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Abstract:

let H be an infinite — dimensional separable complex Hilbert space, and S be a
multiplication semigroup of € with 1. An operator T is called G-cyclic over S if there
is a non-zero vector xe H such that {aT" X |oes, n >0} is norm-dense in H. Bourdon
and Feldman have proved that the existence of somewhere dense orbits implies
hypercyclicity. We show the corresponding result for G-cyclicity.
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Introduction:

Let H be an infinite dimensional
separable complex Hilbert space, and
B(H) be the Banach algebra of all
linear bounded operator on H.

Let S be a multiplication semigroup of
C with 1,an operator TeB(H) is called
G-cyclic over S if there is a vector x in
H such that {o T" x|aeS, n >0} is
norm-dense in H. In this case x is
called a G-cyclic vector for T over S
[1]. Clearly, every hypercyclic operator
is G-cyclic and every G-cyclic operator
is supercyclic. Bourdon and Feldman
[2] proved that every somewhere dense
orbit is everywhere dense, and they
used this result to give another proof of
"Ansari's theorem™ if T is hypercyclic,
then for each n>1, T" is hypercyclic,
moreover T and T" share the same
collection of hypercyclic vectors” [3].
Also they use their theorem and give
another proof of "Multihypercyclicity
Theorem" If T is multihypercyclic then
T is hypercylic " [4]. Our purpose in
this paper is to obtain the
corresponding results for G-cylic over
S.

$1 Somewhere dense orbit is

everywhere dense:

The aim of this section is to prove that
the existence of somewhere dense orbit
implies. G-cyclicity. Next we fix
notation required for the discussion.
Notation : Let S be a semigroup of C
with 1 then

1. .Sorb(T,x)= {o T" x| ae$S, n>0}.
2. Corb(TX)={oT" x| aeC, n>0}.
3. F(X)=Sorb(T,x)

4. U(x)=int(F(x)).

5. X°=complement of X in H.

Clearly from the definition of G—cyclic
[1], that every G-cyclic operator is
supercyclic operator, so we get:
Proposition 1.1: Suppose that xeH
such that Sorb(T,x) is somewhere
dense in H, then Corb(T,x) is
somewhere dense in H.

Proof: Sinse S is a semigroup of C

with 1, then Sorb(T,x) < Corb(T,X).
Now since U(x)=< and

UX) < int (Corb(T,x)). Thus
C orb(T,x) is somewhere dense.

From [2] we get immediately the
following two lemmas:
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Lemma 1.2: Suppose that xeH such
that Sorb(T,x) is somewhere dense in
H. Then T° may have at most one
eigenvalue.

Lemma 1.3: Suppose that Sorb(T,x) is
somewhere dense in H, then for each
aeS, je N, aT"j x is a cyclic vector for
T.

Peries in [4] proved the following
lemma.

Lemma 1.4 [4]: Let p be a complex
polynomial, p(T) has a dense range if
and only if p(A)=0 for every eigenvalue
Aof T

The next lemma provides the crucial
element of the argument.

Lemma 1.5: Let xeH, then for every

L €S, U%(x) is invariant under AT.

In addition U°(x) is invariant under
multiplication by any a.eS.

Proof: Since U(x) is nonempty, then
there is a positive integer j and a non-
zero SeS such that AT’ belongs to
U(x) and set x;=4T'x. For any keN,
Sorb(T, T Xj) is dense in U(XZ, thus X;
is a limit point of Sorb(T, T" x;) and
U(x)=U(T"x;). By lemma (1.3) X is
cyclic vector for T e
{p(r)xj|pis polynomail} is dense in
H.

Fix aeS. assume that U°(x) is not AT-
invariant, i.e. there is ygU(x) but
TyeU(x). We may assume ygF(x), if
not, then yedF(x), also since AT is
continues, hence there is point y’eF(x)
close enough to y and ATy to keep it in
U(x). Thus rename y“asy.

Because F(x) is open and
{p(T)xj|p is polynomial} is dense in H,
Thus there is a polynomial p so that
p(T)x; is closed enough to y ensure
p(T)x;eF(x) and ATp(T)x;eU(x). Since
UX)cF(x) and F(x) is AT-invariant,
then Sorb(T,ATp(T)xj)c<F(x). However
Sorb(T,ATp(T)x;)=Sorb(T,p(T)Tx;).
Because x; is a limit point of
Sorb(T,Tx;), the continuity of p(T)
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yield p(T)xjeF(x). Thus p(T)xjeF(x)
and its complement, a contradiction.

It is easy, by notation, to prove that
US(x) is invariant under multiplication
aeS

Remark: The preceding show that if
yeSorb(T,x), then U(X)=U(y).

Now we will prove the main result.

Somwhere Dense Theorem 1.6:
Suppose TeB(H), and Sorb(T,x) is
somewhere dense in H, then T is G-
cyclic operator.

Proof: Assume that Sorb(T,x)=H.
Since x is cyclic vector for T (1.3),
then {p(T)xj| p is polynomial} is dense
in H. Then there is a subcollection Q of
polynomial such that {q(T)x|qeQ} is
dense subset of U(x). By (1.5) U°(x) is

AT-invariant  for all 1e€S, so
q(Morb(T,x) <U(x) for all qeQ,
hence, by continuity of T,

q(TF(X)=q(T)orb(T,x) cU(X).

Let W denote the collection of non-
zero polynomials not having the
(possible) eigenvalue of T  as a zero
and let peW.

Now put D:=U(x)u{q(T)x|geQ}, since
{q(T)x|qeQ} is dense in U°(x), hence
D is dense set in H. Because p(T) has
dense range in H (1.4), therefore p(T)
D is dense in H.

Suppose in order to obtain a
contradiction, that p(T)xeoU(x), hence
p(T)xeU(x), then p(T)xeU(x). Thus
p(TU(X) cU%(X). On the other hand,
since U(x) is AT-invariant for all A€S,
thus p(M{a(Mxlq Q}=U*(x).
Therefore p(T)DcUS(x) which
contradicting the density of p(T)D.
Thus p(T)xeoU(x). Because {p(T)x|
peW} is connected, contains points in
U(x) and contains no boundary point of
U(x), thus {p(T)x|peW}cU(x). Given a
coefficient n-tuple ¢ for any
polynomial, there is a sequence for
coefficient n-tuple of a polynomials in
Q converging componentwise to ¢, and
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since x is cyclic vector for T, then
{p(T)x|peW} is dense in H. Since
{p(Mx|peW}cU(x) cF(x), therefore
F(x)=H. Thus T is G-cyclic operator.

$2  Applications to the
somewhere dense Theorem:

In this section we give two applications
to the somewhere dense theorem. First
we need the following fact, let X be a
topological space and Fy, F» , ..., Fha
finite family of closed subset of X;

n n
X=| JR if int(F)=2, then X=| JR
i=1 i=2
[4]
Proposition2.1: If T is a G-cyclic
operator over S then for every positive
integer n, T" is G-cyclic operator over
S. Moreover, T and T" share the same
collection of G-cyclic vectors.
Proof: Let x be a G-cyclic vector for T
over S, and fixed n>1, then

SOrb(T,x):USorb(Tn,TJX) will be
j=0
dense in H, thus H:nolm
j=0

Thus at least one of the sets
Sorb(T", T'X) must be somewhere
dense. Therefore by (1.6) T" is a G-
cyclic operator over S. Now because T
must have dense range [1], the set
T[Sorb(T", T'x)]=Sorb(T",T"x) will be
dense in H, from which it followed that
x is also G-cyclic vector for T".

An operator TeB(H) is a multi-G-
cyclic operator over S provided there is

?in H such that

a finite subset {x;}
n

| Jsorb(T.xj)is dense in H. Clearly
1

every G-cyclic operator is multi-G-
cyclic operator. A question arises: Is
the converse true?

Proposition 2.2: Any multi-G-cyclic
operator over S is G-cyclic operator
over S.

Proof: Let {x} be a multi-G-cyclic

n
vector for T over S, then | JSorb(T,x;)
1
is dense in H. By [4], there is at least j;
1<j<n, such that Sorb(T, x;) has
somewhere dense in H. Thus by (1.6)
T is G-cyclic operator over S.
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