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Abstract

This work studies the concept of En-prime compactly packed (En — P.c.P) modules. Some

properties and characterizations have been studied. Put ¥ is an sI-module and every submodule is En-
pure, then ¥ is En — P.c. P if and only if each proper submodule () of ¥ is cyclic, If W is En — P.c. P.
¥ which has at least one maximal submodule then ¥ satisfies the ACC on En-p-radical submodule. The
generalization of this idea has been given for S-Acts. if for each family {P,},e of En-prime subact of I
with X € Ugexr Po, R € Pg for some B € A. An S-Act [l is En — P.c.P, if every subactis En — P.c.P.
Various properties of En — P.c.P modules and S-Acts have been studied, like, ¥ is an R-module and
every submodule is En-pure, then ¥ is En — P.c. if and only if each proper submodule ) of ¥ is
cyclic. The general is, if IT is En — P.c.P S-Act which has at least one maximal subact then ]I satisfies
the ACC on En-p-radical subact.and suppose that JT is an En — P.c.P S-Act. If the CST is satisfied for
I, then dim /I < 1, and prove that, If JT is a multiplication S-Act that satisfies the ACC on En-p- radical
subact, then for every proper subact X of I there exists a finite number of minimal En-prime subact of
X. Let f: I » I’ be an epimorphism. If [l is En — P.c.P then so is [I'. The converse is true when [T is
finitely generated or (multiplication) S-Act and ker f € rad{0}.

Keywords: En- Prime subacts, En-prime submodules, En-Pure subacts, En-prime compactly packed S-
Act, Multiplication S-act.

Introduction

Let R be a commutative ring with 1 and let ¥ be a
unitary R-module. An ideal | of R is said to be
compactly packed if for each family {P,}e) of prime
ideals with I € Uyex Py, there exists 8 € A, such that
IS Pg In ' aring S in which every ideal is
compactly packed is said to be compactly packed
rings. A proper submodule () of module ¥ is said
to be En-prime if f(x)R € (1) implies that either x €

Wor f(W) <€ ®,? Anideal | of S is said to be c.P
if for every family {P,}qe Of prime ideals with I <
Ucer P, there is B € A, such that I < Pg. Thus we
say that a proper submodule ) of ¥ is prime
compactly packed if for each family {P, },e» of prime
submodule of W with @) S Uger Py, @ S Py for
some B € A 3. Generalize the concept of En — P.c. P
modules to En — P.c.P.S. A.
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Results and discussion
En-prime Compactly Packed R-modules.

Definition 1: A proper submodule ) of R-module
W is said to be En—P.c.P if whenever () is
contained in the union of a family of En-prime subact
of ¥, then ) is included in one of the members of
the family. And ¥ is En — P.c.P R-module if
every proper submodule of ¥ is En — P.c. P.

Let &) be a submodule of an R- module ¥,
if there exists En-prime submodule that contains ),
then the intersection of all En-prime submodule
containing ) is called the En-p- radical of (x) and
denoted by En-p- rad(®). If there is no En-prime
submodule containing ), then En-p-rad () = ¥. A
submodule () is called an En-p- radical submodule if

En-p-rad(®) = ) *.

Theorem 1: Let ¥ be an R-module. The following
statements are equivalent:

1-WisEn—P.c.P.

2-For each proper submodule 1) of ¥, there exists
a€ (1) such that En-p-rad(()) = En-p-rad(Ra).

3-For each proper submodule &) of ¥, if { 0y }en
is a family of submodules of ¥ and @) SU e @) «
then (1) S En-p-rad(() ) for some BEA.

4-For each proper subact @) of ¥, if { @ o }wuen IS @
family of En-p-radical submodule of ¥ and )
CUwen @) o then @ € ) g for some BEA.

Proof: (1—2) Let (@) be a proper submodule of ¥.
Suppose En-p-rad (1) ¢ En-p-rad(Ra) for each a€ (),
there exists an En-prime submodule P. which
contains Ra and @ ¢P.. But @ = Uge,Ra S
U(aew)Pa that is ¥ is not En —P.c.P which
contradicts (a).

(2—3) Let () be a proper submodule of ¥ and let
{®W. : (a€EL)} be a family of submodule of ¥ such
that @) € Uweny @ « . By (b) there exists a€ (1) such
that En-p-rad(()) = En-p-rad(Ra). Then a€U @ey &)
« and hence a€ () for some BEA, so that Ra € () g
and @ < En-p-rad(®W) = En-p-rad(Ra) S En-p-
rad(()p)

(3—4) & (4—1) are clear.

Proposition 1: Put ¥ is an R-module and every
submodule is En-pure, then ¥ is En — p.c. P if and
only if each proper submodule () of ¥ is cyclic.

Proof: The sufficiency is clear. To prove the
necessity, let (1) be a proper submodule of ¥. Since
¥ is En — P.c.P then by theorem 1, there exists a €
() such that En-p- rad(®) = En — p —rad(Ra) .
But every submodule is En-pure, ) = Ra.

Put ¥ is module. A submodule () of ¥ is
said to be En-pure in ¥ if for every endomorphism

f, WNW) = f(wW)*

Theorem 2: If ¥ is En — P.c.P R-module which
has at least one maximal submodule then ¥ satisfies
the ACC on En-p-radical submodule.

Proof: let W, € &), < -+ be an ascending chain of
En-p-radical submodule of ¥ and let L. = U; @);. If
L =W and A is a maximal submodule of ¥, then
A € U; ). Since W is En — p.c.P then A € ); for
some j. Therefore A € @); and therefore U; @); €
(), that is W < (); which is impossible. Thus L is a
proper submodule of ¥. Thus L. < #; for some j and
therefore (); € @, € -+ € W) = Wjyq = Wiy =
-+, thus the ACC is satisfied for En-p-radical
submodule.

Recall that a module W is called a
multiplication module if each submodule (1) of ¥ has
the form (1) =I% for an ideal | of R. In fact (1) =
[(): W] W *. Because every finitely generated module
and every multiplication module has a proper
maximal submodule @ then the directly by theorem
2, the proof of the following result have been found:-

Corollary 1: If ¥ is finitely generated or
multiplication En — P. c¢. P module, then ¥ satisfies
the ACC on En-prime radical submodule.

En-Prime Compactly Packed S-Acts (En—
P.c.P.S.A)

Definition 2: A proper subact X of S-act JT is said to
be En —P.c.P.S. A if whenever X is contained in
the union of a family of En-prime subact of JI, then
X is included in one of the members of the family.
And JTis En — P.c.P S-act, if every proper subact
of TisEn—P.c.P.S.A.
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Let X be a subact of an S-Act 1, if there
exists En-prime subact that contains X, then the
intersection of all En-prime subact containing X is
called the En-prime radical of XX and denoted by En-
p-rad(X). If there is no En-prime subact containing
X, then En-p-rad(X) = JI. A subact X is called an
En-p-radical subact if En-p-rad(X) = X °.

Theorem 3: Put I is an S-Act. The following
statements are equivalent:

a- JlisEn — P.c.P.S. A.

b- For every proper (appropriate) subact X of I,
there is a € X such that En-p-rad(;R) = En —
p —rad(Sa).

c- For every proper (appropriate) sub act X of [T, if
{XRJaen 1S a family of sub act of T and X <
Uaer Ko then R € En — p — rad(Xp) for some
B eA

d- For every proper (appropriate) subact X of JI, if
{XRo}aer is a family of radical subact of ]I and
A S Uger R then R < XKg for some B € A

Proof: (a—b) Put JX is a proper subact of JI. Suppose
En-p-rad(X) ¢ En-p-rad(Sa) for each a€X, there is
an En- prime subact P, which contains Sa and X ¢
P,. But X = Uaex Sa € Uaex P, that is JT is not En-
prime compactly packed which contradicts (a).

(b—c) Put X is a proper subact of T and let {X}qer
be a family of subact of JI such that & S Ugep Rq-
By (b) there is a € X such that En-p-rad(XX) = En-p-
rad(Sa). Then a € Ugep R and hence a € Kg for
some B € A, so that Sa < Xg and X < En-p-rad(’X)
= En-p-rad(Sa) < En-p- rad(Xg)

(c—d) & (d—a) are evident.

Recall that an S-Act 1 is called a
multiplication S-Act if each subact X of /I has the
form X=I] for an ideal | of S. In fact X = [X: [A]J
6

Recall that if [T is a multiplication S-Act and
Xis a maximal subact of JI, then X is En-prime,
therefore X is prime Swith X S Ugex Ry, Where A
is a finite set, then X € Ag forsome pe A7 If [ is
a multiplication S-Act containing finite number of
En-prime subact then [T is En — P.c.P.

The example that follows provides an S-Act
thatisnt En —P.c.P.S. A
Example 1: Put D be an infinite set. Let S be the
commutative Boolean monoid (P(D),A,N), where
P(D) is the power set of D, and the operation A is the
usual operation. Let U = {A: A is finite set of D}.
Since S is commutative Boolean monoid , then for
each Ae U, (A) is radical ideal, therefore is En-
prime radical ©, then (A) = N{ @: @ is En-prime
ideal containing A}. Because U is not principal ideal
then U ¢ (A), that is, there exists an En-prime @)4
containing A and U ¢ ®;, but U= Usy(A)
Uie @4, then U is not En-prime compactly packed
and hence Sisnot En — P.c.P.S. A.

Put [T is an S-Act. A subact X of ]I is said to
be En-pure in I if for every endomorphism f,
XN = fGR)A

Proposition 2: Put JT is an S-Act and every subact is
En-pure, then [T is En — P.c.P.S. A iff each proper
subact X of [T is cyclic.

Proof: The sufficiency is clear. To prove the
necessity, let X be a proper subact of II. Since [ is
En — P.c.P.S. A then by theorem 3, there exists ae
X such that En-p- rad(R) = En — p —rad(Sa) .
But every subact is En-pure, then by 8, X = Sa.

The proof of the following theorem by the
same way of theorem (2)

Theorem 4: If 1 is En — P.c.P.S. A which has at
least one maximal subact then ]I satisfies the ACC
on En-p-radical subact.

Because every finitely generated S-Act and
every multiplication S-Act has a proper maximal
subact, 8° thus:-

Corollary 2: If 1O is finitely generated or
multiplication En — P.c.P.S. A, then ]I satisfies the
ACC on En-prime radical subact.

Definition 3: An En- prime subact O of an S-Act
is called a minimal En-prime subact of a sub act X if
X €D and there exist no smaller En-prime sub act
with this property.

Remember that Every En-prime subact is
prime subact, therefore, if [T is an S-Act that satisfies
the ACC on En-p-radical subact then the En- p-
radical of any proper subact X of I is the intersection
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of a finite number of minimal En-prime sub act of
310,11,12

We require the following lemma in order to
derive another corollary:

Lemma 1. If JI be a multiplication S-Act that
satisfies the ACC on En-p- radical subact, then for
every proper subact X of ] there exists a finite
number of minimal prime sub act of X.

Proof: let X be a proper sub act of I, then En-p-
rad(R) is the intersection of a finite number of
minimal En-prime subact of ] say 34,05, ..., 0. We
shall prove that these D;’s are the only minimal En-
prime subact of N. Suppose U is a minimal En-prime
sub act. It is clear that En-p--rad(R) € U that is
NL,0;cU and hence N0 Al =
[NR,0i: ] € [U;: A]. And [U: ] is En-prime
ideal 8 then there exists j€{1,2,..,n} such
that[J;: M] < [U : ], but JT is a multiplication S-Act
thus J; € U because U is minimal prime subact.

Corollary 3: If 1T is a multiplication En —
P.c.P.S. A, then for every proper subact X of ]I
there exist a finite number of minimal En-prime
subact of X.

Definition 4: Let p be a En-prime subact of an S-Act
J1. The height of p equals n (denoted by ht(p) = n)
if there exists a chain of distinct En- prime subact of

Conclusion

In this work, the concepts of En — P.c.P modules
and En —P.c.P.S.A have been introduced and
prove some properties which related to these
concepts, proving that a- 1 is En — P.c.P.S. A. b-
For every appropriate subact X of JI, there is aeX
such that En-p-rad(’)X)=En-p-rad(Sa). c-For every
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pi of 11 of the form p = py 2 p; D --- D P, and it is
the longest chain such that p = p,.

Theorem 5: Put [T is an S-act and every finitely
generated subact is cyclic. If I satisfies the ACC on
En-p-radical subact, then 1 is En — P.c.P.S. A.

Proof: Put X is a proper subact of JI. By?, there exists
a finitely generated subact U of JI such that En-p-
rad(’X) = En-p-rad(U) and hence U is cyclic sub act,
by theorem 3 [T is En —P.c.P.S. A

Definition 5: An S-Act [T is said to be satisfy the
Cyclic Subact Condition (CSC) if for each xe J] and
each En-prime subact K of JI minimal over S
therefore ht(K) < 1.

Proposition 3: Suppose that I is an En—
P.c.P.S.A. If the CST is satisfied for M, then
dim [l < 1.

Proof: Put K be a maximal subact of /I, then by
Theorem (3), there exists a€Jl such that K = En-p-
rad(Sa). This implies that K is minimal En-prime sub
act over Sa. By CSC, ht(K) < 1, therefore dim /I <
1.

Proposition 4: Let f: /1 = /' be an S-epimorphism.
If 1is En —P.c.P.S.Athensois . The converse
is true when I is finitely generated or
(multiplication) S-Act and ker f < rad{0}.

appropriate subact X of I, if { X }we is a family of
subact of JI and XEUwenX, then X € En-p-
rad(Xp) for some P€EA. d-For every appropriate
subact X of M, if {Xq }wen is a family of radical
subact of J] and XEU@enXRq then XEX; for some
BEM are equivalent
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