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Abstract  
A mathematical method with a new algorithm with the aid of Matlab language 

is proposed to compute the linear equivalence (or the recursion length) of the pseudo-

random key-stream periodic sequences using Fourier transform. The proposed method 

enables the computation of the linear equivalence to determine the degree of the 

complexity of any binary or real periodic sequences produced from linear or nonlinear 

key-stream generators. The procedure can be used with comparatively greater 

computational ease and efficiency. The results of this algorithm are compared with 

Berlekamp-Massey (BM) method and good results are obtained where the results of 

the Fourier transform are more accurate than those of (BM) method for computing the 

linear equivalence (L) of the sequence of period (p) when (L) is greater than (p/2). 

Several examples are given for conciliated the accuracy of the results of this proposed 

method. 

 

Key words : Fourier transform, Linear equivalence, Periodic key-stream 

sequence, Berlekamp-Massey method. 

 

Introduction :  

           Cryptography, communication 

systems and information security are 

considered one of important sciences 

in the world, especially after using the 

computers in these sciences. The need 

to keep certain messages secret has 

been appreciated for thousands of 

years. The idea of a cipher system is to 

disguise confidential information in 

such a way that its meaning is 

unintelligible to an unauthorized 

person. The information to be 

concealed is called plaintext [1]. 

         Cipher systems, communication 

systems and control systems are 

usually using pseudo-random (PR) 

generators. A PR generator is a 

mechanism for generating a PR 

periodic sequence of binary or real 

digits [2]. The sequence appears 

random in nature but in reality it is 

deterministic and available to the 

privileged users. It is called a pseudo-

random sequence since there is no 

algorithm using a finite state machine 

which can produce a truly random 

sequence [3]. The PR key-stream 

periodic sequences are used as 

spectrum-spreading modulations for 

direct sequence, spread spectrum 

design for digital communication 

system, in wireless technique and as a 

key in encryption to produce the 

ciphertext in cipher systems [3,4]. 

 The PR key-stream sequences 

are characterized by three properties 

which define the measure of security 

for these sequences. These properties 

are period, complexity and 

randomness. It is absolutely crucial 
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that if the key of the cipher system is 

known, one can determine the plaintext 

from the ciphertext. Hence the PR key-

stream sequence of the cipher system 

or communication system must have 

long period, high complexity and 

randomness properties to have 

acceptable security. The linear 

equivalence determines the degree of 

complexity of the PR periodic 

sequences. There are several methods 

to determine the linear equivalence of 

these PR periodic sequences like 

Berlekamp-Massey method and 

matrices techniques. The linear 

equivalence of a periodic sequence is 

defined as the length (n) of the smallest 

linear feedback shift register (LFSR) 

that can generate the sequence. We can 

characterize the LFSR of length (n) by 

the characteristic polynomial  f (x) : 

 
nn

n xxcxcxccxf  


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210 ...)(  

where c0 ,c1, . . .,cn-1 are 0 or 1. The 

sequence must have high linear 

equivalence since for a sequence with a 

linear equivalence (n); (2n) 

consecutive bits of the generated 

sequence are needed to deduce the 

whole sequence, since if (2n) 

consecutive bits are given, a system of 

n-equations in (n) unknown variables 

can be written to find its unique 

solution [1,5,6]. 

 James L. Massey [7] suggested 

an algorithm which is at the present 

time known as Berlekamp-Massey 

algorithm for computing the linear 

equivalence of the PR sequences and 

Baker, J.M. and Hughes, P. gave a new 

explanation of the Berlekamp-Massey 

algorithm using a method based on 

matrices technique [6]. The Fourier 

transformation is used to determine the 

linear equivalence of the periodic key-

stream sequences of the PR generators.  

 

 

 

The Linear Equivalence  
 The linear equivalence "L" (or 

the recursion length) of a periodic 

sequence is defined as the length (n) of 

the smallest LFSR that can generate 

the sequence (i.e. L=n). The 

polynomial of the linear equivalence is 

called the minimal characteristic 

polynomial. So the linear equivalence 

of the sequence is the degree of 

minimal characteristic polynomial that 

can generate the given sequence. If the 

entire sequence is known, then the 

linear equivalence can be determined 

and, in fact, how actually to generate 

the sequence on a register of that size. 

We show that, for a sequence with a 

known linear equivalence (L), the 

entire sequence is given when 2L 

consecutive bits are known, where (2L-

1) consecutive bits are not enough to 

determine the sequence uniquely [1,2]. 

The linear equivalence determines the 

degree of complexity of the periodic 

key-stream sequences of the PR 

generators [1,7]. 

 

Berlekamp-Massey Method 
 Berlekamp-Massey (BM) 

technique [5,6,7] uses the description 

based on the synthesis of a shift 

register where it is used to determine 

the linear equivalence and the minimal 

characteristic polynomial that can 

generate the given sequence . 

     Berlekamp-Massey  method gives: 

1. The polynomial C(D) reciprocal 

of the characteristic polynomial 

F(D) of the minimal LFSR that 

can generate the given sequence, 

where : 

C(D) = D
n 

F(
D

1
) = 1+cn-1D+…+ 

c1D
n-1

+c0D
n 

        and             

F(D)=c0+c1D+…+cn-1D
n-1

+D
n
  . 

2. The linear equivalence (L) of the 

sequence . 
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 BM technique is explained in 

the following algorithm : 

 

BM Algorithm : 

Step 1: 

    Input:   

(1)  The period (n) of the sequence (S). 

(2)  The digits Si , i=0,2,…,n-1  of the 

sequence (S). 

Step 2: 

 Put C(D) =1,  B(D) =1,  L=0 ,  b=1  , 

x=1   and   N=0   

 

Step 3: 

        If  N = n , then  stop. Otherwise 

compute (d): 

          



L

i

iNiN ScSd
1

 

Step 4: 

        If   d = 0  , then  x = x +1 , and  go 

to (step 7) 

Step 5:   

        If d ≠0 and 2L > N , then  

 C(D) = C(D) - db
-1

D
x
B(D) 

 x = x+1 

 go to (step 7)  

Step 6: 

        If d ≠0 and 2L ≤ N , then  

 T(D) = C(D) 

 C(D) = C(D) - db
-1

D
x
B(D) 

 L = N+1- L 

 B(D) = T(D) 

 b = d 

 x=1 

Step 7: 

N = N+1 

and  go to (step 3) . 

Step 8: 

            From the polynomial C(D) find 

the characteristic polynomial F(D) as: 

        

nn

n

n DDcDcc
D

CDDF  



1

110)
1

()(  . 

     

Example: 

       Consider the following sequence : 

   Si=0011101, where i = 0,1,…,6  and 

the period  n=7 . 

 By applying BM algorithm the 

linear equivalence (L) of the sequence 

Si=3  and  the polynomial C(D) 

(reciprocal of F(D)) = 1+D+ D
3
 . 

    Therefore, the minimal characteristic 

polynomial  F(D) = 1 + D
 2

+ D
3
. 

 

Fourier Transformation: 
  The Fourier transformation is 

one of the major mathematical tools for 

analyzing linear continuous time 

system. It is a basic tool used in the 

solution of initial and boundary value 

problems. The Fourier transform is 

used to transfer the continuous signal 

into algebraic equations, where it 

transfers the differential form into 

algebraic form which, in many cases, 

helps the solution of problems.  

        The Fourier transform of a 

function )(tf  which is defined on 

),(  is defined by: 

£ 




 dttfesFtf ist )()()]([   … 

(1) 

where (£[ )(tf ]) is the Fourier 

transform of a function )(tf , (s) is an 

arbitrary complex number. [8].  

 The Fourier transform 

possesses many notable properties. 

Some of the salient properties enjoyed 

by the Fourier transform are given in 

the following [9,10]: 

 

 (1) Linearity Property : 

       If c1 and c2 are any constants while 

F1(s) and F2(s) are Fourier Transforms 

of F1(t) and F2(t)  respectively, then: 

      

£  )]()([ 2211 tFctFc 1c £ )]([ 1 tF 2c £

)]([ 2 tF  

                                    

)()( 2211 sFcsFc  .    
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(2) Convolution Property : 

         If   £ )]([ tF )(sF   and     

£ )]([ tG )(sG , then   

  (s)(s))]([(t)][)()()()( ££££ GFtGFduutGuFtGtF 







 





 

(3) Shifting Property : 

 If   £ )]([ tF )(sF   then  

£

)()()]([ )( asFdtetFtFe tasiiat  






 

Proposed Method for Computing the 

Linear Equivalence of the Periodic 

Sequence Using Fourier Transform: 

  In this section Fourier 

transform is used to compute the linear 

equivalence of the periodic key-steam 

PR sequence.  

A sequence of numbers which 

repeats itself every (T) discrete-time 

units is said to be periodic with period 

T. The linear equivalence can be 

determined mathematically using 

Fourier transform as follows:- 

 Consider the following periodic 

sequence (Seq) of numbers over GF(q) 

where GF(q) is the Galois field of 

order (q) and (q ) is a prime number 

(q>1) :   

1210 ,,,,  TaaaaSeq   … (2) 

which has period (T),  T>0  . 

 

The sequence (Seq ) can be written as a 

periodic function F(t) which is:  

 

      





















 TtTa

ta

ta

tF

T 1

21

10

)(

1

1

0


 … (3) 

where 0,)()(  TTtFtF  and ( t) 

is an integer )0( t  .                                       

 

To find the Fourier transform in 

eq.(1) of the above periodic function 

F(t) in eq.(3) which has period T>0, 

the transformation in eq.(1) ignores all 

information contained in )(tF prior to 

(t=0 ), since t>0. 

   Hence, 

              

    



0

)()()( ££ dttFeTtFtF ist    

                                               

  
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T
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T

T

istist dttFedttFedttFe
0

3

2

2

)()()(

   

In the first integral let ut  , in the 

second integral let Tut  , In the 

third integral let  Tut 2 , etc. Then    

   

T T

Tuis

T

Tuisisu duTuFeduTuFeduuFetF£
0 0

)2(

0

)( )2()()()]([
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T
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isuisTisu duuFeeduuFeeduuFe

0 0

2 )()()(
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T

isuisTisT duuFeee
0
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
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
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where we have used the periodicity to 

write 
,),()2(),()( uFTuFuFTuF   

and the fact that:   

1
1

1
)1( 32 


 k

k
kkk  . 

 
Hence,      

£
)(

)(

1

)(

)()]([ 0

sQ

sP

e

dttFe

sFtF
isT

T

ist







  … (4) 

 

From eq.(3) and eq.(4) one gets the 

following equations :  

             


T

ist dttFesP

0

)()(



Baghdad Science Journal  Vol.8(3)1122 

958 






T

T
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T

istist dteadteadtea
1

1

2

1

1

1

0

0    

… (5) 

and   

              
isTesQ 1)(  … (6) 

 

The results of eq.(5) is : 

 

   

 iTs

T

sTi

T

isisis eaeaeaeaeaea
is

sP 1

)1(

1

2

110

0

0

1
)( 



  

  … (7) 

Let   )(
1

)( sG
is

sP   ,   where 

isT

T

sTi

T

isisis eaeaeaeaeaeasG 1

)1(

1

2

110

0

0)( 



  

   … (8) 

Then,      
)(

)(
1

)(
sQ

sG
issF      … (9) 

 

Hence, the linear equivalence can be 

found from eq.(9) as follows :- 

 

a) Since the arithmetic operations 

over Galois field of order q 

(GF(q)), then Q(s) in eq.(6) can be 

written as : 

   isT
q

isT eqesQ  1mod)1()( … (10) 

    where q  is a modulo (q) addition. 

b) Ignore the negative terms from 

G(s) in eq.(8) to be : 

          
isT

T
isisis eaeaeaeasG 1

3
2

2
10)(  

 … (11)  

c) Simplify the function F(s),  where 

)(

)(
1

)(
sQ

sG
issF   using eq.(10) and 

eq.(11)  to be: 

  
)(

)(
1

)(
sC

sE
issF         where    

))(),(gcd(

)(
)(

sGsQ

sG
sE   ,   

))(),(gcd(

)(
)(

sGsQ

sQ
sC    

     and ))(),(gcd( sGsQ is the greatest 

common divisor of 

)(sQ and )(sG in eq.(10) and 

eq.(11) respectively. 

d) Convert C(s) in step (c) into the 

polynomial C(x) by using the 

relation : 

      
irsr ex        )0( Tr  . 

e) Find the polynomial  M(x) 

using the polynomial C(x) in 

step (d) as follows : 

n
nn

n xcxcc
x

CxxM 01)
1

()(   

       

     where 
n

nxcxccxC  10)(  , (n) 

is the degree of the polynomial 

C(x)  and nccc ,,, 10    are the 

coefficients of C(x). 

f) The linear equivalence (L) can 

be determined as : 

              

 ))(( xMDegL   

      where ))(( xMDeg  is the degree of 

the characteristic polynomial M(x) 

and M(x) is the characteristic 

polynomial of the minimal LFSR 

that can generate the given 

sequence. 

 

The following algorithm 

summarizes the steps for using the 

Fourier transform for finding the 

linear equivalence (L) of the 

periodic key-stream PR sequence.  

 

FT-LE Algorithm: 
Step 1:

 

       Input the sequence  (Seq)  over 

GF(q) of period (T) ,T>0 

                          110 ,,,  TaaaSeq   
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Step 2:  

Take the Fourier transformation 

to the periodic sequence in 

step(1) by using : 

     
)(

)(

1

)(

)( 0

sQ

sP

e

dttFe

sF
isT

T

ist







   

where F(t) in eq.(3). 

Step 3: 

From step (2) find G(s) in eq.(8) 

and Q(s) in eq.(10). 

Step 4: 

Ignore the negative terms from 

G(s) in (step 3) to be :         

          
isT

T

isisis eaeaeaeasG 1

3

2

2

10)(  

        

Step 5:  

Find the greatest common divisor 

of the two polynomials Q(s) and 

G(s) ( ))(),(gcd( sGsQ ) over GF(q) 

as follows: 

 

a) Input the two polynomials G(s) 

and Q(s) where the degree of 

Q(s) is greater   than or equal to 

G(s). 

b) According to the arithmetic 

operations over GF(q), 

compute r  where r  is the 

remainder from dividing Q(s) 

by G(s) using modulo (q) in 

addition. 

c)  If  r =0  then :  

 )())(),(gcd( sGsGsQ   

 go to (step d) 

else 

  Set:    Q(s)=G(s)                     

              G(s) = r 

  Go to (step b) 

d) End. 

Step 6: 

Simplify the function F(s) in step 

(2) using G(s) in step (4) and Q(s) 

in step (3) to be : 

 
)(

)(
1

)(
sC

sE
issF        where      

     
))(),(gcd(

)(
)(

sGsQ

sG
sE   ,       

     
))(),(gcd(

)(
)(

sGsQ

sQ
sC   , 

 

and ))(),(gcd( sGsQ  is the  greatest 

common divisor of )(sQ and )(sG  

in eq.(10) and eq.(11) respectively. 

 

Step 7: 
Convert C(s) in step (6) into the 

polynomial C(x) by using the 

relation:  
irsr ex  , )0( Tr  . 

 

Step 8: 
 Use the polynomial C(x) to 

find the polynomial  M(x) as 

follows : 

n

nn

n

xcxcc

x
CxxM

01

)
1

()(





 

       

where 
n

nxcxccxC  10)( , (n) is the 

degree of the polynomial C(x) and 

nccc ,,, 10   are the coefficients of 

C(x). 

Step 9: 
Determine the linear 

equivalence (L) by :       

       

          ))(( xMDegL   

where ))(( xMDeg  is the degree 

of the characteristic polynomial 

M(x) and M(x) is the characteristic 

polynomial of the minimal LFSR 

that can generate the given 

sequence. 
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FT-LE algorithm enables the 

computation of the linear equivalence 

accurately for any binary or non-binary 

periodic PR sequences produced from 

linear or nonlinear generators.   

 

Illustrative Examples : 

Example (1) : 

Consider the following PR 

periodic key-stream sequence over 

GF(2) :- 

     Seq=0011101 0011101 … ,  where 

the period T=7 . 

 

The function F(t) can be obtained from 

the first period of the above sequence 

using eq.(3) as follows :- 

       

     























761

650

521

200

)(

t

t

t

t

tF  

 

The function F(t)=F(t+T)  is shown in 

figure (1). 
 

  

  
  

  
  

  
  

        1   
  

                1   2   3   4   5   6   7   

  F(t)   

          t 

  

                   

Figure (1) The function F(t) in 

example (1). 

 

 

 According to eq.(4) the Fourier 

transform of F(t) = F(t+T) is : 

                     

£
)(

)(

1

)(

)()]([
7

7

0

sQ

sP

e

dttFe

sFtF
is

ist







               

         Hence, by applying  (FT-LE) 

algorithm the following results are 

obtained : 

 

 isisisisisisisis eeeeeeee
is

sP 765443321
)( 

   

        
isisisis eeeesG 7543)(   

        isis eesQ 77 12mod)1()(      

and 
)(

)(
1

)(
sC

sE
issF   where: 

1))(),(gcd( 24  isisis eeesGsQ , 
isesE 3)(   and 1)( 3  isis eesC . 

 

 The polynomial C(x) is 

obtained from C(s) by using the 

relation:   )70(  rex risr  

1)( 3  xxxC . 

Therefore,      

323 1)
1

()( xx
x

CxxM     

Then, the linear equivalence (L) of the 

PR key-stream sequence (Seq)  is :- 

        3))((  xMDegL  .   

where M(x) is the characteristic 

polynomial of the minimal LFSR that 

can generate the sequence (Seq) . 

 

 The result of this example can 

be verified directly by generating the 

minimal characteristic polynomial  

M(x) of 3-stage LFSR using the first 

three consecutive bits (i.e. the initial 

state 001 ) from the sequence (Seq) as 

it is illustrated in the following figure:  

 

 

                    0011101 

 
0 0 1 

 

 

 The results of M(x) and (L) in 

this example are the same results as 

those of F(D) and (L) in the example in 

section (3) where F(D) and (L) are 
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obtained by using Berlekamp-Massey 

(BM) method.  

 

 

 

Example (2) : 

Consider the following PR 

periodic sequence over GF(3) :- 

       Seq=0,2,2,1,0,1,1,2 where the 

period T=8 . 

 The function F(t) can be 

obtained from the PR sequence (Seq) 

using eq.(3) as follows :- 

         


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

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t

t
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The function F(t)=F(t+T)  is shown in 

figure (2). 

 

       F(t)   

  
  
  

  
  

              
2             

1             

    

  

                              t   

               1      3   4      5     2  6         7 8   

  
  

  
  

  
  
  

  
  

  
  
 

  
  

  

                           

Fig.(2) The function F(t) in example 

(2). 

 

By applying  (FT-LE) algorithm the 

following results are obtained : 

  

 isisisisisisisisisisisis eeeeeeeeeeee
is

sP 87766543322 222222
1

)( 

 
isisisisisis eeeeeesG 876432 222)( 

  
isis eesQ 88 213mod)1()(      

and 
)(

)(
1

)(
sC

sE
issF       where :         

222))(),(gcd( 2456  isisisisis eeeeesGsQ

  ,   

         
isesE 2)(          and      

2)( 2  isis eesC  

  

The polynomial C(x) is obtained from 

C(s) by using the relation:  

)80(  rex risr
 

 

          2)( 2  xxxC . 

Therefore,        

 
22 21)

1
()( xx
x

CxxM    and 

the linear equivalence (L) of the PR 

sequence (Seq)  is: 

                   

2))((  xMDegL       

where M(x) is the minimal 

characteristic polynomial that can 

generate the sequence (Seq) . 

  

 The result can be verified 

directly by generating the minimal 

characteristic polynomial  M(x) using 

the first two consecutive bits (i.e. the 

initial state 0,2) from the sequence Seq.  

 In this example, the Fourier 

transform determined the linear 

equivalence of the non-binary 

sequence also.  

 

Example (3) : 

 

Consider the following PR 

periodic sequence over GF(7) :- 

      Seq=4,3,6,6,6,5,1,3,4,6,0,5   where 

the period T=12 . 

The function F(t) can be obtained from 

the PR sequence (Seq) using eq.(3) as 

follows :- 
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By applying  (FT-LE) algorithm the 

following results are obtained : 

 





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55664433

556666663341
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isisisisisisisisisisis eeeeeeeeeeesG 121098765432 564356663)( 

 

      isis eesQ 1212 617mod)1()(      

and  
)(

)(
1

)(
sC

sE
issF       where      

 
63225663))(),(gcd( 23456789  isisisisisisisisis eeeeeeeeesGsQ

, isisis eeesE 364)( 23    and      

6432)( 23  isisis eeesC . 

 

The polynomial C(x) is obtained from 

C(s) by using the relation 

)120(  rex risr

6432)( 23  xxxxC . 

 Therefore, 

323 6432)
1

()( xxx
x

CxxM   

and the linear equivalence (L) of the 

PR sequence (Seq)  is :- 

3))((  xMDegL       

where M(x) is the minimal 

characteristic polynomial that can 

generate the sequence (Seq) . 

 

 The result can be verified 

directly by generating the minimal 

characteristic polynomial  M(x) using 

the first three consecutive bits (i.e. the 

initial state 4,3,6) from the sequence 

Seq.  

 

 For a comparison between the 

results of Fourier transform and 

Berlekamp-Massey (BM) method, 

table (1) and table (2) present the linear 

equivalence (L) with the minimal 

characteristic polynomial of some PR 

sequences using Fourier transform and 

Berlekamp-Massey (BM) method 

respectively by applying (FT-LE) and 

(BM) algorithms respectively. 
 

Table (1) The Fourier transform for finding the linear equivalence 

with the minimal characteristic polynomial. 

 
PR key-stream 

sequences 
Period 

Fourier transform (FT-LE) algorithm 

M(x) L 
Output sequence 

of  M(x) 
Period 

1 8888888 7 13  xx  3 8888888 7 

2 101011001000111 15 134  xx  4 101011001000111 15 

3 
100101100000 

101001001 
21 x6+x4+x2+x+1 6 

100101100000 

101001001 
21 

4 10100011 8 
x7+x6+x5+x4+x3+ 

x2+x+1 
7 10100011 8 

5 1110001 7 
x6+x5+x4+x3+x2+ 

x+1 
6 1110001 7 

6 000101100011111 15 
x10+x8+x5+ 

x4+x2+x+1 
10 000101100011111 15 

7 

 

1111001000011010 

 

16 
x15+x14+x13+x12+ 

x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1 
15 

 

11110010000110 

10 

16 

8 
9,10,6,0,2,5,4,8 over  

GF(11) 
8 3x7+3x6+3x5+3x4+3x3+3x2+3x+3 7 9,10,6,0,2,5,4,8 8 

9 1010010110000111 16 x12+x8+x4+1 12 
10100101100001 

11 
16 
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Table (2) The Berlekamp-Massey (BM) method for finding the linear 

equivalence with the minimal characteristic polynomial. 

 
PR  

key-sream 

sequences 

Period 
Berlekamp-Massey method (BM) algorithm 

F(D) L Output sequence of  F(D) 
Period 

1 8888888 7 13 DD  3 8888888 7 

2 101011001000111 15 134  DD  4 101011001000111 15 

3 
1001011000001010

01001 
21 D6+D4+D2+D+1 6 100101100000101001001 21 

4 10100011 8 D4+D3+D2+1 4 1010001 7 

5 1110001 7 D4+D+1 4 111000100110101 15 

6 000101100011111 15 
D8+D6+D4 

+D3+D2+D+1 
8 

0001011000111111011010…0

110 
255 

7 1111001000011010 16 
D10+D9+D8+ 
D5+D3+D+1 

10 
1111001000101101010100010

00…11110010 
93 

8 
9,10,6,0,2,5,4,8 

over GF(11) 
8 732  DD  2 9,10,6,0,2,5,4,8,3,1   10 

9 1010010110000111 16 
D9+D8+D7 +D6+D5+ 

D4+D3+D+1 
9 

10100101100001111110…111

001101 
511 

 

It is obvious from the comparison 

between table (1) and table (2), the 

results of Fourier transform are more 

accurate than those of Berlekamp-

Massey (BM) method for computing 

the linear equivalence for determining 

the complexity of the PR key-stream 

sequence from the first period of the 

sequence. Since from the fourth to 

ninth row in table (2), we notice the 

output sequence of the characteristic 

polynomial F(D) is not the same PR 

sequence with the same period exactly 

while the results in table (1) has high 

accuracy for determining the linear 

equivalence because the output 

sequence of M(x) is the same given PR 

sequence with the same period. Hence, 

Fourier transform enables the 

computation of the linear equivalence 

to determine the degree of the 

complexity of these PR sequences with 

high accuracy. 

 

Conclusion : 
 The decryption of the 

ciphertext in cipher system depends on 

the availability of the key-stream of the 

ciphertext. So, one of the important 

properties of the PR key-stream 

sequence is to have high linear 

equivalence to have high complexity in 

order to be difficult for the cryptanalyst 

to obtain the entire sequence when 

only small segment of it is known.. 

The results of the Fourier transform 

show a marked improvement for 

computing the linear equivalence. It 

has been shown that the proposed 

method is comparable in accuracy with 

BM method. From some illustrative 

examples in table (1) and table (2) the 

following points are listed:  

1- The Fourier transform was 

successfully employed to compute 

the linear equivalence of the binary 

or real PR key-stream sequences 

which are produced from linear and 

nonlinear generators. 

2- The Fourier transform gives better 

accuracy than BM method for 

determining the linear equivalence 

and so it enables the computation of 

the complexity which determines the 

ability of security of PR key-stream 

sequences. 

3- When the linear equivalence (L) of 

the given sequence of period (p) is 

greater than (p/2) then BM method 
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fails to determine the minimal 

characteristic polynomial which 

generates the same given sequence 

with the same period (p) exactly, 

since BM method is based on the 

synthesis of a shift register by taking 

one bit from the given sequence each 

time, so the linear equivalence (L) 

changes if only (d ≠ 0) and ( NL 2 )  

where :      

               




L

i

iNiN ScSd

1

 . 

Therefore, when (d=0), L is not 

changed, see section (3). 
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عة انسياب المفتاح الـدوريـة طريقة رياضية لحساب المكافـئ الخـطي لمتتابـ

 باستخدام محـول فورير
 

 *أثـير جـواد كاظم             *رغـد كاظم صالح    
 

 .الجامعة التكنولوجية/يقية  قسم العلوم التطب*

 

 :الخلاصة
ت لاتتااعواا ا سوياا  يقدم البحث طريقة مقترحة مع خوارزمية مطوور   لحسواا الاكواال ال طوا ريا ويا

من الااكن حسواا الاكواال ال طوا  يوة متتااعوة  وريوة  نا يوة  و  يور  اذالافتاح الدورية ااست دام محول اورير 

لبرمجوة ( Matlab)است دمت لغوة . حول نا ية يتم إ تاجها من مولداا مفاتيح خطية و ير خطية ااست دام هذا الا

من الااكن ملاحظة كفاء  الطريقة و سهولة الحساااا ايها اذ تات مقار ة  تا ج هذه الطريقوة انتوا ج . هذه الطريقة

طريقة ايرليكامب ماسا من خلال اعض ا مثلوة التو ويحية و قود توم الحعوول تلوج  توا ج  قيقوة لتحديود الاكواال 

 .رية و التا تاتلك مكاائأ خطيأ اكبر من  عف طول الدور  ال طا للاتتااعاا الدو


