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Abstract 
Xue introduced the following concept: Let M be an R- module. M is called a 

generalized supplemented module if for every submodule N of M, there exists a 

submodule K of M such that M = N +K and N  K  Rad(K). 

N. Hamada and B. AL- Hashimi introduced the following concept: 

Let S be a property on modules. S is called a quasi – radical property if the following 

conditions are satisfied: 

1. For every epimorphism f: M  N, where M and N are any two R- modules. If the 

module M has the property S, then the module N has the property S. 

2. Every module M contained the submodule S(M). 

These observations lead us to introduce S- generalized supplemented modules. 

Let S be a quasi- radical property. We say that an R-module M is S- generalized 

supplemented module if for every submodule N of M, there exists a submodule K of 

M such that M = N + K and N  K  S(K). 

The main purpose of this work is to develop the properties of S-generalized 

supplemented modules. Many interesting and useful results are obtained about this 

concept. We illustrate the concepts, by examples. 

 

Keywords: quasi-radical property, generalized supplemented module, small 

submodule. 

 

Introduction: 
In this note all rings are 

commutative with identity and all 

modules are unitary left  

R-modules, unless otherwise specified. 

An R-module M is called a GS- 

module if for any submodule N  o f  

M , there exists a  submodule K  o f  

M  such that M =N + K and N K  

Rad(K). See [1], [2]. 

On the other hand, let S be a 

property on modules an R -module M 

is called a module of type S (briefly S-

module) if M has the property S. A 

submodule N of M is called 

  

S- submodule if N has the property S 

as an R- module. If there exists a 

submodule of M has the property S and 

contained all submodules of M that 

having the property S, then this 

submodule is called the radical of M 

and denoted by S(M). 

A property S defined on modules 

is called a quasi-radical property if the 

following conditions are satisfied: 

1- Epimorphic image of an R-module 

of type S is an R- module of type S. 

2- Every module M contained the 

submodule S(M). 

These observations lead us to 

introduce the following concept :- Let 

S be a quasi-radical property and N be 

a submodule of an R- module M. A 

submodule K of M is called an S-

generalized supplement of N in M, if 

M= N +K and N K  S(K). 

M is called an S- generalized 

supplemented module (briefly S- GS 
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module), if every submodule of M has 

S- generalized supplement in M. 

In this paper we investigate the 

properties of S- GS modules. In §1, we 

recall that the definition of quasi- 

radical property and list some of their 

important properties that are relevant 

to our work.  

In §2 of this paper we give the 

definition of S-GS modules with some 

examples and basic properties.   

In §3, we study the sum of two 

S-GS module. Also we give a 

characterization of  

S- GS rings we prove that a ring R is 

S- GS ring if and only if every finitely 

generated  

R- module is S- GS module. See(3.6) 

In §4, we study Soc(Z) -GS 

modules with some examples and basic 

properties. Also we give a 

characterization of Soc(Z)- GS 

module, we prove that an R- module M 

is  

Soc(Z)- GS module if and only if for 

every submodule N of M, there exists a 

submodule K of M such that M = N+K 

and N K  Soc(K), (respectively, 

N K  Z(K)), See (prop.(4.6)). 

Also we prove if M is a non –

zero projective R- module, where R is 

an integral domain and not a field, then 

M is not Soc (respectively Z) -GS 

module (prop.(4.11)). 

 

1. Quasi- radical Properties  
Let S be a property and let M be 

an R- module. Recall that M is called a 

module of type S(briefly S- module) if 

M has the property S.A submodule N 

of M is called S- module if N has the 

property S as an R- module(i.e. N is S-

module). 

If there exists a submodule  of M 

has the property S and contained all 

submodules of M that having the 

property S, then this submodule called 

the radical of M and denoted by S(M).  

M is called semisimple module of type 

S if S(M)= 0, See[3].  

Let S be a property defined on 

modules. Recall that S is called a 

quasi-radical property if the following 

conditions are satisfied: 

1- Epimorphic image of an R-module 

has the property S  is also has the 

property S.  

2- Every R- module M contained the 

submodule S(M)(radical M) See [3]. 

    Recall that quasi- radical property 

S is called a hereditary property if 

every submodule of an R- module has 

the property S is also has the property 

S.  

(equivalentily) S(N)= NS(M),for 

every submodule N of a module 

M.see[3] 

Example (1.1): [3] 

       Define the property Soc as 

follows: 

An R-module M has the property Soc{ 

Soc- module} if M is semisimple. 

One can easily show that the socle 

property is a quasi - radical property: 

Note: The Socle property is a 

hereditary property, where Soc(N) 

=N Soc(M), for every submodule N 

of M [4, p.227]. 

Example (1.2): [3] 

Let M be an R- module. Recall 

that the singular submodule of M 

(denoted by Z(M)) is defined by 

Z(M)= { m M ; Ann(m) e R},See 

[4, p.138]. 

The module M is called a 

singular module if Z(M)= M, the 

module is called a non singular module 

if Z(M)=0, See [5]. Define the property 

Z as follows: 

An R-module M has property Z(Z-

module) if M is singular(i.e Z(M)=M). 

It is easy to see that Z- property is a 

quasi- radical and hereditary property. 

Let R be a ring and let r  R. 

Recall that r is called a regular element 
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if there is s  R such that r = rsr. A 

ring R is called regular ring, if each 

element of R is regular, See [6] 

It is known that a ring R is 

regular if and only if every cyclic ideal 

is a direct summand, See [7]. 

An R- module M is called a 

regular module if for each x M and 

for every rR, there is s R such 

that r x= rsr x, See[6].  

It is known that a projective R- 

module M is regular if and only if 

every cyclic submodule is a direct 

summand, See[7]. 

Example (1.3): [3]  

Let B be an R- module, the 

Semi Brown-Mecoy radical of 

B(denoted by M(B)) is defined as 

follows: 

M(B) = {x B ; for each rR,  

s  R s.t r x = rsrx}. 

Let the regular property M be defined 

as follows:- 

    An R-module B has the regular 

property M, if B is a regular module. It 

is clear that M is a quasi-radical and 

hereditary property, See [3, Exa. 3. 54, 

CH3] 

Proposition (1.4) [3, Prop. 3.4, CH3]: 

Let S be a quasi-radical property and 

let f: M  N  be an  R- 

homomorphism, then f (S(M))  S(N). 
 

2. S-Generalized supplemented 

modules.  
In this section we introduce the 

concept of the S- Generalized 

supplemented modules (or briefly S-

GS module) and we illustrate it by 

some examples we also give some 

basic properties. 

In this section S is a quasi - 

radical property. Unless otherwise 

stated. 

 

 

Definition (2.1): 

Let M be an R-module and N be 

a submodule of M. A submodule K of 

M is called an S-generalized 

supplement of N in M, if M = N+K 

and N  K  S(K). 

Let M be an R-module. Recall 

that if there exist maximal submodules 

in M, then the intersection of all 

maximal submodules of M is called the 

Jacobson radical of M and denoted by 

Rad(M). If there is no maximal 

submodule of M, then we define 

Rad(M) = M, see [4]. 

 

Examples (2. 2):  

1. Consider the module Z6 as a Z –

module. Let A= }3,0{  and B= 

}4,2,0{ . It is clear that         Z6 = 

A+ B and A  B = 0  S(B), for 

each quasi – radical property S on 

modules, Thus B is S-generalized 

supplement of A in Z6.   

2. It is known that the module Q as a 

Z- module has no maximal 

submodule and hence                  

Rad (Q) = Q. Let A be any 

submodule of Q, then Q = A+Q and 

A Q = A  Rad(Q) = Q.    Thus Q 

is generalized supplement of A.  

    One can easily show that Soc(Q) =0 

and Z(Q)=0. 

Now let A be a non- trivial 

submodule of Q and let B be 

submodule of Q such that                    

Q = A +B. Since Q is 

indecomposable as Z- module, then 

A  B  0.  

So AB Soc(B) Soc(Q) = 0 

and A  B  Z(B)  Z(Q) = 0. 

Thus A has no                       Soc - 

generalized supplement in Q. Also 

A has no Z- generalized 

supplement in Q. 
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Definition (2.3):  

Let M be an R- module. M is 

called a S- generalized 

supplemented module (or briefly S- 

GS module), if every submodule of 

M has S- generalized supplement 

in M, where S is a quasi - radical 

property on modules. 

Examples (2.4):  

1. The module Z6 as a Z-module is S- 

GS module, for each quasi – radical 

property S on modules. 

2. The module Q as a Z- module is 

GS- module. But the module Q is not 

Soc-GS module Also Q is not  Z - GS 

module. 

3. Let X be an infinite set. Consider 

the ring (P(X), , ), where A  B = 

(A  B)–(A  B). Since A2 = A  A = 

A, for each A subset of X, then every 

element A of p(X) is an idempotent. So 

by[4] every cyclic ideal is a direct 

summand. So (P(X), , ) is a regular 

ring and hence J (P(X)) = 0, See[6]. 

Thus (P(X), , ) is M- GS module, 

But P(X) is not semisimple, See[8, 

Example 1.2.19], therefore the ring 

(P(X), , ) is not GS- module. 

Let M be an R- module . Recall that a 

submodule N of M is called a small 

submodule of M, (denoted by N <<M), 

if N+ K M, for any proper submodule 

K of M, see[4].  

Proposition (2.5): Let M be S- GS 

module, then Rad(M)  S(M), 

Proof: 

Assume that M is S-GS module 

and x Rad(M). By[4,coro.9.1.3, 

p.219] Rx  M. Since M is S - GS 

module, then there exists a submodule N 

of M such that M = Rx +N and  Rx  N 

 S(N). But Rx  M, therefore N= M 

and hence Rx  N = Rx  S(N)  S(M).   

Thus Rad (M)  S(M). 

Corollary (2.6): Let M be an R- 

module such that Rad(M) = M, if S(M) 

 M, then M is not  

S -GS module. 

Proof:  

Suppose that M is S - GS 

module, then by (prop. 2.5) Rad(M)  

S(M). But  

Rad(M) = M, therefore M  S(M) 

which is a proper submodule of M . 

This is a contradiction. Thus M is not S 

- GS module. 

Remark (2.7): Let M be an R- module 

such that S(M) = M, then M is S- GS 

module. 

Proof:  

 Let N be a submodule of M, 

then M= N+M and N  M = N  M 

=S(M) 

Remark(2.8): Every semisimple R- 

module M is S- GS module. 

Proof: 

 Let N be a submodule of M 

since is semisimple, then M = N  K, 

for some submodule K of M. Thus M= 

N + K and N  K = 0  S(K) and 

hence K is S- generalized supplement 

of N in M.    

Proposition (2.9): Let M be an R- 

module such that S(M)=0, then M is S- 

GS module if and only if M is 

semisimple. 

Proof: 

Suppose that M is S-GS module. 

Let N be a submodule of M. So there 

exists a submodule K of M such that 

M= N+K and N  K  S(K)  

S(M)=0. Thus M= N  K, and we get  

so every submodule of M is a direct 

summand. Therefore M is semisimple. 

the converse from (remark (2.8)). 

Proposition (2.10): Let S be a quasi-

radical and hereditary property, then 

every submodule of  

S-GS module is S- GS module. 
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Proof:  

Let M be S-GS module and let 

A, N be a submodules of M, such that 

N  A. Since M is S- GS module, then 

there is a submodule K of M such that 

M =N + K and N K  S(K), by 

Modular law A=A M = A (N+K) = 

N + (AK).  

Now N(A K) = N K  S(K)  

(A K)= S(AK) by [3, cor. 3.37, 

CH3].  

Thus A is S - GS module. 

Proposition (2.11): Let M be S- GS 

module and let K be a submodule of M 

such that  

K  S(M) =0. Then K is semisimple 

submodule of M. 

Proof: 

Let N be a submodule of K. 

Since M is S-GS module, then there 

exists a submodule L of M such that M 

=N + L and N  L  S(L). By 

Modular law 

K = K  M = K  (N+L) = N + 

(KL).But NL K  S(L)  S(M) 

 K= 0, therefore  

K =N  (K  L). Thus K is 

semisimple. 

Proposition (2.12): Let M be S-GS 

module. Then M = N  L, where N is 

semisimple and S(M)  N is an 

essential submodule of M. 

Proof: 

Assume that M is S-GSmodule. 

By Zorn's lemma S(M) has relative 

complement N in M, by [5,prop.1.3, 

p.17]. Then S(M)  N is an essential 

submodule of M. Since M is                       

S-GS module and N  S(M) =0, then 

by (prop. (2.11)), N is semisimple. 

Since M                            is S-GS 

module, then there exists a submodule 

L of M such that M =N+L                              

and N  L  S (L).But S (L)  S (M), 

so N  L  S (M)  N =0.Thus M = N 

 L. 

Corollary (2.13): Let M be an 

indecomposable and not simple R- 

module. If M is  

S-GS module, then S(M) e M. 

Proof: 

By (prop.(2.12)), M =N  L, 

where N is a relative complement of 

S(M) in M. But M is indecomposable, 

therefore either N = M or N= {0}. If N 

=M then S(M) =0 and  

hence M is semisimple by (ramark 2.9) 

which is a contradiction, so N= 0. But  

N  S(M) e M [5, prop. 1.3, p.17]. So 

S(M)e M. 

Let M be an R-module and let 

aM. Recall that the annihilator of a in 

M is the set:-  Ann(a) = {rR; ra =0}. 

It is clear that Ann(a) is an ideal of R, 

See[5]. 

Recall that the annihilator of M 

is the set Ann (M) = {r  R; rM = 0}. 

It is clear that Ann (M) is an ideal of R, 

See [5]. 

Also recall that an R-module M 

is called a prime R-module if  

Ann(x) =Ann(y), for every nonzero 

elements x and y in M, See [9] 

Proposition (2.14): Let M be a prime 

R- module. If M is S-GS module, then 

either M is semisimple or S(M) is an 

essential submodule of M. 

Proof: 

Let M be S- GS module, Since M 

is prime, then either Soc(M) =0 or 

Soc(M) =M by  

[10, lemma 3.18, CH1]. Assume that 

Soc(M) =0. By (prop.(2.12)), M =N  

L, Where N is semisimple and N  

S(M) e M. One can easily show that 

N = Soc(N)  Soc(M) = 0 and hence 

S(M) is essential submodule of M.  

Corollary (2.15): Let R be an integral 

domain and let M be a torsion free R- 

module. If M is S- GS module, then 

either M is semisimple or S(M) is an 

essential submodule of M. 
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Proof: It is clear by (prop. (2.14)). 

Corollary (2.16): Let R be an integral 

domain and let M be a flat (or 

projective) R-module, if M is S- GS 

module, then either M is semisimple or 

S(M) is an essential submodule of M. 

Proof: Clear by proposition (2.14). 
  

 

3. Characterizations of S -

GSmodules. 
At the start of this section, we 

show that the sum of two S- GS 

modules is also  

S- GS module. And we give a 

characterization of the S - GS rings. 

We start this section by the 

following proposition. 
 

Proposition (3.1): Let f: M  N be an 

epimorphism. If M is S- GS module, 

then N is  S-GS module. 

Proof: 

Let K be a submodule of N. 

Since M is S- GS module, then there is 

a submodule L of M such that M = f -1 

(K)+L and (f -1(K))  L  S(L). So N 

= f(M)=f (f -1(K)+L)=f (f -1(K)) + f(L). 

But f is an epimorphism, therefore N = 

K + f(L) by [ 4, lemma 3.1.8, p.44] 

We only need to show that K  f (L)  

S (f (L)). 

Now, f(L)  K = f(L)  f(f-1(K)) = f(L 

 f-1(K))  f(S(L))  S(f(L)) 

By (prop.(1.4)). Thus f(L) is S - 

generalized supplement of K in N.  

Corollary (3.2): Let M be a S-GS 

module, then 
N

M
 is S-GS module, for 

every submodule  N of M. 

Before we give our next result, 

we need the following. 
 

Lemma (3.3): Let M be an R- module 

and let M1, K be submodules of M. If 

M1 is S-GS module and M1+ K has S- 

generalized supplement in M, then K 

has S- generalized supplement in M. 

Proof: 

Assume that M1 is S- GS 

module. Since M1 + K has S- 

generalized supplement in M, then 

there exists a submodule N of M such 

that M = (M1 +K) + N and (M1+ K)  

N  S(N). Since (K+ N)  M1  M1 

and M1 is S- GS module, then there 

exists a submodule L of M1 such that 

M1 = L +((K+N) M1) and ((K+N) 

M1) L  S(L), implies that  

(K+N) L   S(L). So M =L+ ((K+N) 

M1) + K+N = L+ K+N. Now by  

[11, lemma 3.2.3,CH3],   

K (L+N)  (L  (K+N)) + (N 

(L+K))  (L  (K+N)) + (N  (M1+ 

K)) 

Thus K (L+N)  S(L) + 

S(N). But S(N)  S(N+L) and S(L)  

S(N+L), so  

S(N)+ S(L)  S(N+L).Thus K 

(N+L) S (N+L).Thus N+L is S-

generalized supplement of N in M. 

Proposition (3.4): Let M = M1 + M2. 

If M1 and M2 are S- GS modules, then 

M is S-GS module. 

Proof: 

Assume that M1 and M2 are S-

GS modules. Let N be a submodule of 

M. Since  

M= M1+ M2 + N has S-generalized 

supplement in M, then by (lemma(3.3)) 

M2 + N has  

S - generalized supplement in M. But 

M2 is S-GS module, therefore by 

(lemma (3.3)) again, N has S- 

generalized supplement in M. Thus M 

is S- GS module. 

Proposition (3.5): Let M be S- GS 

module, then every finitely M - 

generated module is S-GS module. 

Proof: 

Assume that A is a finitely M- 

generated module, then there exists an 

epimorphism  AM:f
n

1i



, for some 

n  N. By (Prop.(3.4)), M
n

1i
  is S-

GSmodule and hence by (prop. (3.1)) 

A is S- GS module. 
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The following proposition gives 

a characterization of S- GS rings. 

Proposition (3.6): Let R be a ring and 

let S be a quasi-radical hereditary 

property then the following statements 

are equivalent. 

1. R is S-GS ring. 

2. R  R is S-GS module. 

3. Every finitely generated R - module 

is S -GS module. 

4. Every finitely generated projective 

R - module is S -GS module. 

5. Every finitely generated free R - 

module is S -GS module. 

Proof: (1) (2) Clear by (prop. (3.4)). 

(2)  (1) Clear by (prop. (2.10)). 

(1)  (3) Clear by (prop. (3.5)).  

(3)  (4)  (5) It is clear  

(5)  (1)  

Since R is isomorphic to a free R-

module generated by one element, then 

R is S-GS ring. 

Let us recall that , An R- module 

M is said to be -projective if for every 

two submodules N, K of M with M = 

N+K, there exists f   End (M) with 

Imf N and Im(I-f)  K, See [12] 

 

Theorem (3.7): 

Let M be a  - projective R- 

module. If M is S- GS module and M = 

N+K, then N has S- generalized 

supplement contained in K. 

Proof: 

Assume that N and K are 

submodules of M such that M= N+K, 

Since M is -projective, then there is 

an endomorphism e of M such that 

e(M)  N and (I-e)(M)  K, see [12]. 

One can easily show that (I-e) (N)  

N. Since M is S -GS module, then 

there exists a submodule L of M such 

that M = N+L and N  L  S(L). Now 

M = e(M) + (I-e) (M),  

M= e(M) + (I-e)(N+L) = e(M) + (I-

e)(N) + (I-e) (L)  N + (I-e)(L)  M. 

Thus M = N + (I-e)(L). It is clear that 

(I-e)(L)  K. Claim that N  (I-e)(L) = 

(I-e) (N L). To verify this, let yN  

(I-e)(L), then y N and y(I-e) (L). So 

there exists x  L such that y = (I-e)(x) 

= x –e (x) and hence x = y + e (x)  N. 

Thus y  (I-e) (N L).It is clear that  

(I-e) (N L)  N  (I-e) (L). Since 

NL  S(L), 

Then N  (I-e)(L) = (I-e)(N L)  (I-

e) (S(L))  S((I-e)(L)) by (prop. (1.4)). 

Thus (I-e) (L) is S-generalized 

supplement submodule of N in K. 

Corollary (3.8): Let R be a ring and 

let N, K be two ideals of R. If R is S- 

GS ring and R  =  N + K ,  then  N  has 

S- generalized supplement contained in 

K. 

Proof: Clear. 

The following theorem gives a 

characterization of S- generalized 

supplement submodule. 

Theorem (3.9): 

Let M be an R- module and U be 

a submodule of M. The following 

statements are equivalent. 

1. There is a decomposition M = N  

K with N  U and K U  S(K). 

2. There is an idempotent e  End 

(M) with e (M)  U and (I-e) (U)  

S((I-e)(M)). 

3. There is a direct summand N of M 

with N  U and 









N

M
S

N

U
. 

4. U has S- generalized supplement V 

in M such that U  V is a direct 

summand of U. 

Proof: (1) (2) 
 

Assume that M = N  K with N 

 U and K U  S(K) 

Let e: M  M be a map defined as 

follows: e(a+b)=a, where a  N and 

bK . One can easily show that eEnd 

(M) and e2=e. Let xM. Since 

M=NK. Then x=a+b, where aN and 

bK. Now, e(x)=e(a+b)=a. Thus e(M) 
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 N U. Now (I-e)(M)= {(I-e)(x), 

xM} 

 = {(I-e)(a+b),x = a+b, 

aN, bK} 

 = {a+b-a, aN, 

bK}={b, bK}=K. 

Thus (I-e)(M)=K. 

Claim that (I-e) (U) = U  (I-e) (M). 

To show that, let x  U (I-e) (M). So 

x  U and  

x  (I-e) (M) and hence x = (I-e) (y), 

for some y M. Now x=(I-e)(y) = y-

e(y), y=x +e(y)U So x  (I-e) (U) 

and hence U (I-e) (M)  (I-

e)(U).Now, let z(I-e)(U), so there is 

yU such that z=(I-e)(y) = y-e (y)U. 

Thus z  U  (I-e)(M), 

(I-e)(U) =U  (I-e)(M)= U  K  

S(K) = S((I-e)(M)) 

(2)(3) 

Since e is an idempotent element 

, then by [4, cor.7.2.4, p. 176] 

M = e(M)  (I-e)(M). Let N = e(M) 

and K = (I-e)(M). Since (I-e)(U) =U 

K and  

S((1-e)(M)) = S(K), then UK  S(K), 

but by the second isomorphism 

theorem, K
N

KN

N

M



  and 

   
N

UKN

N

KNU

N

U 



  

KU. Claim that 









N

M
S

N

U
. Let 

N

M
 K  :   be an isomorphism. 

Since UK  S(K), 

then (UK)   (S(K)). But S is a 

quasi-radical property, 

therefore (S (K))  S ((K)) = 










N

M
S . Thus 










N

M
S)KU(

N

U
. 

(3)(1) 

Assume that M=NK, where N  U 

and 









N

M
 S

N

U
. Thus K

N

M
  and 

KU
N

U
 , by the second 

isomorphism theorem. By the same 

argument of the proof of (2)(3), we 

get )K(SUK   

(1)(4) Let M= N K with N  U 

and K U  S(K), then M= U+K and 

hence K is  

S-generalized supplement of U. By 

Modular law, U = U  M = U  

(NK) thus  

U = N  (UK) and hence U  K is a 

direct summand of U. 

(4)(1) 

By our assumption, there exists a 

submodule V of M such that M=U+V 

and UV  S(V) and U=(UV)L, 

for some submodule L of U. But M = 

U+V= (UV)  L + V =L+V and 

LV=(UL) V=L(UV)=0, 

therefore M=LV, where L  U and 

VU  S(V). 

Corollary (3.10): Let M be an R-

module. Then the following statements 

are equivalent: 

1- For every submodule U of M, there 

exists a decomposition M = N K 

with N  U and  

K  U  S(K). 

2-  For every submodule U of M, there 

is an idempotent eEnd (M) with 

e(M)  U and  

(I-e)(U)  S((I-e)(M)). 

3- For every submodule U of M, there 

is a direct summand N of M with 

NU and 









N

M
S

N

U
. 

4- Every submodule U has S-

generalized supplement V in M with 

U V is a summand of U. 

5- M is S-GS module. 

Then (1)(2) (3) (4) (5). 

Proof: Clear. 
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4. Soc (Z)-GS modules: 
In this section we study Soc(Z) - 

GS modules .We give some their basic 

properties. Also we give a 

characterization of Soc (Z)-GSmodule,  

when M is a prime R-module. 

       Let M be an R-module. Recall that 

the socle of  M = Soc(M) =       A =   

 

{B ; B e M}, and M is called 

semisimple module if Soc(M)=M, 

See[5].  

The singular of M = Z(M) ={ x 

M; Ann x e R }, See[5]  

If Z (M) =M then M is called singular 

module.  

If Z (M) =0 then M is called non 

singular module, See[5] . 

It is know that each of the 

socle (Soc) and the singular (Z) is 

a hereditary and 

quasi-radical property. See 

(example(1.1)) and (example (1.2)). 
  

Definition (4.1): 
An R - module M is called Soc- 

GS module if for each submodule N of 

M, there exists a submodule K of M 

such that M = N+K and N  K 

Soc(K). 
 

 

 

Definition (4.2): 
An R –module M is called Z- GS 

module if for each submodule N of M, 

there exists a submodule K of M such 

that M = N+K and N  K  Z(K). 

We start this section by the 

following examples 

Examples (4.3): 

1. It is clear that the module Zn as Z -

module is Z-GS module, for each n 

 Z. Also Zn as a Z-module is Soc- 

GS module, for each square free 

nZ, see [4]. 

      For example Z6 as Z - module is 

Soc (Z)-GS module. 

2. Consider the module Z8 as Z- 

module. Z (Z8) = Z8, and hance by 

(remark (2.7)). Z8 is  

Z- GS module. One can easily 

show that Soc (Z8) = }4,0{ . Note 

that }6,4,2,0{A  , B= Z8 the only 

submodule of Z8 such that 

Z8=A+B. But A  B 

= }6,4,2,0{A    Soc(B)= }4,0{ , 

so A has no Soc - generalized 

supplement in Z8. Thus Z8 is not 

Soc - GS module. 

 3. Consider the module Z as Z-

module. It is easy to see that 

Soc(Z) = 0 and Z(Z) = 0. Let  

nZ be a non- trivial submodule of Z 

and let mZ be a submodule of Z 

such that  

Z= nZ + mZ. It is clear that mZ ≠0. 

Since Z is indecomposable, then 

nZmZ ≠0.Thus nZmZ  

Soc(mZ)  Soc(Z) =0 and hence 

nZ has no Soc - generalized 

supplement in Z.Thus Z is not Soc- 

GS module. 

By the same way we can show that Z is 

not Z-GS module.  

Remark (4.4): Every singular R- 

module is Z- GS module. 

Proof: Clear by (remark (2.7)). 

Remark (4.5): Let M be an R -module 

and let N is essential submodule of M, 

then 
N

M
 is Z- GS module. 

Proof: 

Since N is essential submodule 

of M, then by [5, prop.1.20,p.31] 
N

M
 is 

singular. Thus by (prop. (4.2)) 
N

M
 is Z 

-GS module. 

Proposition (4.6): Let M be an R- 

module, then M is Soc (Z)-GS module 

if and only if for every submodule N of 

M, there exists a submodule K of M 

such that M = N+ K and  


ulemodsub

Asimple
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N K  Soc(M) (respectively, N K 

 Z(M)). 

Proof: 

Assume that M is Soc- GS 

module. Let N be a submodule of M, 

then there is a submodule K of M such 

that M= N+K and N K  Soc(K). 

But Soc(K)  Soc(M), therefore N K 

 Soc(M). 

For the converse, let N be a submodule 

of M, then there exists a submodule K 

of M such that M = N+K and N K  

Soc(M). So N K(Soc(M))  K. But 

Soc(K) = Soc(M)  K, by [4,Th. 9.7.3, 

p.226], therefore N  K  Soc(K). 

Thus M is Soc -GS module. 

By the same argument we can 

prove the proposition(4.6) for Z -GS 

module. 

Remark (4.7): Let M be Soc 

(respectively Z) - GS module. Then 

every submodule of M is Soc 

(respectively Z)-GS module. 

Proof: clear by (prop. (2.10)). 

Proposition (4.8): Let M be a non - 

zero R - module such that Soc(M) =0, 

then M is not Soc - GS module. 

Proof: 

Let M  0 be an R- module with 

Soc(M) =0. Suppose that M is Soc -GS 

module and let N be a submodule of 

M, then there exists a submodule K of 

M such that M = N+K and  

NK  Soc(K) Soc(M) =0. So M = 

NK and hence M is semisimple (i.e 

Soc(M) =M 0) which is a 

contradiction. 

Before we give our next result 

we need the following results which 

they appeared in[8]. 

 Lemma (4.9): [8, prop. 2.3.4]: Let M 

be a prime R- module, then either Z 

(M) =0 or Z(M)=M. 

Proposition (4.10): [8, prop. 1.2.4, 

CH1]: Let R be an integral domain 

such that R is not a field. Then every 

non - zero torsion free R- module is not 

regular. 

Proposition (4.11): Let R be an 

integral domain such that R is not a 

field and let M be a  

non - zero projective module, then M is 

not Soc (respectively Z) – GS module. 

Proof: 

Assume that M is Soc- GS 

module. Since M is projective then by 

[13]. M is torsion free and hence M is 

prime module [9]. By (remark (4.7)) 

and (prop.(4.6)) M is semisimple. But 

M is projective, therefore by [7] M is a 

regular module which is a 

contracliction with (4.10). 

By the same argument we can 

prove the proposition(4.11) for Z-GS 

module. 

Proposition (4.12): Let M be a non 

singular R- module and let N, K be 

submodules of M. If K is a Soc- 

generalized supplement submodule of 

N in M and N is an essential 

submodule of M, then N K = Soc(K). 

Proof: 

Assume that K is a Soc- 

generalized supplement of N, then M = 

N+K and NK  Soc(K). By the 

second isomorphism theorem 

KN

K

N

KN

N

M





 . Since N e M, 

then by [5, prop. 1.21, p.32] 
N

M
is 

singular and hence 
KN

K


 is singular. 

But M is                     non singular, 

therefore by [5, prop. 1.21,p.32], N K 

e K and hence Soc (K)  NK. Thus  

Soc(K) = NK. 

Proposition (4.13): Let R be a ring 

and N, K be ideals of R such that K is a 

Soc - generalized supplement ideal of 

N in R. If N is an essential ideal of R, 

then NK = Soc(K). 
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Proof: 

Let M = N+K and N K  

Soc(K). By the second isomorphism 

theorem, 
KN

K

N

KN

N

R





 , Since 

N e R, then by [ 5, prop. 1.20, p.31] 

N

R
 is singular and hence 

KN

K


 is 

singular. By [5, prop.1.20, p.31], NK 

e K. So Soc (K) NK. Thus  

NK = Soc(K). 
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 Sالمقاسات المكملة المعممة من النمط 
 

 *عبير جبار الركابي   ي*بهار حمد البحران
 

 م الرياضيات /كلية العلوم/جامعة بغداد.*قس

 

 الكلمات المفتاحية: خاصية شبه جذرية، المقاس المكمل المعمم، المقاسات الجزئية الصغيرة.

 

  خلاصة:ال
، يوجد Mمن  Nبأنه مكمل معمم إذا كان لكل مقاس جزئي  Mيقال للمقاس ، أكسيو قدم المفهوم الأتي

 .NK  Rad(K)و  K +N=Mبحيث أن  Mمن  Kمقاس جزئي 

المعرفة على المقاسات بأنها خاصية شبه  Sنها حمادة والهاشمي قدما المفهوم الأتي، يقال للخاصية 

 جذرية أذا تحقق الأتي:

 .Sمقاساً يملك الخاصية  Nفأن  Sمقاساً يملك الخاصية  Mتشاكلاً شاملاً. أذا كانت  N →M :fليكن  .1

 .S(M)يحوي على المقاس الجزئي  Mكل مقاس  .2

 ،خاصية شبه جذرية Sلتكن  .Sهذه الملاحظات قادتنا إلى اقتراح تعريف المقاسات المكملة المعممة من النمط 

، Mمن  N. إذا كان لكل مقاس جزئي Sبأنه مقاس مكمل معمم من النمط  Rمعرف على الحلقة ال Mيقال للمقاس 

 .N∩ K  S(K)و M=N+Kبحيث أن  Mمن  Kيوجد مقاس جزئي 

. لقد أعطينا Sالنمط  ئيسي من هذا البحث هو تطوير خواص المقاسات المكملة المعممة منالغرض الر

 مجموعة من القضايا الجديدة وأوضحنا المفاهيم بأمثلة.


