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Abstract

Xue introduced the following concept: Let M be an R- module. M is called a
generalized supplemented module if for every submodule N of M, there exists a
submodule K of M such that M = N +K and N n K < Rad(K).

N. Hamada and B. AL- Hashimi introduced the following concept:
Let S be a property on modules. S is called a quasi — radical property if the following
conditions are satisfied:
1. For every epimorphism f: M — N, where M and N are any two R- modules. If the

module M has the property S, then the module N has the property S.

2. Every module M contained the submodule S(M).

These observations lead us to introduce S- generalized supplemented modules.
Let S be a quasi- radical property. We say that an R-module M is S- generalized
supplemented module if for every submodule N of M, there exists a submodule K of
M such that M = N + K and N n K < S(K).

The main purpose of this work is to develop the properties of S-generalized
supplemented modules. Many interesting and useful results are obtained about this
concept. We illustrate the concepts, by examples.

Keywords: quasi-radical property, generalized supplemented module, small
submodule.

Introduction:

In this note all rings are having the property S, then this
commutative with identity and all submodule is called the radical of M
modules are unitary left and denoted by S(M).

R-modules, unless otherwise specified. A property S defined on modules

An R-module M is called a GS- is called a quasi-radical property if the
module if for any submodule N of following conditions are satisfied:

M, there exists a submodule K of 1- Epimorphic image of an R-module
M such that M =N + K and Nn K < of type S is an R- module of type S.
Rad(K). See [1], [2]. 2- Every module M contained the

On the other hand, let S be a submodule S(M).
property on modules an R -module M These observations lead us to
is called a module of type S (briefly S- introduce the following concept :- Let
module) if M has the property S. A S be a quasi-radical property and N be
submodule N of M is called a submodule of an R- module M. A

submodule K of M is called an S-
S- submodule if N has the property S generalized supplement of N in M, if
as an R- module. If there exists a M= N +K and Nn K < S(K).
submodule of M has the property S and M is called an S- generalized
contained all submodules of M that supplemented module (briefly S- GS
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module), if every submodule of M has
S- generalized supplement in M.

In this paper we investigate the
properties of S- GS modules. In 81, we
recall that the definition of quasi-
radical property and list some of their
important properties that are relevant
to our work.

In 82 of this paper we give the
definition of S-GS modules with some
examples and basic properties.

In 83, we study the sum of two
S-GS module. Also we give a
characterization of
S- GS rings we prove that a ring R is
S- GS ring if and only if every finitely
generated
R- module is S- GS module. See(3.6)

In 84, we study Soc(Z) -GS
modules with some examples and basic
properties. Also we give a
characterization of Soc(Z2)- GS
module, we prove that an R- module M
is
Soc(Z)- GS module if and only if for
every submodule N of M, there exists a
submodule K of M such that M = N+K
and NN K < Soc(K), (respectively,
NN K < Z(K)), See (prop.(4.6)).

Also we prove if M is a non —
zero projective R- module, where R is
an integral domain and not a field, then
M is not Soc (respectively Z) -GS
module (prop.(4.11)).

1. Quasi- radical Properties

Let S be a property and let M be
an R- module. Recall that M is called a
module of type S(briefly S- module) if
M has the property S.A submodule N
of M is called S- module if N has the
property S as an R- module(i.e. N is S-
module).

If there exists a submodule of M
has the property S and contained all
submodules of M that having the
property S, then this submodule called
the radical of M and denoted by S(M).
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M is called semisimple module of type

Sif S(M)=0, See]3].

Let S be a property defined on
modules. Recall that S is called a
quasi-radical property if the following
conditions are satisfied:

1- Epimorphic image of an R-module
has the property S is also has the
property S.

2- Every R- module M contained the
submodule S(M)(radical M) See [3].

Recall that quasi- radical property
S is called a hereditary property if
every submodule of an R- module has
the property S is also has the property
S.

(equivalentily)  S(N)=NNS(M),for
every submodule N of a module
M.see[3]

Example (1.1): [3]
Define the
follows:
An R-module M has the property Soc{
Soc- module} if M is semisimple.
One can easily show that the socle
property is a quasi - radical property:
Note: The Socle property is a
hereditary property, where Soc(N)
=N Soc(M), for every submodule N
of M [4, p.227].

Example (1.2): [3]

Let M be an R- module. Recall
that the singular submodule of M
(denoted by Z(M)) is defined by
Z(M)= { me M ; Ann(m) ce R},See
[4, p.138].

The module M is called a
singular module if Z(M)= M, the
module is called a non singular module
if Z(M)=0, See [5]. Define the property
Z as follows:

An R-module M has property Z(Z-
module) if M is singular(i.e Z(M)=M).
It is easy to see that Z- property is a
quasi- radical and hereditary property.

property Soc as

Let R be a ring and let r € R.
Recall that r is called a regular element
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if there is s € R such that r = rsr. A
ring R is called regular ring, if each
element of R is regular, See [6]

It is known that a ring R is
regular if and only if every cyclic ideal
is a direct summand, See [7].

An R- module M is called a
regular module if for each x eM and
for every reR, there is se R such
that r x=rsr x, See[6].

It is known that a projective R-
module M is regular if and only if
every cyclic submodule is a direct
summand, See[7].

Example (1.3): [3]

Let B be an R- module, the
Semi  Brown-Mecoy radical of
B(denoted by M(B)) is defined as
follows:

M(B) = {xe B ; for each reR, 3
s € Rs.trx=rsrx}.

Let the regular property M be defined
as follows:-

An R-module B has the regular
property M, if B is a regular module. It
is clear that M is a quasi-radical and
hereditary property, See [3, Exa. 3. 54,
CH3]

Proposition (1.4) [3, Prop. 3.4, CH3]:
Let S be a quasi-radical property and
let M —> N be an R-
homomorphism, then f (S(M)) < S(N).

2. S-Generalized supplemented

modules.

In this section we introduce the
concept of the S- Generalized
supplemented modules (or briefly S-
GS module) and we illustrate it by
some examples we also give some
basic properties.

In this section S is a quasi -
radical property. Unless otherwise
stated.
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Definition (2.1):

Let M be an R-module and N be
a submodule of M. A submodule K of
M is called an S-generalized
supplement of N in M, if M = N+K
and N N K < S(K).

Let M be an R-module. Recall
that if there exist maximal submodules
in M, then the intersection of all
maximal submodules of M is called the
Jacobson radical of M and denoted by
Rad(M). If there is no maximal
submodule of M, then we define
Rad(M) = M, see [4].

Examples (2. 2):
1. Consider the module Zs as a Z —

module. Let A= {0,3} and B=
{0,2,4}. 1t is clear that Zs =

A+ B and A n B =0 < S(B), for
each quasi — radical property S on
modules, Thus B is S-generalized
supplement of A in Zs.

2. It is known that the module Q as a
Z- module has no maximal
submodule and hence
Rad (Q) = Q. Let A be any
submodule of Q, then Q = A+Q and
ANQ=AcRad(Q)=Q. ThusQ
is generalized supplement of A.

One can easily show that Soc(Q) =0
and Z(Q)=0.
Now let A be a non- trivial
submodule of Q and let B be
submodule of Q such that
Q = A +B. Since Q is
indecomposable as Z- module, then
AnB=0.
So AnBg Soc(B)c Soc(Q) = 0
and An B « ZB) < Z(Q) = 0.
Thus A has no Soc -
generalized supplement in Q. Also
A has no Z- generalized
supplement in Q.
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Definition (2.3):

Let M be an R- module. M is
called a S- generalized
supplemented module (or briefly S-
GS module), if every submodule of
M has S- generalized supplement
in M, where S is a quasi - radical
property on modules.

Examples (2.4):

1. The module Zs as a Z-module is S-
GS module, for each quasi — radical
property S on modules.

2. The module Q as a Z- module is
GS- module. But the module Q is not
Soc-GS module Also Q is not Z - GS
module.

3. Let X be an infinite set. Consider
the ring (P(X), A, n), where A A B =
(AUB)-(ANB).Since A2=ANA=
A, for each A subset of X, then every
element A of p(X) is an idempotent. So
by[4] every cyclic ideal is a direct
summand. So (P(X), A, N) is a regular
ring and hence J (P(X)) = 0, See[6].
Thus (P(X), A, n) is M- GS module,
But P(X) is not semisimple, See[8,
Example 1.2.19], therefore the ring
(P(X), A, n) is not GS- module.

Let M be an R- module . Recall that a
submodule N of M is called a small
submodule of M, (denoted by N <<M),
if N+ K =M, for any proper submodule
K of M, see[4].

Proposition (2.5): Let M be S- GS
module, then Rad(M) < S(M),

Proof:

Assume that M is S-GS module
and xe Rad(M). By[4,c0r0.9.1.3,
p.219] Rx << M. Since M is S - GS
module, then there exists a submodule N
of M suchthat M = Rx +N and Rx "' N
< S(N). But Rx << M, therefore N= M
and hence Rx N = Rx < S(N) < S(M).
Thus Rad (M) < S(M).

Corollary (2.6): Let M be an R-
module such that Rad(M) = M, if S(M)
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#* M, then M is not
S -GS module.
Proof:

Suppose that M is S - GS

module, then by (prop. 2.5) Rad(M) <
S(M). But
Rad(M) = M, therefore M < S(M)
which is a proper submodule of M .
This is a contradiction. Thus M is not S
- GS module.

Remark (2.7): Let M be an R- module
such that S(M) = M, then M is S- GS
module.

Proof:

Let N be a submodule of M,
then M= N+Mand N~ M=Nc M
=S(M)

Remark(2.8): Every semisimple R-
module M is S- GS module.

Proof:

Let N be a submodule of M
since is semisimple, then M = N @ K,
for some submodule K of M. Thus M=
N +Kand NN K =0 c S(K) and
hence K is S- generalized supplement
of N in M.

Proposition (2.9): Let M be an R-
module such that S(M)=0, then M is S-
GS module if and only if M is
semisimple.

Proof:

Suppose that M is S-GS module.
Let N be a submodule of M. So there
exists a submodule K of M such that
M= N+K and N n K < S(K) <
S(M)=0. Thus M= N @ K, and we get
so every submodule of M is a direct
summand. Therefore M is semisimple.
the converse from (remark (2.8)).

Proposition (2.10): Let S be a quasi-
radical and hereditary property, then
every submodule of
S-GS module is S- GS module.
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Proof:

Let M be S-GS module and let
A, N be a submodules of M, such that
N < A. Since M is S- GS module, then
there is a submodule K of M such that
M =N + K and N nK < S(K), by
Modular law A=A M = An (N+K) =
N + (AnK).
Now NN(AN K) = Nn K < S(K) n
(AN K)= S(AnK) by [3, cor. 3.37,
CHa3].
Thus A'is S - GS module.

Proposition (2.11): Let M be S- GS
module and let K be a submodule of M
such that
K n S(M) =0. Then K is semisimple
submodule of M.

Proof:

Let N be a submodule of K.
Since M is S-GS module, then there
exists a submodule L of M such that M
=N + L and N n L < S(L). By
Modular law
K=KnM=Kn (N+L) = N +
(KNL).But NmL nK < S(L) < S(M)
N K= 0, therefore
K =N & (K n L). Thus K is
semisimple.

Proposition (2.12): Let M be S-GS
module. Then M = N @ L, where N is
semisimple and S(M) @& N is an
essential submodule of M.

Proof:

Assume that M is S-GSmodule.
By Zorn's lemma S(M) has relative
complement N in M, by [5,prop.1.3,
p.17]. Then S(M) @ N is an essential
submodule of M. Since M is
S-GS module and N n S(M) =0, then
by (prop. (2.11)), N is semisimple.
Since M is S-GS
module, then there exists a submodule
L of M such that M =N+L
andNNLcS(L)ButS (L)< S (M),
SONNLcS(M)nN=0.ThusM =N
@ L.
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Corollary (2.13): Let M be an
indecomposable and not simple R-

module. If M IS
S-GS module, then S(M) ce M.
Proof:

By (prop.(2.12)), M =N & L,
where N is a relative complement of
S(M) in M. But M is indecomposable,
therefore either N = M or N= {0}. If N
=M then S(M) =0 and
hence M is semisimple by (ramark 2.9)
which is a contradiction, so N= 0. But
N @ S(M) ce M [5, prop. 1.3, p.17]. So
S(M)ce M.

Let M be an R-module and let
aeM. Recall that the annihilator of a in
M is the set:- Ann(a) = {reR; ra =0}.
It is clear that Ann(a) is an ideal of R,
See[5].

Recall that the annihilator of M
is the set Ann (M) = {r € R; rM =0}.
It is clear that Ann (M) is an ideal of R,
See [5].

Also recall that an R-module M
is called a prime R-module if
Ann(x) =Ann(y), for every nonzero
elements x and y in M, See [9]

Proposition (2.14): Let M be a prime
R- module. If M is S-GS module, then
either M is semisimple or S(M) is an
essential submodule of M.

Proof:

Let M be S- GS module, Since M
is prime, then either Soc(M) =0 or
Soc(M) =M by
[10, lemma 3.18, CH1]. Assume that
Soc(M) =0. By (prop.(2.12)), M =N &
L, Where N is semisimple and N &
S(M) ce M. One can easily show that
N = Soc(N) < Soc(M) = 0 and hence
S(M) is essential submodule of M.

Corollary (2.15): Let R be an integral
domain and let M be a torsion free R-
module. If M is S- GS module, then
either M is semisimple or S(M) is an
essential submodule of M.
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Proof: It is clear by (prop. (2.14)).
Corollary (2.16): Let R be an integral
domain and let M be a flat (or
projective) R-module, if M is S- GS
module, then either M is semisimple or
S(M) is an essential submodule of M.
Proof: Clear by proposition (2.14).

3. Characterizations of S -

GSmodules.

At the start of this section, we
show that the sum of two S- GS
modules IS also
S- GS module. And we give a
characterization of the S - GS rings.

We start this section by the
following proposition.

Proposition (3.1): Let f: M — N be an
epimorphism. If M is S- GS module,
then N is S-GS module.

Proof:

Let K be a submodule of N.
Since M is S- GS module, then there is
a submodule L of M such that M = f !
(K)+L and (f 1(K)) n L < S(L). So N
= f(M)=f (f 1}(K)+L)=f (f 1(K)) + f(L).
But f is an epimorphism, therefore N =
K+ f(L) by [ 4, lemma 3.1.8, p.44]

We only need to show that K » f (L) <
S (f(L)).

Now, f(L) n K = f(L) n f(F}(K)) = f(L
N FYK)) < f(S(L)) < S(f(L))

By (prop.(1.4)). Thus f(L) is S -
generalized supplement of K in N.
Corollary (3.2): Let M be a S-GS

module, then % is S-GS module, for

every submodule N of M.
Before we give our next result,
we need the following.

Lemma (3.3): Let M be an R- module
and let M1, K be submodules of M. If
Mz is S-GS module and M1+ K has S-
generalized supplement in M, then K
has S- generalized supplement in M.
Proof:
Assume that

module. Since M

M1 is S- GS
+ K has S-
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generalized supplement in M, then
there exists a submodule N of M such
that M = (M1 +K) + N and (M1+ K) N
N < S(N). Since (K+ N) n M1 ¢ M1
and M1 is S- GS module, then there
exists a submodule L of Mz such that
M: = L +((K+N) nM1) and ((K+N)
NM1) nL < S(L), implies that
(K+N) nL < S(L). So M =L+ ((K+N)
NMi1) + K+N = L+ K+N. Now by
[11, lemma 3.2.3,CH3],

K n(L+N) < (L n (K+N)) + (Nn
(L+K)) < (L N (K+N)) + (N n (Mot

K))

Thus Kn (L+N) < S(L) +
S(N). But S(N) < S(N+L) and S(L) <
S(N+L), o)
S(N)+ S(L) < S(N+L).Thus K
N(N+L)c S (N+L).Thus N+L is S-
generalized supplement of N in M.

Proposition (3.4): Let M = M1 + M.
If M1 and M2 are S- GS modules, then
M is S-GS module.

Proof:

Assume that M1 and M2 are S-
GS modules. Let N be a submodule of
M. Since
M= Mi+ M2 + N has S-generalized
supplement in M, then by (lemma(3.3))
M2 + N has
S - generalized supplement in M. But
Mz is S-GS module, therefore by
(lemma (3.3)) again, N has S-
generalized supplement in M. Thus M
is S- GS module.

Proposition (3.5): Let M be S- GS
module, then every finitely M -
generated module is S-GS module.

Proof:
Assume that A is a finitely M-
generated module, then there exists an

n
epimorphism f:® M — A, for some
i=1

n
n € N. By (Prop.(3.4)), _@1M is S-
i=

GSmodule and hence by (prop. (3.1))
A'is S- GS module.
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The following proposition gives
a characterization of S- GS rings.

Proposition (3.6): Let R be a ring and

let S be a quasi-radical hereditary

property then the following statements

are equivalent.

1. Ris S-GSrring.

2. R® R is S-GS module.

3. Every finitely generated R - module
is S -GS module.

4. Every finitely generated projective
R - module is S -GS module.

5. Every finitely generated free R -
module is S -GS module.

Proof: (1) =(2) Clear by (prop. (3.4)).
(2) = (1) Clear by (prop. (2.10)).

(1) = (3) Clear by (prop. (3.5)).

(3)= (4) = (5) Itisclear

®)=1)

Since R is isomorphic to a free R-
module generated by one element, then
R is S-GS ring.

Let us recall that , An R- module
M is said to be n-projective if for every
two submodules N, K of M with M =
N+K, there exists f € End (M) with
Imf =N and Im(I-f) c K, See [12]

Theorem (3.7):

Let M be a © - projective R-
module. If M is S- GS module and M =
N+K, then N has S- generalized
supplement contained in K.

Proof:

Assume that N and K are
submodules of M such that M= N+K,
Since M is m-projective, then there is
an endomorphism e of M such that
e(M) < N and (I-e)(M) c K, see [12].
One can easily show that (I-e) (N)
N. Since M is S -GS module, then
there exists a submodule L of M such
that M = N+L and N n L < S(L). Now
M =e(M) + (I-e) (M),

M= e(M) + (I-e)(N+L) = e(M) + (I-
e)(N) + (I-e) (L) = N + (I-e)(L) = M.
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Thus M = N + (I-e)(L). It is clear that
(I1-e)(L) < K. Claim that N n (I-e)(L) =
(1-e) (NN L). To verify this, letyeN N
(1-e)(L), theny eN and ye(l-e) (L). So
there exists X e L such thaty = (I-e)(x)
=x—e (X)and hencex=y +e (x) € N.
Thus y € (I-e) (Nm L).It is clear that
(I-e) (N L) < N n (I-e) (L). Since
NNL < S(L),

Then N n (I-e)(L) = (I1-e)(N nL) < (I-
e) (S(L)) = S((I-e)(L)) by (prop. (1.4)).
Thus (I-e) (L) is S-generalized
supplement submodule of N in K.

Corollary (3.8): Let R be a ring and
let N, K be two ideals of R. If R is S-
GSringandR = N+ K, then N has

S- generalized supplement contained in
K.

Proof: Clear.

The following theorem gives a
characterization of S- generalized
supplement submodule.

Theorem (3.9):

Let M be an R- module and U be

a submodule of M. The following

statements are equivalent.

1. There is a decomposition M = N @
Kwith N c U and K nU < S(K).

2. There is an idempotent e € End
(M) with e (M) c U and (I-e) (U) <
S((1-e)(M)).

3. There is a direct summand N of M
with N c U and E gS(M].

N N

4. U has S- generalized supplement V
in M such that U n V is a direct
summand of U.

Proof: (1) =(2)

Assume that M = N @ K with N
c Uand K nU c S(K)
Let e M — M be a map defined as
follows: e(at+b)=a, where a € N and
beK . One can easily show that ecEnd
(M) and e?=e. Let xeM. Since
M=N@®@K. Then x=a+b, where acN and
beK. Now, e(x)=e(a+b)=a. Thus e(M)
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c N cU. Now (I-e)(M)= {(I-e)(x),
xeM}
= {(I-e)(a+b),x = atb,

aeN, beK}
= {a+b-a, aeN,
be K}={b, beK}=K.

Thus (I-e)(M)=K.

Claim that (I-e) (U) = U n (I-e) (M).
To show that, let x € Un (I-e) (M). So
X € U and
x € (I-e) (M) and hence x = (I-e) (y),
for some ye M. Now x=(l-e)(y) = y-
e(y), y=x +e(y)eU So x e (I-e) (U)
and hence Un (I-e) (M) < (I-
e)(U).Now, let ze(l-e)(U), so there is
yeU such that z=(I-e)(y) = y-e (y)eU.
Thusz € U n (I-e)(M),
(I-e)(V) =U n (I-e)(M)= U n K ¢
S(K) = S((1-e)(M))
(2=03)

Since e is an idempotent element
, then by [4, cor.7.2.4, p. 176]
M = e(M) @ (I-e)(M). Let N = e(M)
and K = (I-e)(M). Since (I-e)(U) =Un
K and
S((1-e)(M)) = S(K), then UnK < S(K),
but by the second isomorphism

theorem, and

U _Un(N®K) N@(KnU)
N N - N

N

KnU. Claim that EQS(M]. Let
N N

M
o:K—> N
Since UnK < S(K),
then ¢(UnK) < ¢ (S(K)). But S is a
quasi-radical property,
therefore ¢(S (K)) < S (¢(K)) =

S(Mj Thus Y — d(UNK)c S[Mj.
N N N

(3)=(1)
Assume that M=N®K, where N < U

U M M
—c S| — —=K
and N c (Nj Thus N and

be an isomorphism.
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U

N =UnK, the second

by

isomorphism theorem. By the same
argument of the proof of (2)=(3), we
get KNU < S(K)

(1)=(4) Let M= N® K with N c U
and K nU < S(K), then M= U+K and
hence K IS
S-generalized supplement of U. By
Modular law, U = U n M = U n
(N®K) thus
U=N®& (UnK) and hence U " K is a
direct summand of U.

(#=(1)

By our assumption, there exists a
submodule V of M such that M=U+V
and UnV < S(V) and U=(UnV)®L,
for some submodule L of U. But M =
U+v= (UnV) @ L + V =L+V and
LnV=(UNL) NV=LN(UNV)=0,
therefore M=L®V, where L < U and
VU c S(V).

Corollary (3.10): Let M be an R-
module. Then the following statements
are equivalent:

1- For every submodule U of M, there
exists a decomposition M = N® K
with N c U and
KN U c S(K).

2- For every submodule U of M, there
is an idempotent ecEnd (M) with
e(M) - U and
(I-e)(U) = S((1-e)(M)).

3- For every submodule U of M, there
is a direct summand N of M with

M

NcU and y c S[—) .
N N

4- Every submodule U has S-
generalized supplement V in M with
U NV is a summand of U.

5- M is S-GS module.

Then (1)<=(2) <(3) <(4) =(5).

Proof: Clear.
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4. Soc (Z)-GS modules:
In this section we study Soc(Z) -

GS modules .We give some their basic
properties. Also we give a
characterization of Soc (Z)-GSmodule,
when M is a prime R-module.

Let M be an R-module. Recall that
the socle of M =Soc(M)=y A=n

Asimple
submodule

{B ; B <« M}, and M s called
semisimple module if Soc(M)=M,
See[5].

The singular of M = Z(M) ={ x
eM; Ann x ce R }, See[5]
If Z (M) =M then M is called singular
module.
If Z (M) =0 then M is called non
singular module, See[5] .

It is know that each of the
socle (Soc) and the singular (Z) is
a hereditary and

quasi-radical property. See

(example(1.1)) and (example (1.2)).

Definition (4.1):

An R - module M is called Soc-
GS module if for each submodule N of
M, there exists a submodule K of M
such that M = N+K and N n Kc
Soc(K).

Definition (4.2):

An R —module M is called Z- GS
module if for each submodule N of M,
there exists a submodule K of M such
that M = N+K and N N K < Z(K).

We start this section by the
following examples

Examples (4.3):

1. It is clear that the module Zn as Z -
module is Z-GS module, for each n
e Z. Also Zn as a Z-module is Soc-
GS module, for each square free
neZ, see [4].
For example Zs as Z - module is

Soc (Z2)-GS module.

2. Consider the module Zs as Z-
module. Z (Zs) = Zs, and hance by
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(remark (2.7)). Zs is
Z- GS module. One can easily

show that Soc (Zs) = {0,4}. Note

that A ={0,2,4,6}, B= Zs the only
submodule of Zs such that
Zs=A+B. Buu A n» B
=A={0,2,4,6} ¢ Soc(B)= {04},
so A has no Soc - generalized
supplement in Zs. Thus Zs is not
Soc - GS module.

3. Consider the module Z as Z-
module. It is easy to see that
Soc(Z) = 0 and Z(Z) = 0. Let
nZ be a non- trivial submodule of Z
and let mZ be a submodule of Z
such that
7Z=nZ + mZ. It is clear that mZ #0.
Since Z is indecomposable, then
nZ~mZ #0.Thus nZ~mZ <
Soc(mZ) < Soc(Z) =0 and hence
nZ has no Soc - generalized
supplement in Z.Thus Z is not Soc-
GS module.

By the same way we can show that Z is

not Z-GS module.

Remark (4.4): Every singular R-
module is Z- GS module.

Proof: Clear by (remark (2.7)).

Remark (4.5): Let M be an R -module
and let N is essential submodule of M,

then % is Z- GS module.

Proof:
Since N is essential submodule

M
of M, then by [5, prop.1.20,p.31] N IS

M
singular. Thus by (prop. (4.2)) N isZ
-GS module.

Proposition (4.6): Let M be an R-
module, then M is Soc (Z)-GS module
if and only if for every submodule N of
M, there exists a submodule K of M
such that M = N+ K and
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NN K < Soc(M) (respectively, Nm K
c Z(M)).

Proof:

Assume that M is Soc- GS
module. Let N be a submodule of M,
then there is a submodule K of M such
that M= N+K and Nn K < Soc(K).
But Soc(K) < Soc(M), therefore Nm K
< Soc(M).

For the converse, let N be a submodule
of M, then there exists a submodule K
of M such that M = N+K and Nn K <
Soc(M). So Nn Kc(Soc(M)) n K. But
Soc(K) = Soc(M) n K, by [4,Th. 9.7.3,
p.226], therefore N N K < Soc(K).
Thus M is Soc -GS module.

By the same argument we can
prove the proposition(4.6) for Z -GS
module.

Remark (4.7): Let M be Soc
(respectively Z) - GS module. Then
every submodule of M is Soc
(respectively Z)-GS module.

Proof: clear by (prop. (2.10)).

Proposition (4.8): Let M be a non -
zero R - module such that Soc(M) =0,
then M is not Soc - GS module.

Proof:

Let M # 0 be an R- module with
Soc(M) =0. Suppose that M is Soc -GS
module and let N be a submodule of
M, then there exists a submodule K of
M such that M = N+K and
NNK < Soc(K)c Soc(M) =0. So M =
N®K and hence M is semisimple (i.e
Soc(M) =M= 0) which is a
contradiction.

Before we give our next result
we need the following results which
they appeared in[8].

Lemma (4.9): [8, prop. 2.3.4]: Let M
be a prime R- module, then either Z
(M) =0 or Z(M)=M.

Proposition (4.10): [8, prop. 1.2.4,
CH1]: Let R be an integral domain
such that R is not a field. Then every
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non - zero torsion free R- module is not
regular.

Proposition (4.11): Let R be an
integral domain such that R is not a
field and let M be a
non - zero projective module, then M is
not Soc (respectively Z) — GS module.

Proof:

Assume that M is Soc- GS
module. Since M is projective then by
[13]. M is torsion free and hence M is
prime module [9]. By (remark (4.7))
and (prop.(4.6)) M is semisimple. But
M is projective, therefore by [7] M is a
regular ~ module  which is a
contracliction with (4.10).

By the same argument we can
prove the proposition(4.11) for Z-GS
module.

Proposition (4.12): Let M be a non
singular R- module and let N, K be
submodules of M. If K is a Soc-
generalized supplement submodule of
N in M and N is an essential
submodule of M, then N nK = Soc(K).

Proof:

Assume that K is a Soc-
generalized supplement of N, then M =
N+K and NNK < Soc(K). By the

second isomorphism theorem
M=N+K; K . Since N e M,
N N NN K

M
then by [5, prop. 1.21, p.32] ~ s

singular and hence N K

But M is non singular,
therefore by [5, prop. 1.21,p.32], N nK
ce K and hence Soc (K) € NnK. Thus
Soc(K) = NnK.

Proposition (4.13): Let R be a ring
and N, K be ideals of R such that K is a
Soc - generalized supplement ideal of
N in R. If N is an essential ideal of R,
then NmnK = Soc(K).

is singular.
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Proof:
Let M = N+K and N K <
Soc(K). By the second isomorphism
R N+K_ K

theorem, N N - NAK'

N ce R, then by [ 5, prop. 1.20, p.31]

Since

R . :
NS singular and hence NAK 'S

singular. By [5, prop.1.20, p.31], NmK
ce K. So Soc (K)c NnK. Thus
NNK = Soc(K).
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