there 

exists at least one point x{semi-p-cl 

F: F F }, that is, xsemi-p-cl F for 

each F F . Hence by theorem 11 x is a 

semi-p-cluster point of F . 

(3  1) 

        Assume that every filter on X has 

a semi-p-cluster point. To prove X is a 

semi-p-compact space. Let  be a 

semi-p-open cover of X and suppose, if 

possible,  has no finite subcover. The 

collection  = {X – G : G} has the 

FIP. For if there exists a finite 

subcollection {X – Gi       1  i  n} of 

 such that  {X – Gi  1  i  n} = . 

This implies that  {Gi  1  i  n} = 

X which contradicts our supposition 

that  has no finite subcover. Thus  

must have the FIP. It follows that there 

exists an ultra filter F  on X 

containing. By 3 F  has a semi-p-

cluster point x  X, then by theorem 

11 x  semi-p-cl F for each F  F . In 

particular          x  semi-p-cl (X – G) 

for each G . But X – G is a semi-p-

closed subset of X for each G  , 

then semi-p-       cl (X – G) = X – G for 

each G  . This implies x   { X – 

G: G  } = X –  {G G  }. 

Hence x   {G G  } which 

contradicts the fact that  is a semi-p-

open cover of X. Thus  must have a 

finite subcover and consequently X is 

semi-p-compact space.  

 

13 Proposition  

        Let (X,τ) be a topological space. 

If X is a semi-p-compact space then 

every net in X has a semi-p-cluster 

point. 

Proof: 

        Let ( f, X,A,) be a net in X. For 

each a  A, let M a={f (x):x  a} since 

A is directed by , so the collection      

{ M a: a  A} has the FIP, in particular 

the collection {semi-p-cl M a: a  A} 

of semi-p-closed subsets of X is also 

has the FIP. It follows by theorem 12 

that  {semi-p-cl M a: aA} , let 

p{semi-p-cl M a: a  A}, then 

psemi-p-cl M a for each  a  A, thus 

by theorem 9 p is a semi-p-cluster 

point of f .  

 

        It seems that the converse of 

proposition 13 is not true in general, 

but we could not get a counter 

example. 

 

14 Definition [3] 

        Let f :(X,τ)  (Y,τ) be any 

function, then f is said to be "semi-p-

irresolute function" if the inverse 

image of any semi-p-open subset of Y 

is a semi-p-open subset of X. 

 

15 Proposition  

        The semi-p-irresolute image of a 

semi-p-compact space is a semi-p-

compact. 

Proof: 

        Let f  be a semi-p-irresolute 

function from a semi-p-compact space 

(X,τ) onto a topological space (Y,τ). 

To prove Y is a semi-p-compact space 

let {G:} be a semi-p-open cover 

of Y, then {f 
 - 1 

(G):} is a semi-p-

open cover of X which is semi-p-

compact space, then there exist finitely 

many members of  say 1, 2, , n 

such that X= 
 1

i1
(G )

n

i
f 




 , it follows 

that     Y = 
i1

G
n

i



 . Thus Y is a semi-p-

compact space.  

 

16 Corollaries  

1. The semi-p-irresolute image of a 

semi-p-compact space is a compact 

space. 

2. Semi-p-compactness is a topological 

property. 
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17 Definition 

        A topological space (X,τ) is said 

to be "semi-p-T2-space" if for each two 

distant points x and y in X, there exists 

two semi-p-open subsets U and V of 

X, such that x  U, y  V and                

U  V = . 

 

18 Proposition  

        A semi-p-compact subset of a T2-

space is semi-p-closed. 

Proof: 

        Let A be a semi-p-compact subset 

 of the T2-space (X,τ), so A is compact 

since every semi-p-compact is 

compact, but X is a T2-space (given) so 

A is closed in X [5,p.156,prop.11] but 

every closed subset of A is semi-p-

closed, so A is semi-p-closed.  

 

        Notice that, a semi-p-compact 

subset of semi-p-T2-space need not be 

semi-p-closed as the following 

example shows: 

 

19 Example  

        Let X={1,2,3}, τ = {X,,{2,3}}, 

F  = {x,,{1}}. 

S-P-O(X) = 

{X,,{2,3},{2},{3},{1,3},{1,2}} 

S-P-C(X) = 

{X,,{1},{1,3},{1,2},{2},{3}} 

Clear that X is semi-p-T2 space. If A = 

{2,3} then A is semi-p-compact subset 

of X, but not semi-p-closed. 

 

20 Definition [3] 

        A topological space (X,τ) is said 

to be: 

1. 'semi-p-regular space" if and only if 

for each point x  X and for each 

closed subset F of X such that x  F, 

there exist two disjoint semi-p-open 

subsets U and V of X such that x  U 

and  F  V. 

2. "Almost semi-p-regular space" if 

and only if for each point x in X and 

for each semi-p-closed subset F of X 

such that x  F, there exist two semi-p-

open disjoint subsets U and V of X 

such that x  U and F  V. 

3. "semi-p-normal space" if and only if 

for each two disjoint closed subsets F1 

and F2 of X, there exist two disjoint 

semi-p-open subsets U and V of X 

such that F1U and F2  V. 

Notice that, every regular space is a 

semi-p-regular and every normal space 

is a semi-p-normal. 

 

21 Proposition  

        A compact T2 – space is a semi-p-

regular space. 

Proof: 

        Clear. 

 

22 Corollary  

        A semi-p-compact T2-space is a 

semi-p-regular. 

Proof: 

        Clear. 

 

23 Proposition 

        A semi-p-compact T2-space is an 

almost semi-p-regular space. 

Proof: 

        Let (X,τ) be a semi-p-compact T2-

space and let F be a semi-p-closed 

subset of X and x be any point in X 

with x  F, then x  y for each y  F. 

Since X is                a T2-space, so 

there exist two disjoint open subsets Uy 

and Vy of X such that x  Uy and y  

Vy. Then the family { Vy:y  F} forms 

an open cover of F, but it is compact 

set, since every semi-p-compact set is 

compact and F is semi-p-compact by 

proposition 4 therefore, we get finitly 

many elements y1, …, yn of F such that 

F  
i1

V
n

y
i 
 . Now, let V = 

i1
V

n

y
i 
  and 

U = 
i1

U
n

y
i 
 , then U and V are two 

disjoint open subset of X such that x  

U and F  V. But every open set is 

semi-p-open, so X is an almost semi-p-

regular space. 
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24 Proposition  

        A compact T2 – space is a semi-p-

normal space. 

Proof: 

        Clear. 

 

25 Corollary  

        A semi-p-compact T2-space is a 

semi-p-normal (normal) space. 

Proof: 

        Clear. 
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 :الخلاصة
 هذد اقذدم مذن     p-الغرض من هذاا الحثذت ديذديم  ذدي جديذد مذن  اذاصات الذرا  هذد  اذاص الذرا  ذح                     

 .p – ااصات الرا،  كالك اعطينا خداصاً   مميزات لفااص الرا  ح  
 

 


