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Abstract: 
A theoretical model is developed to determine time evolution of temperature 

at the surface of an opaque target placed in air for cases characterized by the 

formation of laser supported absorption waves (LSAW) plasmas. The model takes 

into account the power temporal variation throughout an incident laser pulse, (i.e. 

pulse shape, or simply: pulse profile). 

Three proposed profiles are employed and results are compared with the square pulse 

approximation of a constant power.    
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Introduction: 
   When an opaque target is irradiated 

by laser energy of sufficient intensity, 

plasma may be generated. The status of 

this plasma depends strongly on 

experimental parameters such as laser 

radiation intensity, pulse duration and 

shape (profile) [1,2,3].  

When the target is in an atmospheric 

environment and under certain 

experimental conditions, the laser- 

generated plasma forms what is known 

as Laser Supported Absorption Waves 

(LSAW) which is mainly due to the 

ionization of ambient air adjacent to 

target surface [4,5]. 

Once LSA-plasma is generated at 

target surface it begins to expand both 

axially (away from the surface, toward 

laser source) and laterally over target 

surface, in a manner similar (basically) 

to spherical blast wave expansion
 [5]

, 

this situation is illustrated 

schematically in fig.(1) [6].   
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*Al-Mansour University College,Computer Communication Engineering Department. 

 



Baghdad Science Journal  Vol.8(3)2011 
 

656 

A fraction of incident laser 

energy is absorbed by LSAW- portion 

exposed to laser beam, known as 

absorption zone (see fig.1). The 

absorbed laser energy acts to sustain 

the LSA wave by heating the generated 

plasma [5]. 

The LSA plasma behaves in 

two contradictory ways in heating the 

target surface, on one hand; the laser 

generated plasma enhances the amount 

of heat energy transferred to the target 

(heat coupling), this heat coupling is 

due to both heat flow from plasma to 

the target through plasma-target 

interface via heat conduction, and u.v. 

radiation emitted by the plasma and 

absorbed by the target. On the other 

hand, the radial expansion of LSAW 

plasma causes the plasma-target 

contact area (interface) to increase (see 

fig.1) leading to a decrease in heat flux 

density on target surface due to energy 

spreading over surface area hence 

retarding the heating process [6]. 

Considering thermally thick targets, 

axial heat conduction from the surface 

through target bulk plays an additional 

rule in surface heating retardation. 

The aim of this paper is to 

develop a computational model that 

tacks into account the laser pulse shape 

in simulating temperature evolution at 

the surface of an opaque, thermally 

thick target placed in air for situations 

where LSAW forms.  

 

Surface Temperature 

 

It was established that the change in 

temperature at the surface of an opaque 

target placed in air due to the action of 

an incident laser pulse is given as
 
[6]: 
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Equation (1) describes the situation 

shown in fig.(1) where LSAW-plasmas 

are formed. The parameters in this 

equation are as follows
 
[6]: 

μeff : Effective heat coupling 

coefficient, K, k: Thermal conductivity 

and diffusivity of target material 

respectively,  VB: Lateral blast velocity 

of expanding plasma (assigned a 

constant average value),  ro: Laser- 

spot radius,  τp: Laser- pulse duration, 

ξ: A normalized time factor given as 

ξ=t/τp (0≤ξ≤1), Pc: Laser pulse power. 

In eq.(1), the incident laser power was 

assumed constant throughout the pulse 

duration as depicted in fig.(2). It 

should be noted that eq.(1) takes into 

account the axial heat conduction from 

the surface to target bulk[6]
 
.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig(2):Representation of a 

rectangular laser pulse (square 

pulse).The incident power {Pinc} is 

constant (Pc) during the pulse 

duration (τp). 
 

Under the assumptions of constant 

blast velocity (VB) and pulse power 

(Pc), equation (1) may be integrated 

analytically to obtain surface 

temperature at any instant (ξ) during a 

single laser pulse
 
[6]. Of course, the 

final temperature is obtained at ξ=1. 

 

Present Modeling Features 

In the present model, time dependence 

of incident power throughout a single 

Pc 

τp 
t 

Pinc  
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laser pulse is introduced in the 

determination of target surface 

temperature.  

 

Time Dependence of Laser Power 

It is more convenient to describe 

incident laser power [Pinc(t)] in terms 

of power density [I(t)] among laser 

spot area ( Ao ) since LSAW ignition 

condition  is specified conventionally  

via power density factor [4,5] , hence 

we may write: 

 

 Pinc (t) = I(t) . Ao … (2) 

 

Here, time profile of  I(t) [ laser power 

density shape ( or simply pulse shape ) 

] is chosen such that average power 

density )(I  throughout the laser pulse 

lies within the range of LSAW- 

formation (~10
6
 - 2 x 10

6
 W/cm

2
 ) [6] . 

Using time- variable power as 

represented by eq.(2) in the 

formulation of surface temperature 

yields an equation that corresponds to 

eq.(1), given as: 
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for a single laser pulse duration. 

In the present work, the time 

dependence of incident laser pulse is 

introduced via mathematical 

expressions chosen for the power 

density (I) in the integrand of eq.(3). 

Equation (3) is then solved numerically 

to determine temporal surface 

temperature evolution throughout a 

single laser pulse.  

 

Mathematical Expressions for Laser 

Pulses 

To investigate the rule of laser pulse 

shape (profile) on target surface 

temperature, three mathematical forms 

are proposed for laser pulse shape (i.e. 

power density as a function of time), 

namely: exponentially decreasing, 

exponentially increasing, and Gaussian 

pulse. 

As an approximation in this model, 

only that part of the profile exceeding 

LSA threshold (~ 10
6
W/cm

2
) is 

included in solving eq.(3) numerically, 

accordingly, the pulse duration ( τp ) is 

regarded  as the duration of that part 

exclusively, as illustrated in fig.(3) for 

the three proposed pulses. 
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Fig (3): Schemes of three proposed laser pulse profiles: 
Pulse (1): Exponentially decreasing.  

Pulse (2): Exponentially increasing. 

Pulse (3): Gaussian shape. 

*- The shaded portions of the profiles are formulated in mathematical     representations of the 

present model. 

*- Values of Ap and Bp are chosen so that the average power density )/)((
0

pdttI

p





  lies within 

the range of LSAW- formation. 

Properties of the three pulse types are summarized in the following table: 

 

Table (1): Mathematical features of laser pulses employed in the calculations of 

this work. 

*: I  is determined here for AP=2x106 W/cm2, Bp=106 W/cm2 and τp=20 μs. 

Pulse 

Mathematical 

form of power 

density { I(t) } 

μ – factor 
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μt 
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2 

I =1.6x106 W/cm2 

{ found by numerical integration 

of I(t) } 
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It may be noticed from table (1) that 

values of Ap and Bp were chosen so 

that average power density values lie 

within the range of LSAW- formation. 

Other forms of laser pulses were 

proposed such as
 
[7]: 
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where (Φlas) is the laser pulse flux 

density and (d) represents the laser 

spot diameter on target surface. In this 

form, the pulse duration is represented 

via a characteristic time scale (τ) and a   

characteristic energy (E) [7]. 

Obviously, the term multiplied by the 

exponential is a power density factor 

(power per unit area) and the 

exponential represents temporal 

Gaussian distribution. Another 

proposed expression for laser pulse 

given as
 
[8]: 

22 /)(),( r

os ethItrI    ….  (5) 

where (Io) is the average power 

density, and (r) is the laser spot-radial 

axis on target surface of centre at r=0. 

In this expression it is assumed that 

laser irradiation is restricted over a 

fixed circular spot of radius (ω) [8]. 

The exponential factor in eq. (5) is a 

Gaussian spatial distribution of power 

density, while temporal evolution is 

described by the factor h(t) via suitable 

functions of time, provided 1h [8].  

  

Present Model Calculations  

The main aim of the present 

calculations is to solve eq.(3) 

numerically for different mathematical 

forms of laser power pulse density (I). 

In order to monitor the surface 

temperature evolution throughout a 

single laser pulse, the whole range of ξ 

(i.e. ξ=0 to 1) is divided into 

subintervals and the integration of 

eq.(3) is performed numerically for 

each subinterval starting from a lower 

limit (which represents the fixed lower 

limit for all subintervals) to the upper 

limit of the subinterval. This process is 

repeated for all subintervals in a 

successive manner until reaching the 

end of the pulse at ξ=1. 

It should be mentioned that it was not 

possible to start the numerical 

integration from a zero lower limit 

because of the { 2/1)(  } factor in the 

denominator of the integrand of eq.(3). 

The lower limit of this integration is 

approximated as )(   which is the 

time step of the numerical procedure 

employed. This is illustrated 

schematically in fig.(4). 

By investigation of that integrand, two 

types of quantities may be classified, 

they may be referred to as time 

ascending- and time descending- 

development quantities.  

For a given upper limit (ξ) of a 

subinterval, it is noticed that quantities 

like power density )(  I  and the 

time factor )(    in the denominator 

{multiplied by the blast velocity (VB)} 

are of a descending time nature, where 

the argument )(    decreases with 

the development of (   ). On the other 

hand, the quantity }){( 2/1   in the 

denominator is of an ascending time 

nature. These two types of time 

dependent quantities should be treated 

before performing the numerical 

integration for each subinterval. For 

any subinterval, the normalized time 

)(   proceeds by a time step )(    in 

the numerical calculations.Numerical 

integration of eq.(3) is performed by 

generating two sets of data throughout 

the time progression in each 

subinterval. Set (A) which involves 

values of both )]([  I  and ][   among 

a given subinterval, they are separated 

by step )(   . Similarly, set (B) is 

generated; it involves the 

quantity ])[( 2/1   among that 

subinterval. For all of those quantities 

generated in sets [A] and [B] , the 

normalized time factor )(  is of an 
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increasing nature. For any subinterval, 

the integration normalized time )(   

begins at the beginning point of a 

subinterval )(   {which is a common 

starting point for all subintervals} and 

ends at the upper limit of that 

subinterval {the lower and upper limits 

of the integration in eq.(3)}. To start 

the numerical integration, data in one 

of those sets [say set (B)] is reversed in 

order. Hence two data sets are 

obtained, one of a descending- and the 

other of an ascending- time 

development nature. Now the 

integration may be performed 

numerically (trapezoidal rule is 

employed) throughout a subinterval to 

determine surface temperature at the 

end of that subinterval. The upper limit 

of the integration is then increased and 

the previous procedure is performed 

for the next (longer) subinterval 

starting from the same lower limit of 

integration )(   . This is illustrated in 

fig.(5) for a given subinterval. 

The above process is repeated for the 

successively increasing subintervals to 

obtain the temperature at the end of 

each subinterval until reaching the end 

of the laser pulse at the upper limit 

ξ=1.            
 

                          

                       

   0         ξa                 ξb                                       ξi                                      ξn=1  

 

                   Sub. a 

                            Sub. b 

                                                   

                                                    Sub. i 

 

 
 

Fig.(4) Division of pulse duration into subintervals: 

*- Each subinterval is divided by time step )(   . 

*- All subintervals start at the same moment )0(    which represents the lower limit of the 

integral in eq.(3). 

*- Successive subintervals (Sub. a, Sub. b, …) end at successively increasing ending moments 

(ξa<ξb<…) each represents the upper limit (ξ) of the integration in eq.(3). 

*- Solving eq.(3) for successive subintervals yields surface temperature at moments  ξa, ξb, …, ξn 

throughout laser pulse duration. 

 
                                                     Set [B]                           Set [B] 

            Set [A]                       Before Reversal              After Reversal 

       ξ1            I(ξ1)                             ξ1
1/2

                                            ξa
1/2

 

        ξ2            I(ξ2)                             ξ2
1/2 

                                           ξa-1
1/2

 

        ξ3            I(ξ3)                             ξ3
1/2

                                             ξa-2
1/2 

 

        .               .                                    .                                    . 

         .               .                                    .                                    .      

         .               .                                    .                                    . 

        ξa-2            I(ξa-2)                         ξa-2
1/2

                                            ξ3
1/2

 

        ξa-1            I(ξa-1)                         ξa-1
1/2

                                            ξ2
1/2

 

        ξa              I(ξa)                            ξa
1/2

                                               ξ1
1/2

 

  
 

 

  

Starting moment for each subinterval. 

Pulse termination 

End of subinterval (i) 

Fig (5): An illustration of preparing data to integrate eq.(3) numerically for a 

given subinterval {Sub. a in fig.(4)}. 
*- Quantities involved in numerical integration are those in set [A] and set [B]\ after reversal with order 

as indicated for these two sets. 

*- This procedure is performed for all successively increased subintervals till the termination point of 

the laser pulse. 
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Results and Discussion: 
In reference [6], eq.(1) was 

integrated analytically to obtain target 

surface temperature evolution through 

the action of an incident laser pulse of 

a constant magnitude (Pc) {i.e. square 

pulse (see fig.(2)}. The related 

parameters were as follows [6]:    

Pc=1x10
6
 W/cm

2
, τp=20μs, ro=0.1cm, 

VB=500m/s, and μeff=0.2. Thick 

aluminum target was considered with 

initial temperature of zero ºC. The 

result of that determination is shown in 

fig.(6). The trend of the curve in this 

figure was explained in Ref.[6].  
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Fig.(6): Surface temperature vs. 

normalized time (z) {orξ}. Laser 

Pulse:Square pulse (Pc=1x10
6
W/cm

2
) 

ro=0.1cm, τp=20μs, μeff =0.2. 

 

For the present model, the three 

proposed pulses {Illustrated in fig.(3) 

and table (1)} are examined. Figures 

(7)-(9) represent comparisons between 

results of the present model and the 

analytic results of the square pulse
 
[6], 

all determined under the same related 

parameters mentioned above. 

For comparison purpose, the constant 

amplitude of the square pulse {Pc in 

Fig.(2)} is taken equal to the average 

value )(I  of the corresponding 

proposed pulse with which it is being 

compared {see average power density 

of proposed pulses in table (1)}. It is 

noted from figs.(7)-(9) that the curves 

of the present model and the analytic 

curves of the square pulses have the 

same trend; the differences in 

calculated temperatures in each of 

those figures are largely referred to the 

rule of pulse shape (profile) in 

determining surface temperature 

evolution in time. 

Figure (7) indicates that exponentially 

increasing pulse {pulse (2) in fig.(3)} 

yields less heating effect compared 

with the square pulse. This may be 

explained by noting the shapes of the 

square pulse and pulse (2) {figs.(2) and 

(3)}, where the power density is at a 

steady level all over the square pulse 

duration [this steady level is equal to 

the average power density of the 

conjugate pulse {pulse (2)}]. On the 

other hand, the power density of the 

exponentially increasing pulse is well 

below its average level for the major 

part of pulse duration; however, it 

exceeds the average level only during a 

minor part of the pulse period after 

which the pulse is terminated with no 

more power support.     

A similar situation is observed in 

fig.(8) where the proposed Gaussian 

pulse {pulse (3) in fig.(3)} is compared 

with a square pulse. As in fig.(7), the 

magnitude of the square pulse is equal 

to the average power density of the 

Gaussian pulse with which it is being 

compared. Here too, the square pulse 

yields higher temperatures compared 

with the Gaussian pulse. Explanation 

of fig.(8) is similar to that of fig.(7), 

where the Gaussian power density 

exceeds the average level around the 

centre of the pulse period (τp/2) while 

the major part of the pulse is below the 

average level. On the other hand, the 

square pulse maintains this level for 

the whole duration (τp). 
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Fig.(7): Surface temperature vs. 

normalized time. A comparison 

between square- and exponentially 

increasing- pulses. Pc= )(I  = 1.4x10
6  

W/cm
2
. 
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Fig.(8): Surface temperature vs. 

normalized time. A comparison 

between square- and Gaussian- 

pulses. Pc= )(I = 1.6x10
6 

 W/cm
2
. 
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Fig.(9): Surface temperature vs. 

normalized time. A comparison 

between square- and exponentially  

decreasing- pulses. Pc= )(I = 1.4x10
6 
 

W/cm
2
. 

 

In fig.(9) a comparison is 

illustrated between the proposed 

exponentially decreasing pulse {pulse 

(1) in fig.(3)} and the corresponding 

square pulse. It is noted that pulse (1) 

results the higher temperatures. By 

examining pulse (1) in fig.(3) and table 

(1), one may recognize that the power 

density exceeds the average level at the 

beginning of the pulse, and then it 

decays exponentially when time 

proceeds. However, the exponential 

decay tail of the pulse acts to support 

the high scale heating caused by the 

initially- high power densities of the 

pulse. In other words, the exponential 

tail sustains surface temperature 

through subsequent incident power 

deposition on the surface. This will 

slows down the rate of temperature 

decrease with time during pulse 

duration.     

The conclusion that may be 

extracted from figs.(7)-(9) is that the 

time distribution of power in a laser 

pulse (i.e. the pulse shape) plays a rule 

in determining the temperature 

evolution at the target surface. It is 

believed that constant average power 

by itself is insufficient for this purpose; 

moreover, the square pulse is an ideal 

representation of real laser pulses. 

Different pulse profiles lead to 

different temperature evolution history 

at target surface as illustrated in 

fig.(10) which shows the time variation 

of surface temperature for the three 

proposed pulse expressions shown in 

fig.(3) and given in table (1).  

 



Baghdad Science Journal  Vol.8(3)2011 
 

677 

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

T
e
m

p
.(

C
)

Exp.Incr.

Exp.Dec.

Gaussian

 
Fig.(10): Surface temperature vs. 

normalized time. A comparison for 

the three proposed laser pulses.       

         

 Considering other laser pulses, the 

profile given in eq. (4) seems to have 

some scaling or characteristic factors, 

hence it is expected that those factors 

have to be chosen carefully in order to 

represent a given laser pulse 

mathematically. This will add further 

complexity in formulating laser pulses 

properly. 

On the other hand, it is believed that 

the spatial distribution )(
22 /re

in 

the profile given by eq.(5), {not 

appearing  in the three profiles in Table 

(1)} is not required when dealing with 

LSA plasma since this plasma acts to 

distribute laser energy (in the form of 

heat) uniformly among target affected 

area (plasma – target interface).   

Moreover the fixed radius (ω) for laser 

irradiation over targets surface 

indicates that expression (5) does not 

take into account plasma expansion, 

which is the case under study in this 

work. 

 Finally, a comparison may be 

achieved between square pulse- and 

time varying pulse- approaches, which 

is based on the final temperature 

concept. The final temperature of 

target surface    (determined at ξ=1) 

accounts for the net amount of heat 

energy on target surface at the end of a 

single laser pulse despite the temporal 

details of temperature evolution during 

the pulse duration {in which the two 

models differ}. In other words, final 

surface temperature accounts for the 

overall heating effect on the surface 

during the whole pulse duration, where 

eq.(3) takes into account both heat 

energy gain on the surface due to 

incoming power from incident laser 

pulse, and heat energy loss at the 

surface due to heat flow toward the 

target bulk via heat conduction. The 

final temperature may be correlated 

with the average (constant) power 

density since this average is correlated 

to the overall heating effect of the 

incident power density throughout the 

whole pulse duration. Since the steady 

power density (Pc) of the square pulse 

and the average power density )(I of 

the time varying pulse are taken to be 

equal in each of the comparison figures 

{figs.(7)-(9)}, then it is expected that 

final temperatures resulted by the two 

types of pulses to approach each other 

at the end of the duration as may be 

noticed in figs.(7)-(9). In figs.(7) and 

(8), large deflection in instantaneous 

temperature may be observed for the 

two pulses under comparison during 

the first half of the pulse (which 

reflects the differences in 

instantaneous power 

densities).However, the temperature 

curves get closer to each other 

continuously during the second half of 

the pulse till the end of the duration at  

ξ=1.           
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 التسخين الليزري احادي النبضة للأجسام المعتمة في الهواء
 

 *بسام حنا حبيب
 

 هندسة اتصالات الحاسبات/ صور الجامعة كلية المن*

 

 :الخلاصة
تم تطوير نموذج نظري لأحتساب التغير الزمني لدرجة الحرارة لسطح مادة صلبة معتمة موضوعة في 

الهواء الجوي خلال تعرضها لنبضة ليزرية و لحالات محددة تسمح بتولد البلازما على هيئة ما يعرف بموجات 

يتم في النموذج .     [Laser supported Absorption Waves (LSAW)]الأمتصاص المعززة بالليزر 

من حيث تأثيرها على نمط , أو كما يعرف بشكل النبضة, الحالي التعامل مع التغيرات الزمنية لشدة النبضة

تم اقتراح ثلاثة اشكال للنبضة الليزرية و جرت مقارنة   .التغيرات الزمنية لدرجة الحرارة عند سطح الهدف

 .     تأثيراتها الحرارية مع حالة النبضة المربعة ذات الشدة الثابتة


