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Abstract:

Let R be a commutative ring with identity, and let M be a unity R-module. M is called
a bounded R-module provided that there exists an element xeM such that anng(M) =
anng(x). As a generalization of this concept, a concept of semi-bounded module has
been introduced as follows: M is called a semi-bounded if there exists an element

xeM such that \/’annRM :\/annR(x). In this paper, some properties and

characterizations of semi-bounded modules are given. Also, various basic results
about semi-bounded modules are considered. Moreover, some relations between
semi-bounded modules and other types of modules are considered.
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Introduction:

Let R be a commutative ring with
unity, and let M be an R-module. An
R-module M is called a semi-bounded
module if there exists an element xeM

such that ,/ann,M =,/ann, (x),

where anngM={rireR and r m = 0 ,
vYmeM}. Our concern in this paper is
to study semi-bounded modules and to
look for any relation between semi-
bounded modules and certain types of
well-known modules especially with
bounded modules. This paper consists
of two sections. In the first section, the
definition of a semi-bounded module is
recallded and we illustrate it by some
examples, we also give some of the
basic properties of semi-bounded
modules. We end the section by
studying the localization of semi-
bounded modules, see (1.13).

In section two, we study the relation
between semi-bounded modules and
bounded modules. It is clear that every
bounded module is semi-bounded
module, but the converse is not true in
general. We give in (2.1), a conditions
under which the two concepts are
equivalent. Next we investigate the

relationships between semi-bounded,
prime, quasi-Dedekined, cyclic and
multiplication modules see (2.3),
(2.8).1.  Semi-Bounded = Modules
Following [1] an R-module M is said
to be a bounded module if there exists
an element xeM such that anngM =
anng(x), where anngM = {r € R; r
m=0,vmeM}. In this section the
concept of semi-bounded module is
introduced as a generalization of a
bounded module and we give some
properties and characterizations for
this concept. We end this section by
studying the behaviour of semi-
bounded modules under localization.
Definition 1.1:

An R-module M is said to be semi-
bounded module if there exists an
element xeM such that
Jann M =./ann_(x). We give
some examples and remarks.

Remarks and Examples 1.2:

1. Every bounded R-module is a semi-
bounded module. But the converse is

not true in general. However we have
no example.
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2. Every simple R-module is a semi-
bounded module. But the converse is
not true in general, for example: The
Z-module Z is a semi-bounded module
but not simple.

3. Q as a Z-module is a semi-bounded
module.

4. Consider, the Z-module M = Z®Zs.

Then Jann,M =,/ann,(1,0) .
Therefore, M is a semi-bounded
module.

5. pr is not a semi-bounded Z-

module.
Proof: We know that every submodule

1
is of the form <—n+Z>,
p

where n be a non-negative integer,

SO 1 __ : But
annz<$+2>:«/p"z=pz
1 .
/annZZp,, #* /annz<—n+Z>’ S0 pr 1S
p

not a semi-bounded module.

6. Every cyclic R-module is a semi-
bounded.

Proof: It follows directly by [2,
Corollary 1.1.3, ch.1] and (1.2,1).
However, the converse is not true in
general for example: The Z-module Q
is a semi-bounded by (1.2,3), but not
cyclic.

7. For each positive integer n, Z, as a
Z-module is a semi-bounded.

It is known that, if M is an R-module
and | is an ideal of R which is
contained in anngkM then M is an R\I-
module, by taking (r+l) x = r
X,V xeM, reR Now, we can give the
following result.

Theorem 1.3 Let M be an R-module
and let | be an ideal of R, which is
contained in anngkM. Then M is a semi-
bounded R-module if and only if M is
a semi-bounded R\ I- module.

Proof: If M is a semi-bounded R-
module. To prove M is a semi-
bounded R\l-module , we must prove

of Z
p
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Jann, M =Jann, (x), for some
xeM.
It is clear that

Janng\ M gJannRH (X) .Let (r

+ 1) e Jannry\| (X) ,then (r+1)" x=0

for some neZ., and so (r "
+1)x=0.Hence r"x=0, then

reannr(X). But M is a semi-

bounded R-module ,s0 re 4/@NNgM

and r"e @annNgM . Then

r"'m = 0 for some neZ. and for all
meM and hence r "'m =(r " +)m =
(r+1)" m = 0 for all meM. This implies

(r+)" eanng, M

a/annR\,M :

Therefore, \fann M =,/ann

hence M
module.
Conversely , if M is a semi-bounded
R\I-module, to prove M is a semi-
bounded R-module,we must prove

JannpM = JannR (X) , for some x
€ M. It is clear that
JannrM < \Janng(X). Let r

e Janngr(X), then r"x=0, for some

neZ. butr'x = (r" +)x=(r+1)"x =0,

then (r+1) € \/anngr\| (X).But M is a

and so (r+l)e

() and
is a semi-bounded R\I-

semi-bounded  R\I-module, so (
r+l)e Jann_ M and (r+l) "

eanng, M . Then, (r+1)" m = 0 for
some neZ, and for all m eM and
hence (r" +1) m = r"m = 0. This implies
e annyM and SO

re JanngM .Therefore,

JanngM =,/anng(X) and hence M is a

semi- bounded R-module .
The following result is an immediate
consequence of theorem (1.3).

are
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Corollary 1.4:

Let M be an R-module, then M is a
semi-bounded R-module if and only if
M is a semi-bounded R\anng M-
module.

Recall that an R-module M is called
the internal direct sum of two R-
modules M; and M, of M, written as
M=M;®M, if and only if M=M1+M,
and MlﬁMzz{O}.

Now, the following result has been
stated and proved.

Proposition 1.5:

Let M; and M, be two semi-bounded
R-modules, then M:®M, is a semi-
bounded R-module.

Proof: There exists xeM; such that

Jann M, =.fann_(x). Also there
exists yeM, such that
Jann M, =fann_(y). So (xy)e
M;®M,. We claim that

\/annR (M1 ® Mz) :\/annR ((X, y))

Let re /ann.((x,y)), then

r"(x,y)=(0,0) for some neZ:, and so
(r"x,r"y)=(0,0). It follows that r"x=0
and r"y=0, that is r"eanng(x) and
r"eanng(y) and o)

re \Jann, (x) =\/ann,M,
re \Jann, (y) =./ann,M, . Now, if

(mm)eM;®&M, then
r"(m,m")=(r"m,r"m"= (0,0) for some
neZ,, implies that r"eanng(M:®M,)

reJann, (M, ®M,) .

and

and o)
Therefore

\llannR (M1 ® Mz) :\/annR ((X, y))

Recall that a submodule B of an R-
module M is called a direct summand
of M if and only if there exists a
submodule C of M such that M=B®C,
[3,p.31].

Note that a direct summand of a semi-
bounded module need not be semi-
bounded in general for example:
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Let M=Z® pr as a Z-module, M is
semi-bounded since
Jann,M =/ann, ((1,0)) , but Z.

is not semi-bounded Z-module, by

(1.2,(5)).

By proposition (1.5) and by
mathematical induction we have the
following.

Corollary 1.6:

A finite direct sum of semi-bounded R-
modules is semi-bounded.

Remark 1.7:

If M/N is a semi-bounded R-module,
then it is not necessary that M is a
semi-bunded R-module as the
following example shows.

Let I\/I:ZZEBZp as a Z-module and

p>2

N= @Zzp is a submodule of M, where
p>

p is a prime number, so M/N~Z; is a
semi-bounded Z-module. But M is not
a semi-bounded Z-module.

Recall that a submodule N of an R-
module M is said to be pure if
I MnN=I N for every ideal | of R. In
case R is a principal ideal domain
(PID) or M is cyclic, then N is pure if
and only if rIMnN=rN, VreR, [4].

By using this concept, we have the
following:

Proposition 1.8:

Let N be a pure submodule of an R-
module M such that M/N is a semi-
bounded R-module and

annRM:[NF:{M]. Then M is a semi-

bounded R-module,
[N : M]={reR;rMcN}.
R

where

Proof: Since M/N is a semi-bounded
R-module, then there exists X eM/N

such that fann_.M/N =,/ann_(X).

But [NF:{M]:annRM by hypothesis.

And on the other hand
anngkM/N=[N : M], hence
R
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Jann_M =,fann_(x)
()

can show that

No we
Jann_(x) =,fann_(m) for some

meM. By [2,proposition (1.1.21),
ch.1], we have ann_(x)=ann,(m)
for some meM. Therefore

Jann,(x) =,/ann,(m)

)

Thus by Q) and (2),
Jann M =,/ann_(m) for some

meM and M is a semi-bounded R-
module by definition (1.1).

Recall that an R-module M is called
F-regular if every submodule of M is
pure, [4].

The  following  result  follows
immediately from proposition (1.8).
Corollary 1.9:

Let M be F-regular R-module and N

be a submodule of M such that M/N is

a semi-bounded and anngM=[N : M].
R

Then M is a semi-bounded R-module.
Corollary 1.10:

Let N be a submodule of an R-module
M, if every finitely generated
submodule of N, is pure in M such that
M/N is a semi-bounded and

anngkM=[N : M]. Then M is a semi-
R

bounded.

Proof: Since every finitely generated
submodule of N is pure in M, implies
that N is pure submodule by
[4,corollary 2]. Therefore M is a semi-
bounded by proposition (1.8).

Hence we have another consequence of
proposition (1.8).

Corollaryl.11:

Let R be a (PID), M is an R-module,
N is a divisible submodule of M such
that M/N is a semi-bounded R-module

and anngkM=[N : M], then M is a semi-
R
bounded.
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Proof: It is enough to show N is pure
in M. Since N is a divisible submodule
of M, then rN=N for every 0#reR and
so rIMAN=rM~rN=rN. Thus N is pure.
Therefore M is a semi-bounded R-
module by proposition (1.8).Recall that
a subset S of a ring R is called
multiplicatively closed if 1S and
abeS for every a, beS, we know that
a proper ideal P in R is prime if and
only if R\P is multiplicatively closed,
[5,p.42].

Now, let M be an R-module and S be
a multiplicatively closed subset of R
and let Rs be the set of all fractional
r/'s where re R and S €S and Ms be
the set of all fractional x/s where
xe Mand seS. For x;, X,e Mand s;,
S;e S, X1/$1= Xofs, if and only if
there exists teS such that t(Six—
spX1)=0. So, we can make Ms in to
Rs-module by setting
x/s+ylt=(tx+sy)/st and r/t-x/s=rx/ts for
every x,yeM and s, teS, reR. and
Ms is the module of fractions. If
S=R\P where P is a prime ideal we
write M, instead of Ms and R, instead
of Rs. Ry, is often called the localization
of R at P, and M is the localization of
M at P. In order, we investigate the
behaviour of a semi-bounded module
under localization. But first we state
and prove the following lemma.
Lemma 1.12:

Let M be an R-module, let S be a
multiplicatively closed subset of R. If

(anng(x))s=anng_ (X)s, then
(a/annR(x) )s =, /annRs (X)s -
Proof: Let me( annR(X))s’ then

m=r/s for some re./ann (x) and

seS and hence
m"=(r/s)" e (anng(x))s=anng_(X)s for
some neZ.. Thus m=r/se ,jann, (X),

and so
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(JannR (x) )S c, jannRs (X)s
(1)

Now, let m:r/sa/annRS (X)s then
m"=(r/s)"=r"/s"e anng, (X)s=(anngr(x))

s for some neZ.. Hence, there exists
rieanng(x) and teS such that r"/s"=ry/t
and so there exists t;eS such that
titr"=t;r;8" eanng(x), which implies that
titr" eanng(X) and o)

tatre \Jann, (x) .Therefore,
m=r/s=tytr/titse (a [ann_ () )S and

\/annRS (x), (\/annR (x) )S

.(2)
By (1) and (2) we

(\/annR(x) )S :\/”annRs (X); .

get

Now, the following proposition has
been stated and proved:
Proposition 1.13:

Let M be a finitely generated
semi-bounded R-module and S be a
multiplicatively closed subset of R,
then Ms is a semi-bounded Rs-module.
Proof: Since M is a semi-bounded R-
module, then there exists xeM such

that \/ann,M =,/ann_(X), and so

(), ~({m, 5),

since M is a finitely generated, so
(anngM)s= annRSI\/IS by [6,proposition

(«/annRM )s =, famnRSMS by
[7,lemma 2.1.24,ch.2].

On the other hand,
(Vamn,69), = Jamn, 6. by
lemma (1.12). Therefore

\/annRSMS :t\/annRS (X)s and Msiis
a semi-bounded Rs-module.
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The following corollary follows
immediately from proposition (1.13).

If P is a prime ideal of R and M is a
finitely generated semi-bounded R-
module, then Mp is a semi-bounded
Rp-module.

2. Some Relations Between Semi-
Bounded Modules and Other Modules
In this section, we study the
relationships between semi-bounded
modules and other modules such as
bounded modules, prime, quasi-
Dedekined, cyclic and multiplication
modules. As we have mentioned in
(1.2(1)), that bounded module is a
semi-bounded module and the
converse need not be true in general.
However the following result shows
that the converse is true. But first the
following definition is needed.Recall
that a submodule N of an R-module M
is said to be semi-prime if for every
reR, xeM, keZ,, such that rxeN,
then rxeN, see [7].

Proposition 2.1:

If M is a semi-bounded and (0) is a
semi-prime submodule of M, then M is
a bounded R-module.

Proof: To prove M is a bounded
module, we must prove
anng(M)=anng(x) for some xeM.lIt is
clear that anng(M)canng(x). Let

reanng(x), hence re/ann_(x). But

M is a semi-bounded module, so
Jann M =./ann,(x).  Hence,

reJann,M, which implies that

r"eanng(M) for some neZ.. Thus,
r"m=0 for each meM. But (0) is a
semi-prime submodule of M, then
rm=0 and hence reanng(M), so that
anng(x)canng(M). Therefore,
anng(x)=annr(M), that is M is bounded
R-module.

Next, we study the relationship
between semi-bounded modules and
prime modules. And we give a
condition under which the two
concepts are equivalent. Recall that
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an R-module M is said to be prime
module if anngkM=anngN for every
non-zero submodule N of M, [8]. Itis
clear that every prime R-module is
bounded and hence it is semi-bounded,
but the converse need not be true in
general, for example:

Let M=Zg as a Z-module is bounded
and so semi-bounded, but not prime
module  since  annzZg=8Z  but

annz (2)=4Z. In order we can give the

following result. But first we need the
following definition. Recall that a
submodule N of an R-module M is
called a bounded if there exists xeN
such that anngkN=anng(x), see [2].
Proposition 2.2:

Let M be an R-module and let 0xeM
such that:

1. Jann M = /ann, (x)

2. (0) is a semi-prime submodule of M.
3. Every non-zero submodule N of M
is bounded. Then M is a prime R-
module.

Proof: Let N be a non-zero R-
submodule of M, to prove
anngkM=anngN. Since every non-zero
submodule N of M is bounded, then
anngN=anngr(x) for some xeN.
Therefore (by condition 1)

Jann M= fann,N and M is a

primary R-module by [7,theorem
(2.1.3),ch.2]. But (0) is a semi-prime
submodule of M (by condition 2), then
M is a prime R-module by [7,corollary
(2.3.3),ch.2].

The following corollary, we give a
condition under which a semi-bounded
module is prime.

Corollary 2.3:

If M is a semi-bounded R-module such
that every non-zero submodule N of M
is bounded and (0) is a semi-prime
submodule of M, then M is a prime R-
module Next, we study the
relationship  between semi-bounded
and quasi-Dedekined module.Now, the
following definitions are needed. Let
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M be an R-module. A submodule N of
M is called quasi-invertible if
Homg(M\N,M)=0 [9,definition
1.1.1,ch.1]. And M is called quasi-
Dedekined R-module if every
submodule N of M is quasi-invertible,
[9,definition 2.1.1,ch.2].

Remark 2.4:

Every quasi-Dedekind R-module is a
semi-bounded R-module.

Proof: By [9,theorem 1.7,ch.2]
everyquasi-Dedekind is prime and
hence it is semi-bounded. However,
the converse is not true in general, for
example:Zg as Z-module is semi-
bounded. But it is not prime (since

annzZg=8Z and annz(2)=4Z). So it is
not quasi-Dedekind. In the following
proposition, we give a condition under
which the converse of remark (2.4) is
true.

proposition 2.5: If M is a uniform
semi-bounded R-module such that (0)
is a semi-prime submodule of M and
every non-zero submodule of M is
bounded, then M is a quasi- Dedekind.
Proof: By proposition (2.3), M is a
prime R-module. But M is uniform, so
by [9,theorem 11,ch.2] we obtain the
result. As we mentioned in (1.2,(6)),
that cyclic module is a semi-bounded
and the converse need not be true in
general. However the following result
shows that the converse is true. But
first the following definition is needed.
Recall that an R-module M is said to
be fully stable if anny(anng(x))=(x) for
each xeM. [10,corollary 3.5]. In the
following proposition, we give a
condition under which the converse of
(2.2,(6)) is true.

Proposition 2.6:

If M is a fully stable semi-bounded R-
module and (0) is a semi-prime
submodule, then M is cyclic R-module.
Proof: Since M is a semi-bounded R-
module and (0) is a semi-prime
submodule, then M is a bounded by
proposition (2.1). But M is a fully
stable, so by [2,proposition 1.1.4,ch.1]
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we obtain the result. Now, the
relationship  between semi-bounded
modules and multiplication modules
has been studied. And we give a
condition under which the two
concepts are equivalent.  Recall that
an R-module M is said to be
multiplication module if for every
submodule N of M, there exists an
ideal I in R such that N=I M, [11].
Note that it is not necessary that every
semi-bounded is multiplication for
example: Q as a Z-module is semi-
bounded, but not multiplication, since

Z is a submodule of Q, but A1 an
ideal of Z such that 1Q=Z. In the
following corollary, we give a
sufficient condition for semi-bounded
module is multiplication.

Corollary 2.7:

If M is a fully stable semi-bounded R-
module and (0) is a semi-prime
submodule, then M is a multiplication
R-module.

Proof: By proposition (2.6), we obtain
that M is a cyclic R-module. Then it is
clear that M is a multiplication R-
module. In the following proposition,
we give some condition under which
the converse of corollary (2.7) is true.
But first we need the following
definition. Recall that an R-module M
is called a quasi-prime R-module if
and only if anngN is a prime ideal for
each non-zero submodule N of M, [6].

Proposition 2.8:

If M is a multiplication quasi-prime R-
module, then M is a semi-bounded R-
module.

Proof: Since M is a multiplication
quasi-prime R-module, so M is a prime
module by [6,theorem 1.4.1,ch.1],
hence it is a bounded. Therefore M is a
semi-bounded R-module by (1.2,(1)).
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