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Abstract:  

In this paper, we derive and prove the stability bounds of the momentum coefficient µ 

and the learning rate η of the back propagation updating rule in Artificial Neural 

Networks .The theoretical upper bound of learning rate η is derived and its practical 

approximation is obtained . 
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Introduction 
Back propagation ( BP ) process can 

train multilayer Artificial Neural 

Networks ( Ann’s ). With 

differentiable transfer functions, to 

perform a function approximation to 

continuous function f  R
n
, pattern 

association and pattern classification. 

The term of back propagation to the 

process by which derivatives of 

network error with respect to network 

weights and biases, can be computed. 

This process may be used with a 

number of different optimization 

strategies.  The BP architecture was 

developed in the early of 1970 by 

several independent sources ( Werbor; 

Parker; Rumelhart, Hinton and 

Williams ). The central idea is that the 

errors of the units of the hidden layer 

are determined by back-propagating 

the errors of the units of the output 

layer. For this reason the method is 

often called the back-propagation 

learning rule. Back-propagation can 

also be considered as a generalization 

of the delta rule for non-linear 

activation functions and multilayer 

networks. The application of the 

generalization delta rule thus involves 

two phases [1 ] : During the first phase 

the input x is presented and propagated 

forward through the network to 

compute the output values y for each 

output unit. This output is compared 

with its desired value d, resulting in an 

error signal E for each output unit. The 

second phase involves a backward pass 

through the network during which the 

error signal is passed to each unit in 

the network and appropriate weight 

changes are calculated.Gradient 

(Steepest ) Descent Training 

AlgorithmA standard back propagation 

algorithm is a gradient descent 

algorithm (as in the Widrow-Hoff 

learning rule) .For the basic gradient ( 

steepest ) descent algorithm, the 

weights and biases are moved in the 

direction of the negative gradient of 

the performance function .For the 

method of gradient descent, the weight 

update is given by : 
 

w(k+1) k (gk)      ….(1) 
 

where ηk is a parameter governing the 

speed of learning, named learning rate, 

controlling the distance between W(t+1) 

and W(t) and gk is the gradient of the 

error surface at w( k ) [2 ] .The 

*Department of Mathematics, College of Education Ibn Al-Haitham, Baghdad University . 

 
 



 Baghdad Science Journal  Vol.9(4)2012 
 

317 

convergence condition is satisfied by 

choosing : 0 < ηk < 

.max2

1



 

where max. is the largest eigen value of 

weight matrix [ 3 ]. 

Gradient  Descent With Momentum 

Training Algorithm [4 ] 

There is another training algorithm for 

Ann that often provides faster 

convergence. The weight update 

formulas for gradient descent with 

momentum is given by :  

w(k+1) w(k) +ηk (gk) + (w(k) 

 1) ) 

that is : 

 w(k+1)  k ( gk ) +  w(k)  

 i.e.    

 ∆W(k+1) =ηk (gk ) +w(k)    …( 2 ) 
 

where the momentum parameter  is 

constrained to be in the range (0, 1). 

Momentum allows the Ann to make 

reasonably large weight adjustments, 

while using a smaller learning rate to 

prevent a large response to the error 

from any one of training pattern . 

The gradient is constant ( gk = const ) . 

Then, by applying iteratively (2) : 
 ∆W = - η gk ( 1+ μ + μ

2
 + …)  – - 

g




-1
k 

 ( because μ Є (0, 1) and then  

0=μlim n

∞→n

 ), i.e. the learning rate 

effectively increases from ηk to 
)-1( 


  

Stability and Convergence  

Stability refers to the equilibrium 

behavior of the activation state of a 

neural network whereas convergence 

refers to the adjustment behavior of the 

weight during training, which will 

eventually lead to minimization of 

error between the desired and actual 

outputs [3]. Thus convergence is 

typically associated with supervised 

training, although it is relevant in all 

cases of training, both supervised and 

unsupervised. In this section we will 

discuss the global behavior of Ann's 

whose activation dynamics is 

described by the following set of 

equations [5]  
•

i
c = xi(ci)[di(ci) -

∑ )c(zw
N

1=k
kkik

]i= 1,2,.. ,M   …. (3)   

where ci = ci(t) activation value of the 

i
th

 neuron and it is a function of time 

and the coefficients [wik] form a 

symmetric matrix of weights,  
•

i
c (t) 

which gives the rate of change of the 

activation value of the i
th

 neuron of 

Ann, X= (x1,x2,…,xN )
T
 is the input 

vector with components xi, i =1 

,2,…,N , d = (d1,d2,…,dM )
T
 is the 

desired output vector with components 

dj , j = 1,2, … , M.These equations 

represent a class of N-dimensional 

competitive dynamical systems. In 

general, the activation state of the 

network starts from an initial state and 

follows a trajectory dictated by the 

dynamics of the equations. A network 

will be useful only if a trajectory leads 

eventually to an equilibrium state at 

which point there is no further change 

in the state.Such a state is also called a 

stable state, when a small perturbation 

of the state settles to the same 

state.Different initial states may follow 

different trajectories, all of which 

should terminate at some equilibrium 

states. There may be several 

trajectories that may terminate at the 

same equilibrium state.The existence 

of such equilibrium states enables 

global pattern formation possible in a 

network.That is, an input pattern 

corresponding to a starting state will 

eventually lead to one of the global 

patterns, which can be interpreted as 

storage of the input pattern in long 

term memory. The global pattern thus 

formed will only change if there is a 

different external input. In some cases 

the network parameters such as weight 

may slowly change due to learning or 

self-organization. If the global pattern 

formation still occurs for choice of 
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these parameters, then the resulting 

pattern is said to be absolutely stable or 

globally stable.The set of equations (3) 

describing activation dynamics do 

exhibit stable states which are also 

called fixed point equilibrium states. 

Such a network then can form global 

patterns at these states, and hence can 

be used for pattern storage. One of the 

conditions is that the weights {wik} 

should be symmetric ( wik = wki ).If the 

weights are not exactly symmetric, 

then the network may exhibit periodic 

oscillations of states in certain regions 

of the state space. These oscillatory 

regions are also stable, and hence can 

be used for pattern storage. Oscillatory 

stable states may also arise when there 

is some delay in the feedback of the 

outputs from other processing units to 

the current unit, even though the 

weights are exactly symmetric.   In 

general, it is difficult to know whether 

a network will have stable points, and 

if so, how many. It is even more 

difficult to determine the behavior of 

the network near the stable points to 

examine the nature of stability. 

However, in a few cases it is possible 

to predict the global pattern behavior, 

if it is possible to show the existence of 

an energy function (error function , 

objective function ) called Lyapunov 

function [6]. It is a scalar function of 

the parameters of the network, denoted 

by V(x), where x is the activation state 

vector of the network  V(x) is said to 

be a Lyapunov function if  V(x) ≤ 0  

for all  x . [6]It is sufficient if we can 

find a Lyapunov function for a 

network in order to demonstrate the 

existence of stable equilibrium states. 

It is not a necessary condition, as the 

network may still have stable points, 

even thought a Lyapunov function 

could not be found. The existence of 

Lyapunov function makes it easy to 

analyze the stability of the network .If 

the Lyapunov function is interpreted as 

an energy function, then the condition 

that V(x) ≤ 0 means that any change in 

the energy due to change in the state of 

the network results in lowering the 

total energy. Eventually the trajectory 

leads to a state from where there is no 

further decrease in the energy due to 

changes in the state. Such a state 

corresponds to the energy minimum, at 

which V(x) = 0. Normally there will be 

many states at which 
•

V (x) = 0. All 

such states corresponds to equilibrium 

points or stable states. All trajectories 

in the state space will eventually lead 

to one of these stable states.  

Discussion on Equilibrium  

Normally the term equilibrium is used 

to denote the state of a network at 

which the network settles when small 

perturbations are made to the state. In 

the deterministic models ( The 

activation model considered so far are 

deterministic models ), the equilibrium 

states are also steady states. Hence 

these states satisfy the equations 
•

i
c (t) 

= 0 , for i = 1,…, N . 

Note that : 
•

i
c (t) = 0 is a necessary 

condition for a state to be an 

equilibrium state, but not a sufficient 

condition. 

Definition [7] 

x
*
 is said to be an equilibrium point ( 

fixed point, stationary point, steady 

state ) it x(t) = x
*
 implies equality for 

all future time.  

 Lyapunov Stability Theory [7] 

 There are several mathematical 

definitions of the term " stability ". The 

one due to Lyapunov is most useful 

here. 

Definition 1 

The equilibrium state x = 0 is stable if, 

for any Є > 0 there exists δ(Є) > 0, 

such that |x(0) | < δ implies |x(t)| < Є 

for all t ≥ 0.  

 In other words, the system trajectory 

can be kept arbitrarily close to the 

origin by stating sufficiently close to it 

. 
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Note  

 An equilibrium state is unstable if the 

above condition is not satisfied. It's a 

bit tricky to negate the quantifiers, but 

here goes. There exists at least one Є 

such that for every δ > 0 , there exists a 

trajectory with | x(0) | < δ and | x(t) | ≥ 

Є for some t . For a linear system, in 

stability is equivalent to blowing up . 

In a nonlinear system , this is not the 

case . 

Bounds of Momentum Coefficien(µ ) 

of Back Propagation  
For an energy function E(W) to be 

minimized, the updating rule for 

adjusting weights in neural network by 

using Back propagation with 

momentum is expressed by : 
 

W( k+1) =W(k) + ŋ (-

dw

dE ) + µ ( W(k) – W(k-1) )  …(4) 

where ŋ is the learning rate and µ is the 

momentum coefficient. It is well 

known in the literature [8] that ŋ is 

positive and µ is in [0,1). No proof is 

given however.Suppose that the 

structure of a multilayer Artificial 

neural network is determined and it 

can represent the unknown nonlinear 

mapping exactly with proper weight 

W
*
. That is, for a given input pattern xp 

, the desired output dp can be obtained 

from the neural network output yp= 

f(W, xp ) with weight W = W
*
, or dp = 

f(W
*
, xp) .The energy function E(W) is 

usually defined as the sum of squared 

error between the actual output yp of 

neural network and the desired output 

dp for all training patterns: 

E= )yd()y∑ d(
2

1
pp

T
p

L

1=p
p

      . ..(5) 

Then the updating rule (4) will have 

the following form :- 
 

W(k+1)=W(k)+
∑ )k(e)k(M
L

1=p
p

T
p

+ µ  W(k) – W(k-1) ....(6) 

Where 
Mp(k) = 

)k(dW

)x),k(W(df p and ep(k) = dp - yp(k) 

= f( w
*
, xp ) - f( w(k) , xp ) 

In this section, the necessary condition 

of ŋ and µ we will derive which ensure 

the stability and convergence of the 

updating rule (6).Now to find the 

bounds of µ :Updating rule (6) can be 

written as : 
 

W( k+1) = W( k ) + ŋ h( k ) + µ ( W(k) – W(k-1) )   ... ( 7 ) 
 

Where h(k) = ∑ )k(e)k(M
L

1=p
p

T
p

. 

Defining v(k) = W(k) - W(k-1), we get 

from ( 7 ) 
 

v( k+1 ) = µ v( k ) + ŋ h( k  ( …..( 8 ) 
 

The solution of ( 8 ) is : 

v( k+1 ) = µ
K
 v(1) +  ŋ∑μ

k

1=i

k-i
 h( i )  ….. ( 9 ) 

Recalling the assumption that dp =  

f( W
*
, xp ), we get the following lemma  

Lemma 1  
If W(k)  W

*
 , then v(k)  

0 and ep(k)  0 . 

 Proof  
v(k) = W(k) - W(k-1) 0 as 

W(k) W
*
, ep(k) = dp - yp(k) = 

f(W
*
, xp) - f(W(k), xp ), and f(W, X) is 

a continuous function of W. 

Hence, ep(k) 0 for all p = 

1,2,…, L , as W(k) W
*
 .                                  

Theorem 1 

 Anecessary condition for the 

convergence of the updating rule (6) is 

that | µ | < 1 . 

Proof 

By Lemma (1), v(k)  0  and ep(k)  

0 as W(k) W
*
. 

That is, for any є > 0, there exists an 

integer K such that || v(k) ||< є and || 

ep(k) ||< є for all k > K. 

For k = K+1, Equation (9) can be 

written as : 
 

µK+1 v(1) + ŋ∑μ
K

1=i

K+1-i h( i ) = v( K+2 ) - ŋ h( K+1 )..(10) 

In view of (10), the following 

inequality can be easily derived : 

| µ |K+1|| v(1) + ŋ∑μ
K

1=i

-i h(i) || ≤ || v(K+2) || + ŋ || h(K+1) || ..(11) 

As W(K+1) W
*
, v(K+2)

0, and h(K+1) 0 because 

ep(K+1) 0, W(K+1) is bounded, 
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and all element of Mp(K+1) are 

bounded. Therefore, the right hand side 

of (11) goes to zero. So the left hand 

side also goes to zero. 

However, ||v(1) + ŋ∑μ
K

1=i

-i
 h( i ) || can 

not be zero in general, therefore, | µ 

|
K+1

 should go to zero as K 0. 

Consequently | µ | < 1 is required.                                 

This theorem shows that | µ | < 1 is a 

necessary condition. If | µ | ≥ 1, then 

the updating rule is unstable. The 

momentum coefficient µ is thus 

bounded by -1< µ < 1 . 

Theoretical Lower and Upper 

Bounds of Learning Rate ŋ 

The bounds for ŋ We will establish in 

two cases: µ = 0 and 0 < | µ | < 1. 

The case µ = 0  

When  µ = 0, (6) can be written as : 
  

W( k+1 ) = W( k ) + ŋ h( k ) ….(12) 
 

Define u( k ) = W
*
- W( k ),  (12) is the 

same as : u( k+1 ) = u( k ) - ŋ h( k ). 

One way to show the convergence of 

W( k ) is to require that : 

 || u(k+1) ||
2
 ≤ || u(k) ||

2
. Then the 

following inequality must be true ; 
 

|| u( k+1) ||
2
 = || u(k) ||

2
 + ŋ

2
 h

T
( k) h( k) - 2ŋ u

T
( 

k) h
T
( k) ≤ || u( k) ||

2
                … (13) 

That is : 

ŋ
2
 h

T
( k ) h( k ) ≤ 2ŋ u

T
( k ) h( k )     ,       

for all k                            ..(14) 

Theorem 2 

 A necessary condition for the 

convergence of the updating rule (12) 

is that ŋ be positive. 

Proof    

When ŋ = 0, the updating rule is trivial 

because there will not be any weight 

updating in (12).When ŋ is negative, 

we will show it is impossible by 

contradiction.For the simple case of m 

=1 and L =1, the inequality (14) 

becomes ( when both sides of (14) are 

divided by ŋ ): 
 

ηeT(k)M(k)MT(k)e(k)≥2 uT(k)MT(k)e(k)  …..(15)    

                                                         

where M(k) = 
)k(dW

)X),k(W(df
 is 

1×M vector, and e(k) = d - y(k) = f( 

W
* 
,X ) - f( W(k) ,X ) is a scalar. 

Then from (15), we get : 
 

 ŋ≥

)k(e)k(M)k(M)k(e

)k(e)k(M)k(u2
TT

TT

   ….(16) 

By taken the limit W(k)   W
*
 on 

both sides of (16) becomes : 

*W→)k(w

lim ŋ ≥ 
TMM

N2
,   

where M = 
*

*

dW

)X,W(df
, 

 and N = u
T
( k) M

T
( k) e( k) . 

That means ŋ ≥ 0, which contradicts 

the assumption that ŋ is negative. 

Therefore, ŋ must be positive.                                                    

Note  
Theorem (2) determine the lower 

bound of ŋ is zero when µ = 0, and the 

upper bound of ŋ for µ = 0 can be 

derived from (14) as follows : 

ŋ ≤ 
)()(

)()(2

khkh

khku
T

T

  ,      when µ = 0 

The case 0 < | µ | < 1 

 Use of the definition u( k) = W
*
- W( 

k), we get from (6) : 
 

u( k+1) = u( k) – ŋ h( k) + µ ( u( k) – u( k-1) 

)…..(17) 
 

Multiplying both sides of (17) by h
T
(k) 

yields : 
 

h
T
( k) u( k+1) = h

T
( k) u( k) – ŋ h

T
( k) 

h( k) + µ h
T
( k) - µ h

T
( k) u( k-1). 

η h
T
( k) h( k) = (1+ µ ) h

T
( k) u( k) - µ 

h
T
( k) u( k-1) – h

T
( k) u( k+1)   ….(18) 

 

|ŋ| h
T
( k) h( k) ≤ (1+µ ) | h

T
( k)u( k) | + 

| µ h
T
( k) u( k-1) + h

T
( k) u( K+1) 

|…(19) 

 

|ŋ|≤

)()(

|)1()()1()(||)()(|)1(

khkh

kukhkukhkukh

T

TTT          

Therefore, the upper bound of | ŋ | is 

given by : 
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| ŋ | ≤ B( k ,µ )  for 0 < | µ | < 1 where 

B(k,µ) = 

)()(

|)1()()1()(||)()(|)1(

khkh

kukhkukhkukh

T

TTT  

  ,  when   0< | µ | < 1 

when ŋ = 0, (6) becomes W( k+1) = 

(1+ µ )W( k) - µ W( k-1), which is a 

system with eigenvalues 1 and µ. The 

system is marginally stable. Hence, ŋ 

should be positive for 0 < | µ | < 1. 

The above results can be summarized 

by the following theorem : 

Theorem 3 

Anecessaryconditionforthe 

convergence of updating rule (6) is that 

ŋ should be 0 < ŋ < B(k ,µ) for -1 < µ 

< 1. 

Computable Upper Bound of 

Learning Rate ŋ  

Theorem(3) gives the theoretical upper 

bounds of ŋ which cannot be easily 

evaluated because W
*
 is not known a 

priori so that u(k) = W
*
 -  W(k) cannot 

be computed as required by B( k,µ ). 

Thus it would be helpful for us to find 

computable bounds which are 

approximations to the theoretical 

bounds. 

As W(k)  W
*
,the limit of B(k,µ) 

is 2b for µ = 0, and the limit of B(k,µ) 

is 2b(1+µ) for 0< |µ| < 1. Because 2b 

(1+ µ ) is equal to 2b when µ = 0, we 

can say that for all µ in ( -1,1), the 

limit of B(k ,µ) is 2b(1+ µ ) at 

convergence. 

b(k) can be used as an approximation 

to b at each iteration step k in the 

learning process. In summary, we have 

the following theorem : 

Theorem 4 

An approximation of the upper bound 

of ŋ is Min [2 b(k) (1+ µ )]. 

 The upper bound can be computed at 

each step k as the weights are updated. 

Theorem (4) states that the upper 

bound of ŋ is proportional to 1+ µ. 

Since the upper bound is only a 

necessary condition, a more 

conservative value of ŋ should be used 

in applications. 

 

References: 
.1  B. Krose and P. van der Smagt, 1996, 

An introduction to Neural Networks, 

Eighth edition, published inAmsterdam  

.2  L.N.M. Tawfiq, 2004, On Design And 

Training of Artificial Neural Networks 

For Solving Differential 

Equations , PhD. Thesis, College of 

Education Ibn Al-Haitham, Baghdad 

University . 

.7    B.Yegnanarayana , 2000, Artifical 

Neural Networks  , Second edition , 

published in New Delhi  . 

.7  T.Poggio and F.Girosi, 1989, A 

Theory of Networks for 

Approximation and Learning 

,MASSACHUS-ETTS INSTITUTE 

OF TECHNOLOGY ARTIFICIAL 

INTELLIGENCE LABORATORY, 

A.I.Memo ,1140 ( 31 ) : 88 - 102 . 

.7  Z.Sen-Lin and L.Mei-Qin , 2005, 

Stability Analysis of discrete - time 

BAM neural networks based 

onstandard neural network models , 

Journal of Zhejiang University Science 

, 6A ( 7 ), : 689-696. 

.7  Z.Yi, P.A.Heng and A.W.C.Fu, 1999, 

Estimate of Exponential Convergence 

Rate and Exponential StabilityFor 

Neural Networks , IEEE , Vol. 10 (6) : 

105 - 117 . 

.3  S.Sebastian , 2000 , Lyapunov 

Stability theory , published in El paso , 

Texas. 

.7  D.E.Rumelhart ,G.E.Hinton and 

R.J.Williams, 1986, Learning internal 

representations by error propagation 

,parallel Distributed processing J., I : 

318 – 363 . 

 

 

 



 Baghdad Science Journal  Vol.9(4)2012 
 

317 

 التدريب المرتد للشـبكات العـصبيـة خـوارزميـةأستقـراريـة 

 

 *ناجي محمد توفيقلمى 

 
 جامعة بغداد –كلية التربية أبن الهيثم  –قسم الرياضيات *

 

 الخلاصة :
لقاعدة التدريب المرتد  ηومعدل التعلم  µيتضمن البحث اشتقاق وبرهان حدود أو الفترة التي ينتمي إليها ثابت العزم 

نظريما والقيممة التقريبيمة  ηلمعمدل المتعلم  في الشبكات العصبية الصناعية كذلك يتضممن البحمث اشمتقاق القيمد ا علم 

 عمليا.  

 

 


