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Abstract: 
Oscillation criteria are obtained for all solutions of the first-order linear delay 

differential equations with positive and negative coefficients where we established 

some sufficient conditions so that every solution of (1.1) oscillate. This paper 

generalized the results in [11]. Some examples are considered to illustrate our main 

results. 
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Introduction: 
   The study of  delay differential 

equation with positive (or negative) 

coefficients has been considered an 

attention of many researchers all over 

the world for the last several years see 

[1]-[3],[6],[8]-[10],and few of them 

investigated the case with positive and 

negative coefficients see [4]-[5],[7]. 

The authors in [11] investigated the 

first order neutral differential equations 

with positive and negative coefficients 

with constant delays. In this paper we 

generalized the result in [11] where we 

used variable delays.  Consider the 

linear delay differential equation with 

positive and negative coefficients 

             

0))(()())(()()(  txtQtxtPtx 

…  (1)   

Where ,)),,[(, 0

 RtCQP  and  ,  

are continuous strictly increasing 

functions  with     

        ,)(lim,)(lim 


tt
tt

   and  

ttt  )()(  … (2) 

By a solution of  Eq.(1.1) we mean a 

function )),,([ Rtx x   such that x 

satisfies eq.(1.1), )}(),(max{ tttx  . 

A solution of eq.(1) is said to be 

oscillatory if it has arbitrarily large 

zeros , otherwise is said to be 

nonoscillatory .The purpose of this 

paper is to obtain  sufficient conditions 

for the oscillation of all solutions of eq. 

(1). 

 

1. Some Basic Lemmas: 
    The following lemmas will be useful 

in the proof of the main results: 

Lemma 1 ( theorem 2.1.1 [7] ) . If  

ttq )(   0   is continuous 

function  


)(lim tq
t

 and 

 


t

tq
t e

dssP

)(

1
)(inflim       …. (1.1) 

Then the following statements are true: 

1. 0))(()()(  tqxtPtx  has no  

eventually positive solutions. 

2. 0))(()()(  tqxtPtx  has no  

eventually negative solutions. 

3. 0))(()()(  tqxtPtx  has no 

eventually positive solutions. 

4. 0))(()()(  tqxtPtx  has no 

eventually negative solutions. 
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Lemma 2 .(lemma 1.5.4 [5] )    Let 

Rta  0),,0(,)0,(   and 

suppose that a function 

]),,[( 0 Rtx    satisfies the 

inequality 
tst

sxatx





)(max)( for 

0tt  . Then x cannot be a non-negative 

function. 

Remark.We can  generalize  Lemma 2 

by taking  )(t  to  satisfy  (2) and 

,)(max)(
)( tst

sxatx





 0tt  .Then x  is 

eventually negative  function for  

0tt  . 

The following lemma improve lemma 

2.6.1 given in  [5]  

Lemma 3.  

    Assume that (2) holds. 

Let )(tx  be an eventually positive 

solution of (1) and set  

       

))((,)())(()()( 0
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)(
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… (1.2) 
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… (1.3)                                     

     then the following statements are 

true.  

1- if   

)()))((()(,1))(( 1

)(
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1 ttQtPdssQ
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t
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


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 and  1)( t   …  (1.4) 

      then )(tz is eventually positive and 

non increasing function. 

2- if   

)()()))(((,1))(( 1

)(

)(

1 tQttPdssP

t

t

 

 






 and 1)( t   …  (1.5) 

      then  )(tu  is eventually positive 

and non-increasing function. 

Proof. 

    Suppose that 0))((,0)(  txtx  , 

and  0,0))(( tttx   

1. Differentiate (1.2) and use (1) we 

get 

))(1))((()())((

)]()))((()([)( 1

ttxtQtx

ttQtPtz
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        Using (1.4) this yields  

         

0))(()]()))((()([)( 1   txttQtPtz  

…(1.6) 

to show that )(tz  is eventually positive 

, suppose that 0)( tz since )(tz is 

not equivalent to 0 for 01 ttt  then 

there exists  12 tt   such that 0)( 2 tz  

then  22 )()( ttfortztz     then 

(1.2) will be  
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Then by lemma 2 we see that 0)( tx   

for  2tt  , this is a contradiction. 

2. Differential (1.3) and use (1) we get  

      
)1)())((()(
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Using (1.4) this yields 

    

0))(()]()))((()([)( 1   txttPtQtu     

…  (1.7) 

To show that )(tu eventually positive, 

suppose that ,,0)( 0tttu   

since )(tu is not equivalent to 0 for 

01 ttt  then there exists  12 tt   

such that 0)( 2 tu  then  

22 )()( ttfortutu     then (1.3) 

will be 
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thus by Lemma 2 we see that 

2,0)( tttx  . 

This is a contradiction,  the proof of  

lemma is complete.   ■  

 

2.Main results: 
    The next result provid a sufficient 

conditions for the oscillation of all 

solutions of eq. (1) 

Theorem1. 

    Assume that (2),(1.4) hold and that  

  



t

tt e
dsssQsP

)(

1 1
)]()))((()([inflim



 

  … (2.1) 

Then every solution of (1) oscillates. 

Proof. Assume for the sake of 

contradiction that equation (1) has an 

eventually positive solution )(tx ,by 

Lemma 3 (1) it follows that )(tz  

which is defined by (1.2) is an 

eventually positive and non increasing  

function and )()( txtz   also from 

(1.6) we see that eventually  

0))(()]()))((()([)( 1   txttQtPtz    

  

Or       

0))(()]()))((()([)( 1   tzttQtPtz    

but in view of (2.1) it follow from 

Lemma 1(1) that the last inequality 

cannot have an eventually positive 

solutions. Which is a contradiction 

since )(tz  is eventually positive 

function.   ■  

Theorem 2. 

    Assume that (2),(1.6) hold and that  

 



t

tt e
dssQssP

)(

1 1
)]()()))((([inflim



   

…(2.2) 

Then every solution of equation (1) 

oscillates. 

Proof:  Assume for the sake of 

contradiction that (1) has eventually 

positive solution )(tx .By Lemma 2 (2) 

it follows that )(tu  which is defined by 

(1.3) is  eventually positive and 

monotone decreasing function and 

)()( txtu  . Also from (1.7) we see 

that eventually 

0))(()]()()))((([)( 1   txtQttPtu  

 

0))(()]()()))((([)( 1   tutQttPtu  

 

But in view of (2.2) it follow from 

Lemma 1(2) that the last inequality 

cannot        eventually have a positive 

solution. Which is a contradiction 

since )(tu is eventually positive 

function.     ■ 
Example 1. 
Consider the delay differential 

equation; 
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(E1) 

One can find that conditions (1.4) and 

(2.1) are met so according to theorem 1 

every solution of equation (E1) 

oscillate for instance the solution 

tttx sin)( 2  is oscillatory solution. ■ 
Example 2. 
Consider the delay differential 

equation; 

00)
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(E2)    

 

One can find that conditions (1.5) and 

(2.2) are met so according to theorem 2 

every solution of equation (E2) 

oscillate for instance the solution 

t
t

tx sin
1

)(   is oscillatory solution. ■ 
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تذبذب المعادلات التفاضلية التباطوئية الخطية من الرتبة الأولى ذات المعاملات 

 الموجبة والسالبة

 
 *زينب احمد عبد الله  *انتصار هيثم قاسم  *حسين علي محمد

 
 قسم الرياضيات,كلية العلوم للبنات ,جامعة بغداد *

 
:الخلاصة  

 .ذات المعاملات الموجبة و السالبة من الرتبة الأولى  في هذا البحث تمت دراسة المعادلات التباطؤية الخطية

المعادلة  ية وكافية لضمان تذبذب كافة حلولحيث تم إيجاد شروط ضرور
,0))(()())(()()(  txtQtxtPtx   وشروط كافية أخرى للحلول غير المتذبذبة كي تكون متقاربة الى

 .وقد أعطينا بعض الأمثلة لتوضيح هذه النتائج ,الصفر

  

 

 


