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Abstract:

The aim of this paper is to approximate the solution of the parabolic partial
differential equations (heat equations) using Bellman's method with the cooperation
of the G-spline interpolation formula. The partial differential equation will then be
changed into a system of the first order ordinary differential equation. The resulting
system may be then solved easily by using the fundamental matrix solution. In this
paper, the Bellman's method may be considered as a generalization to the usual
Bellman's method with an arbitrary ordinary derivative.
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Introduction:

The mathematical formulation
of most problems in science involving
rates of change with respect to two or
more independent variables, usually
representing time, length or angle, lead
either to a partial differential equation
or to a set of such equations.

The general two dimensional
second order partial differential
equation:

2 2 2
Aa u B o°u o°u N
ox? OXoy oy
Da—u+Ea—u+Fu+G=0
OX oy

where A, B, C, D, E, F and G may be
constants or functions of the
independent variables x and y, [1].

As a special case, this equation
is said to be elliptic when B? — 4AC <
0, parabolic when
B? — 4AC =0 and hyperbolic when B?
—-4AC > 0.

Problems involving time t as
one independent variable lead usually
to parabolic or hyperbolic equations.

The simplest parabolic
2
equation, a = ka—u derives from the
ot aXZ

theory of heat conduction and its
solution gives, for example the
temperature u at a distance x units of
length from one end of a thermally
insulated bar after t seconds of heat
conduction.

In such a problem, the
temperatures at the ends of a bar of
length ¢ (say) are often known for all
time. In other words, the boundary
conditions are known. It is also usual
for temperature distribution along the
bar to be known at some particular
instant. This instant is usually taken as
zero time and the temperature
distribution is called the initial
condition. The solution gives u for
values of x between 0 and ¢ and
values of t from zero to infinity [1].
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There are several numerical
methods for solving the partial
differential equations, such as the finite
difference  method, finite-element
method, variational methods, spline
interpolation method, the collocation
method, the method of lines and the
method which we shall used in this
paper which is so called the Bellman's
method, [1,2]. Really, Bellman's
method depends on polynomial
interpolation in order to interpolate the
functions u;(t), which considered to be
known, but in fact they are unknowns,
therefore, the interpolation method
which will be used here is the G-spline
interpolation because of its simplicity
and efficiency in evaluating the
approximate solution.

G-spline interpolation was first
introduced by 1. J. Schoenberg [3] as a
tool used to specify interpolatory
conditions:

0x) = yD, for (i, j) e

which is called the Hermite-Birkhoff
problem, where e is a certain set of
order pairs (defined later in section
two) and he proved that this tool (G-
spline interpolation) gives the best
approximation for linear functionals,

[3].

G-Spline Interpolation, [3],[4],[5]:

In 1968 Schoenberg [3]
extended the idea of Hermite for
splines to specify that the orders of the
derivatives specified may vary from
node to node.

As usual let I = [a, b] be an
interval partitioned by the nodes:

Aa=X1<X<...<xpy=b

and let o be the maximum of the
orders of the derivatives to be specified
at the nodes, we introduce an incidence
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matrix E, where the incidence matrix is
defined by:

E= [ai,-], = 1,2, ..., n;j=0, 1,
e, O

where:
{l, if (i,j))ee
ajj = . ..

0, if (i,))ge
Heree={(i,]),i=1,2,...,n;j =0, 1,
..., a} has been chosen in such a way
that i takes the values 1, 2, ..., n; one
or more times, while j € {0, 1, ..., o}
and j = a is attained in at least one
element
(i, ) of e, assume also that each row of
the incidence matrix E and last column

of E should contain some element
equals 1.

The Hermite-Birkhoff problem
is to find f(x) e C°% which satisfies the
interpolatory conditions:

f(j)(xi) - yi(j) ,for (i,j) e e...(1)

Definition (1), [31.[4L[5]:

Let m be a natural number, then
the Hermite-Birkhoff problem (1) is
said to be m-poised provided that:

P(X) € Mm1

p0)=0if (i,j) e e
then:

p(x) = 0.

where ITn_; is the class of polynomial
of degree m — 1 or less.

The definition of G-spline is
facilitated by defining a matrix E*
which is obtained from the incidence
matrix E by adding m — o — 1 columns
of zeros to the matrix E.

Let E* = [a}}], where (i =1, 2,
..,nj=0,1,..

* ai
a'l = 1’
= e

.,m—1), and:
if j<o

if j=a+la+2,...,m-1
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Ifm=ao+1, then E*=E.

Definition (2), [3],[4L,[5]:

A function S(x) is called
natural G-spline for the knots Xj, X,
..., Xn and the matrix E* of order m
provided that it satisfies the following
conditions:

1. S(X) € Iom-1 in (Xi, Xis1), | =1, 2,
o n=1.

2. S(X) € Iy-1 in (=00, X1) and in (Xp,
0).
3. S(x) € C™ (o0, ).
4. If a}]— = 0, then S®™ID(x) is
continuous at X = X;.
Let § (E*; X1, X2, ..., Xp)
denotes the class of all G-spline of
order m.

At this point, the G-spline
interpolation of order m to f may be
given in terms of the fundamental G-
spline functions Lj;, by:

s = >, Lijxy? ..(2)
(i.jee
Where L;; satisfies:

0, if (r,s)#(i])
LS (x,) =
i (Xr) {1, if (r.s)=(i,)
Bellman's Technique with
Cooperation of G-Spline

Interpolation to Approximate the
Solution of Parabolic PDE's:

Consider the initial-boundary
value problem:

PDE UXX—Ut=g(X, t, u| uX)l
0<x</(,0<t<w

{u(o, t) =p(t)
u(/,t)=p(t)’

ux,0) =w(x),0<x< /¢

0<t<o...(3)

IC

1449

The idea of this method is that we shall
consider the values:

3y (x:
UL _ ), ) e e
ox/

are known, but as we mention in the
introduction of this paper they are
unknowns, and we shall interpolate
them by the G-spline interpolation
formula given by (2), such that:

ux, =3 Leu;(t) ---(4)
(i,))ee

substituting (4) into the initial-
boundary value problem given by (3),
we have:

D Lu® - D Liou(h) =

(i,))ee (i,j)ee
g(x, t, z Lij ()u;j(t) ,
(i,j)ee
> Liui(t))...(5)
(i,))ee

and in order to evaluate u;(t) for (i, j)
€ e, we must make the number of
equations equals to the number of
unknowns and this will be satisfied by
choosing (r, s) € e and differentiating
(5) s-times at the point x = X, then we
shall get a system of the first order
ordinary differential equations with the
initial conditions:

olu(x;,0)  diw(x;)
. dx/

Solving the resulting system using
matrix exponential method, gives the
values:

u;j(0) =
’ ox!

i(x.
ity = D ) ce. )
OX

which represent the solution of (3) and
its j partial derivative with respect to x
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at the x;, where (i, j) e eand for0 <t <
0,

The reader can notice that if j =
0 in (6), which means that we have
evaluated the solution u of (3) at the
point x;, and for 0 <t < co (which is the
usual Bellman's method), therefore we
have here a modification to the
Bellman's method with the aid of G-
spline interpolation.

Ilustrative Examples:

In the present section, some
illustrative examples are given in order
to check the accuracy of the results:

Example (1):

Consider the initial-boundary
value problem:

PDE ut:uXx, O<X<1,0
<t<ow
u(o,t
BC's 0.ty , 0<t<
uE,tkE |
0...(7)
IC ux,0)=x,0<x<1

and to construct the approximate
solution of (7), the m-poised Hermite-
Birkhoff problem must be chosen. The
choice is as follows:

The interval [0, 1] is partitioned
with h = 1/4, where h is the distance
between the nodes, as:

0<0.25<05<0.75<1

where 0, 0.25, 0.5, 0.75, 1 are taken to
be the node points and let:

e = {(0, 0), (0.25, 0), (0.5, 0),
(0.75, 0), (1, 0)}

we shall seek S4(x) € § (E*; 0, 0.25,
0.5, 0.75, 1), where E* = [a?j] IS
defined by:

1450

2 1, forj=0,0<i<4
"7 lo, for0<j<4,0<i<4

Therefore, equation (4) becomes:

U(X, t) = Loo(X)Uoo(t) + Llo(X)Ulo(t) +
|(-2)0(X)U20(t)+|—30(X)U30(t)+|-40(X)U4o(t)
8

substituting (8) into (7), gives:

L”oo(X)Uoo(t) + L”lo(X)Ulo(t)
L 20(X)u20(t) + L' 30(X)uso(t)
L"20(X)Us0(t) = Loo(X)u'o0o(t)
Lio()u'io(t)  +  Lao(X)u'20(t)
L3o(X)U'30(t) + Lao(X)U’'40(t)...(9)

+ + + +

It is clear that from the BC's that ugo(t)
= 0 and ug(t) = 0, and in order to
evaluate Uo(t), Uzo(t), Uso(t), we shall
chose (r, s) to be the order pair (1, 0),
(2, 0), (3, 0) respectively, hence after
substituting the ordered pairs (r, s) into
(9) we shall get the following linear
system:

U'10(t) = L"10(X2)u10(t) + L""20(X1)u20(t)
+ L""30(X1)U30(t)
U'10(t) = L"10(X2)u10(t) + L""20(X2)u20(t)
+ L""30(X2)u30(1)
U'10(t) = L"10(X3)u1o(t) + L""20(X3)u20(t)
+ L""30(X3)U30(t)

writing the above equations in matrix
form u’= Au, where:

uio(t)
u = upot)y|, A =
uzg(t)
Lio(x1) Loo(x1) Lao(xq)
Lio(X2) L5(X2) L3g(X2) =
| Lio(X3) L3o(x3) L3g(X3)
[—29.881 12.821 2.115
22.834 —-42.252 22.834
| 2.119 12.821 -29.881
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0.25
u(t) = u”iti with c=u(0) = | oz
Ugo(t) 0.75

and since A have the distinct

eigenvalues A; = —9.748, X, = =32, A3
= —60.266, which will give an
independent eigenvectors and hence
we get a unique solution for the above
linear system:

u(t) = cd(t) =
0.12550e %748t _0 3535032t _ 0, 258¢ 60266t
0.17625¢ %748 1 360510 6e 32! 4 0.65475¢~60-266t
0.12550e %748t ; 03535032t _ 0, 258¢ 60266t

where:

O ()=
0.5026~9-748 _0.707¢-32t _0.344¢60-266t
0.705¢ 9748t 625151076732t () g73¢60-266
0.502¢~9-748 0.707¢732 _0.344¢60.266t

The exact solution of (7) is given by

[2]:

u(x, t) =
% 2
ZAne_(”“) tsin(nix), A, =
n=1
1
2[xsin(nmx) dx
0
Table (1) presents a comparison
between the analytical and the

approximate results obtained using
computer program written in Mathcad
(2001.i):

Table (1) The approximate and the analytical solution of example (1)

Approximate Analytical Approximate Analytical Approximate Analytical
solution solution solution solution solution solution
x =0.25 x =0.25 x =05 x =05 x =0.75 x =0.75
t=
025 0.011 0.038 0.015 0.045 0.011 0.038
(t); 9.591x107* 3.237x102 1.347x107 4578x107° 9.592x10°® 3.237x10°°
ot.7:5 9.385x10°° 2.746x107 1.178x107* 3.883x10™* 8.385x107* 2.746x107*
Where Ljj(x) for (i, j) € e are given in 546856.6887 (x—0. 25) B
[6] which are evaluated analytically, as 71 +
follows:
, 820285.0331 (x— 0.5)1 N
Loo(x) =1 - 7.9581x + 19.9404x° — 7!
546856.6887
16.4592x° + Mxi - 7—( x—0.75)" -
136714.1722 ' 136714.1722
= (x~0. 25)7 + — (X 1)1
7! 7!
2050712883 5)7 _ LooxX) = —9.7483x + 55.6423x> —
! 205071.2583 7
66.75497x° + T/ — T2yl
1367174I.1722 (x— 0.75)1 N 71 +
820285.0331 7
34178.543 0 (x-0.25); +
T b 1230472'7 5497
, —ETRe T (x—0.5)] -
Llo(x) 14.498x — 55.7616x° + 7!
55.16998x° — wxl

1451
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8202875 0331 075! N

2050712583, 7
7!

Laox) = 3.8322x — 23.7616x°> +

33.8366x° — LSorl4lrez. g,

7! "

5468576 6887, 0.25)7 B
820285.0331 Y N
546856 6887

— (-0 75)! -
136714.1722

— & 1)}

Laox) = —0.6247x + 3.9404x*> -
5.7925x%  + ?Aiﬂxz -
136714.1722
R TR x —0.25)" +
205071.2583
— 5 x-0. 5)! -
1367174 1722 x_0.75)7 N
34178.543
— 1)}

The computation of Ljj's becomes
so difficult and expensive when
reducing the step size h, therefore the
simplicity of the method is to take the
step size large enough, which will
guarantee the best approximation for
the solution, the details for evaluating
the Ljj's is found in [4] .

Example (2):

Consider the initial-boundary
value problem:

PDE Ui=Uy, 0<x<1, 0<t<o

BC'S{U(O't) =0 pct<m..(10)
u(@,t) =sint

IC uix,0)=0,0<x<1

A Hermite-Birkhoff problem
also must be chosen suppose the
choice is also similar to example (1)
the node points is then 0, 0.25, 0.5,
0.75, 1 and let e = {(0, 0), (0.25, 0),
(0.5, 0), (0.75, 0), (1, 0)}, then u(x, t) is
as given in the form (8) , and from the
BC's Ugo(t) = 0, Ugo(t) = sint; and to find
Uzo(t), uzo(t), uso(t), we pick (r, s) to be
(1, 0), (2, 0), (3, 0), respectively.
Therefore, we have the
nonhomogeneous linear system of the
first  order ordinary differential
equations after substituting (8) into
(10) as follows:

ugo(t) |
u = up@® | A=
u3(t) ]
[Lio(x1) Lag(x)) Lio(xq) ]
Lio(x2) L2o(x2) L3g(x2) -
| Lio(xg) Log(x3) L3p(x3) ]
[-29.881 12.821 2.115
22.834 42252 22.834
| 2119 12.821 -29.881
Uzo(t) 0
u(t) = [ ugg(t) |, withc=u() = |0/,
Uzg(t) 0

—0.529804305013021sin t
B(t) = | -1.7086205419922sint
15.47017904378255sint

Then:
u(t) = dE)®L0)c + @(t)j ®Y(s)B(s)

ds where:

@(t) _
0.502¢~9-748t _0.707e-32t _0.344¢~60.266t
070569748t g 051,10 6e-32t  (1.g73e 60266t
0.502¢ 9748t 0.707¢-32t _0.344¢~60-266

a comparison between the analytical
and the approximate solution is given
in table (2):
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Table (2) The approximate and the analytical solution of example (2)

Approximate Analytical Approximate Analytical Approximate Analytical
solution solution solution solution solution solution
x =0.25 x =0.25 x=0.5 x=0.5 x =0.75 x =0.75
t=0.25 0.027 0.027 0.084 0.068 0.139 0.136
t=05 0.068 0.084 0.183 0.183 0.291 0.31
t=0.75 0.136 0.139 0.310 0.291 0.468 0.468
Where the fundamental functions Ljj(x) Equations; Finite Difference

for (i, j) € e is given in example (1)
and the analytical solution is obtained
by the Duhamel's principle method,
[2], as:

t
ux = | wix t-ode
0
where:

w(X,

2 > %e_(””) tsin(nmx)
Y
=1

Conclusions:

1. The advantage of the approximation
using G-spline functions is the
evaluation of the fundamental
functions Ljj's once for all with the
same nodes for any type of linear
functions.

2. Other numerical methods may give
more accurate results but with huge
number of calculations which
increases  running  time  and
computer storage, while G-spline
methods require minimum
computer memory storage.
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