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Abstract: 
In the present work, a program for calculating the coefficients of the 

Aplanatic Cassegrain Telescope (ACT) system, free from the effects of spherical 

and coma aberrations, were constructed. In addition, the two-mirrors of the optical 

system, as aspherical surfaces, were adopted. This means, that the two-equations of 

the mirrors are assumed to be polynomial function of five even terms only. The 

numerical method, least-squares curve fitting method to calculate the two-mirror 

coefficients system, was adopted. For choosing the values and ratios that give the best 

results, Rayleigh Criterion (Rayleigh Limit), for purpose of comparison and 

preference, was adopted. 

 

Key words: Telescope, Aplanatic Cassegrain Telescope, Coefficients, Primary 

Mirror, Secondary Mirror, Aspherical Surfaces.  
 

Introduction: 
A telescope is an instrument 

designed for the observation of remote 

objects by the collection of 

electromagnetic radiation.The most 

important type of reflecting telescope 

is Cassegrain type [1]. A reflecting 

telescope, or reflector, is one in which 

the objective is a mirror [2]. The mirror 

is close to the rear of the telescope and 

light is bounced off (reflected) as it 

strikes the mirror. Cassegrain 

telescope
1 

gives a longer focal length 

and higher magnification [3].  

Cassegrain telescope has two-

curved reflecting mirror. The parabolic 

primary concave mirror has a hole at 

its center, and is placed at the bottom 

of the telescope tube. A smaller 

hyperbole secondary convex mirror is 

placed near the top of the telescope. 

The secondary mirror bounces the light 

from the primary mirror back down the 

tube through the hole in the primary, to 

the focus point behind [3], as shown in 

Figure (1): 

Fig. (1): Cassegrain telescope optical 

layout [3] 
 

Aplanatism: 
The term aplanatism was used 

to imply axial stigmatism together with 

the satisfaction of the exact sine 

condition
2
 [5]. A spherical surface 

whose position is relative to an object 

point (either real or virtual), the rays 

are refracted through the surface free 

from all orders of spherical and linear 

coma aberrations are called an 

aplanatic surface.  

 1
 :The French astronomer Gaillaume Cassegrain in 1672 invented this type of telescopes [4].     

2
Abbe and Helmholtz discovered the sine theorem almost simultaneously but quite independently in 

1873 [9].     
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Any surface is aplanatic with 

respect to one particular object point. 

This point and its image  

conjugate are known as the 

aplanatic points
2
 of the          surface 

[6]. 

 

Aspherical Surfaces: 
Aspherical surfaces, or 

“aspherics”, are optical surfaces that 

are neither spherical nor plane, used in 

imaging and non-imaging systems [7]. 

Optical designers have used the 

following aspheric formula [8]: 
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Where x coordinate of this surface is 

given as a power series expansion in r, 

where: 

 
22 zyr  … (2) 

 

Equation (1) represents the 

aspheric as surface of revolution about 

the x-axis. Figure (2), whose base 

curve is a conic section, with vertex 

curvature c and conic constant k [11]. 

 

  
Fig. (2), Aspheric surface [5] 

 

The first term in equation (1) 

represents the conic sections and the 

other terms represent the deformations 

from this conic section. Other forms of 

representation have also been used as 

[12]:   
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The design of aspherical system 

raises a number of questions. For most 

among these are the problems of how 

to determine for any given system the 

aspheric profiles so that to obtain a 

good definition over the whole of a 

finite field [13].  

The aim of present work is to 

provide a method, for calculating the 

coefficients of the Aplanatic 

Cassegrain Telescope (ACT) system, 

free from the effects of spherical and 

coma aberrations. 

 

Profile Determination of the 

Optical System: 
We exhibit the main formulas 

is used for calculating the two-mirror 

profiles. Figure (3), shows the mirrors 

profile of the Aplanatic Cassegrain 

Telescope (ACT) system [1]. 

 
Fig. (3): The mirrors profile of the 

Aplanatic Cassegrain Telescope 

(ACT) system [1] 

 

The equation of the primary mirror 

profile is given by [1]: 
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The equation of the secondary mirror 

profile is given by [1]:                                      








 









 







 











2
)(1

2

)(






TanTan

Tan
dH

dTan
X

dH

hd

dH

Xd ...(5) 

X 

Z 

Aspheric 

Y 

1
In general a spherical surface does not form a perfect image of a point. There are, however, a few 

points that are imaged without aberrations, these called aplanatic points [10]. 
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Symbols in previous equations, are 

as follows [1]: 

h :  Height of the ray from x-axis of 

the secondary mirror. 

H :  Height of the ray from x-axis of 

the primary mirror. 

S  : Distance of the secondary mirror 

from the final focal plane )( OF  . 
 : Angle between the reflected ray 

from the primary mirror and the x-axis. 

 : Angle between the reflected ray 

from the secondary mirror and the x-

axis. 

Feff.: Effective focal length of the 

optical system.  

 

Numerical Method: 
The numerical method used to 

calculate the coefficients of the 

mirrors, for the optical system, is the 

least-squares curve fitting method. It 

is the equation of a smooth curve, 

which does not pass through each of a 

number of given points, but which 

passes near each of them in a plane. 

The “nearness” is usually obtained by 

imposing the least-squares criterions, 

and the application of this criterion is 

the basis of the method of least 

squares.  

The problem of fitting a set of 

data with a polynomial of mth degree 

in the      form [14]: 
m

imiiii xkxkxkxkkY  3
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  We next determine the 

coefficients 0k  and 1k  by using the 

least-squares criterions which requires 

that  

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n

i

ii yYS
1

2
 be a minimum, 

where iY  is evaluated from equation 

(6). The values ii yY   are called 

residuals.  

  

 Basically, we wish to find a 

minimum value of S , where: 
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Equation (7) modified to the form: 
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To obtain the minimum value of S , 

which is now a function of 2m  

variables mkkkkkk ,,,,,, 108642  we 

set the following 2m  first partial 

derivative to zero: 
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We then obtain the 2m simultaneous linear, or normal, equations: 

 (9) 
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Where the symbol  implies 

summation for i from 1 to n. 

 It is convenient to express to 

equation (10) in the following matrix 

notation [14]. 
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is a symmetrical matrix, and 
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Results and Discussion: 
This section, displays the 

obtained results, from the program that 

have been constructed. In addition, the 

analysis and discussion completely 

dependent on conditions that made. 

Before giving the results, the principles 

that were taken into account are as 

follows [1]:    

1- Primary Mirror Diameter (D1): We 

choose three different dimensions of 

D1 = 40, 50, and 60 cm.  

2- Focal Ratio of the Primary Mirror 

(f1/D1): We choose two different 

values of f1/D1 ratio, these ratios are = 

4, and 7.  

3- Obscuration Ratio of the 

Secondary Mirror (D2/D1): We choose 

one value of D2/D1 ratio, this ratio is = 

0.3, which is calculated from the 

following equation [15]: 

11
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        …  (12) 

4- Separated Distance Between Two-

Mirrors (S΄), Distance of the 

Secondary Mirror From the Primary 

Focus (S), and Effective Focal Length 

of the Optical System (Feff.): Different 

values of  S΄, S, and Feff. have been 

adopted, according to the following 

equation [15]: 

1. f
S

S
Feff


     … (13) 

5- Ratio of the Effective Focal Length 

to the Primary Mirror Diameter (Feff. / 

D1) or   (F-number) or (F/No.): 

Different values of F/No. ratio have 

been adopted from the previous points, 

according to the following equation 

[15]. 

1
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Table (1); tabulate the calculated 

values [1]. 

 

Table (1): Values of the calculated 

parameters, for D2/D1= 0.3 [1] 

F/No. 
Feff. 

(cm) 

S′ 

(cm) 

S 

(cm) 

f1 

(cm) 
f1/D1 

D1 

(cm) 

9.33 373.33 112 48 160 4 
40 

16.33 653.33 196 84 280 7 

7.47 466.67 140 60 200 4 
50 

13.07 816.67 245 105 350 7 

6.22 559.99 168 72 240 4 
60 

10.89 979.99 294 126 420 7 

Now, we display the flowchart for 

mirrors coefficients calculation, as 

shown in Figure (4). 

(10)... 
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Fig. (4): Flowchart for the two-mirror coefficients calculation 

 

Tables (2) and (3), shows the results of 

the two-mirror coefficients, for D1 = 

40, 50, and 60 cm, f1/D1 = 4, 7 and 

D2/D1 = 0.3 
 

Table (2): Coefficients results of the 

mirrors, for  f1/D1 = 4, D2/D1 = 0.3, 

and different values of D1  

D1(cm) Primary Mirror Secondary Mirror 

40 

0.1564E-02 0.2976E-02 

-0.2525E-07 -0.2282E-06 

0.1206E-09 -0.6178E-09 

-0.2554E-12 0.6144E-10 

0.2021E-15 -0.1007E-11 

50 

0.1250E-02 0.2382E-02 

-0.4865E-08 -0.1925E-06 

0.1858E-10 0.4406E-08 

-0.3022E-13 -0.9584E-10 

0.1676E-16 0.7282E-12 

60 

0.1042E-02 0.1984E-02 

-0.3544E-08 -0.7056E-07 

0.9560E-11 0.1844E-09 

-0.1188E-13 -0.2260E-11 

0.5397E-17 0.1068E-13 

 

Table (3): Coefficients results of the 

mirrors, for f1/D1 = 7, D2/D1 = 0.3, 

and different values of D1 
 

D1(cm) 

 

Primary 

 Mirror 
Secondary Mirror 

40 

0.8925E-03 0.1701E-02 

0.8537E-08 -0.2839E-07 

-0.6890E-10 0.3355E-09 

0.2215E-12 -0.5623E-10 

-0.2458E-15 0.1083E-11 

50 

0.7142E-03 0.1361E-02 

0.1004E-08 -0.3743E-07 

-0.5613E-11 0.4365E-09 

0.1298E-13 -0.5054E-11 

-0.1044E-16 0.2306E-13 

60 

0.5953E-03 0.1134E-02 

-0.1903E-09 -0.8502E-08 

0.1060E-11 -0.2765E-09 

-0.2339E-14 0.6067E-11 

0.1485E-17 -0.4046E-13 

 

 

 

Start 

Coefficients Calculation  
of the Primary Mirror   

 

End 

No 

Yes 

Mirrors 

Checking 

ΔX, ΔX΄ 

Checking 

Input Data 
 

Output 

Coefficients Calculation  

of the Secondary Mirror   

 

Checking of Profiles 

by Using Even-Terms 

Coefficients 
 

Profile Results of the 

Two-Mirror     

 



Baghdad Science Journal  Vol.7(2)2010 
 

166 

From the previous tables, we notice 

the following: 

 When D1 increased, while f1/D1 

ratio and D2/D1 ratio are constant; this 

will lead to decrease the coefficients 

values, of the two-mirrors. In addition, 

when f1/D1 ratio increased, while D1 

and D2/D1 ratio are constant; this will 

lead to decrease some of coefficients 

values of the two-mirrors. 

 

6- Rayleigh Limit (Rayleigh 

Criterion): It is used as a criterion for 

the selection of the dimensions, ratios 

and values, which displayed in this 

research. It is calculated according to 

the following relation [16]: 

n

p2
>

4


  ….  (15)                                                                                   

Where:   is the wavelength of the 

visible light (550 nm), and P is the 

number of reflections from surfaces, 

which are good to 
n


. Therefore, n = 

11.31 

Theoretical value of  
n


 = 48.6 nm   

 The theoretical value must be 

compared with the practical values, 

according to the following relation 

[16]:  

ΔXmax.     orΔX΄max.>
n


   …..(16)                                                                                                

Where: ΔXmax. is the maximum 

difference of the imitation value, from 

the actual value of the primary mirror, 

and ΔX΄max. is the maximum difference 

of the imitation value, from the actual 

value of the secondary mirror. 

  

Table (4), represents the results of the 

maximum difference between the 

actual and imitation values, of the 

mirrors ΔXmax. and ΔX΄max., 

respectively, for D1 = 40, 50, and 60 

cm, f1/D1 = 4, 7, D2/D1 = 0.3, and 

number of coefficients = 5 

  

Table (4): Results of the maximum 

difference between the actual and 

imitation values of the mirrors, at 

number of coefficients = 5 and D2/D1 

= 0.3, for different values of f1/D1 

and D1 
f1/D1 D1(cm) ΔX max. (cm) ΔX΄max. (cm) 

4 40 0.00010202 0.00001601 

50 0.00026456 0.00002662 

60 0.00009966 0.00002551 

7 40 0.00001871 0.00001221 

50 0.00002874 0.00006655 

60 0.00003820 0.00001283 

 

 The shaded values, shown in 

the previous table represent the best 

practical values of both ΔXmax. and 

ΔX΄max.; which are compared with the 

theoretical value      (0.00000486 cm).  

 

Conclusions: 
  The number of the coefficients 

increased, i.e., increasing the terms of 

the equation of the primary and 

secondary mirrors (polynomial 

function), this will lead to decrease the 

difference between the actual and 

imitation values of the two-mirror 

profile. Therefore, this will lead to 

increase the accuracy of the results.  

 The Aplanatic Cassegrain 

Telescope (ACT) system, gives good 

results, within primary mirror 

diameter, D1 = 40 cm. In addition, 

focal ratio of the primary mirror,    

f1/D1 = 7. Finally, the obscuration ratio 

of the secondary mirror, D2/D1 = 0.3 
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 مرايا تلسكوب كاسكرينمعاملات حساب 

 
 *أحمذ أحمذ كامل
 

 جاهعة تغذاد -كلٍة العلىم  -قسن الفلك *
       

       

 :الخلاصة
خالٍاً هي تأثٍش  تلسكوب  كاسكرين اللازيغي,تن فً هزا الثحث, تٌاء تشًاهج لحساب هعاهلات هٌظىهة 

 سطوحتن أعتواد سطحً هشآتً الوٌظىهة تشكل لك, رأضافة الى كلا الضٌغٍي: الضٌغ الكشوي وصٌغ السثٍخة. 

, رات خوسة حذود صوجٍة فقط. بالذالة المتعذدة الحذودأي اى هعادلتً هشآتً الوٌظىهة, قذ تن توثٍلها  .لاكروية

وشآتً الخاصة للحساب الوعاهلات  التربيعات الصغرى للمنحنيات الأوفقيةأخٍشاً, تن تثًٌ الطشٌقة العذدٌة 

(, لأختٍاس القٍن والٌسة التً تعطً حذ سٌلً) ليمعيار ريالوٌظىهة. ولأغشاض الوقاسًة والوفاضلة, تن تثًٌ 

 أفضل الٌتائج. 

 


