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Abstract: 

Let R be a commutative ring with identity, and let M be a unity R-module. M is called 

a bounded R-module provided that there exists an element xM such that annR(M) = 

annR(x). As a generalization of this concept, a concept of semi-bounded module has 

been introduced as follows: M is called a semi-bounded if there exists an element 

xM such that 
R R

ann M ann (x) . In this paper, some properties and 

characterizations of semi-bounded modules are given. Also, various basic results 

about semi-bounded modules are considered. Moreover, some relations between 

semi-bounded modules and other types of modules are considered. 
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Introduction: 
Let R be a commutative ring with 

unity, and let M be an R-module. An      

R-module M is called a semi-bounded 

module if there exists an element xM 

such that 
R R

ann M ann (x) , 

where annRM={r:rR and r m = 0 , 

mM}.  Our concern in this paper is 

to study semi-bounded modules and to 

look for any relation between semi-

bounded modules and certain types of 

well-known modules especially with 

bounded modules. This paper consists 

of two sections. In the first section, the 

definition of a semi-bounded module is 

recallded and we illustrate it by some 

examples, we also give some of the 

basic properties of semi-bounded 

modules. We end the section by 

studying the localization of semi-

bounded modules, see (1.13). 

 In section two, we study the relation 

between semi-bounded modules and 

bounded modules. It is clear that every 

bounded module is semi-bounded 

module, but the converse is not true in 

general. We give in (2.1), a conditions 

under which the two concepts are 

equivalent. Next we investigate the 

relationships between semi-bounded, 

prime, quasi-Dedekined, cyclic and 

multiplication modules see (2.3), 

(2.8).1. Semi-Bounded Modules    

Following [1] an R-module M is said 

to be a bounded module if there exists 

an element xM such that annRM = 

annR(x), where annRM = {r  R; r 

m=0,mM}.  In this section the 

concept of semi-bounded module is 

introduced as a generalization of a 

bounded module and we give some 

properties and characterizations for 

this concept. We end this section by 

studying the behaviour of semi-

bounded modules under localization. 

Definition 1.1:  

An R-module M is said to be semi-

bounded module if there exists an 

element xM such that 

R R
ann M ann (x) .   We give 

some examples and remarks. 

Remarks and Examples 1.2:  

1. Every bounded R-module is a semi-

bounded module. But the converse is 

not true in general. However we have 

no example. 
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2. Every simple R-module is a semi-

bounded module. But the converse is 

not true in general, for example: The 

Z-module Z is a semi-bounded module 

but not simple. 

3. Q as a Z-module is a semi-bounded 

module. 

4. Consider, the Z-module M = ZZ6. 

Then 
Z Z

ann M ann (1,0) . 

Therefore, M is a semi-bounded 

module. 

5. 
p

Z   is not a semi-bounded Z-

module. 

Proof: We know that every submodule 

of 
p

Z   is of the form 
n

1
Z

p
   , 

where n be a non-negative integer, 

so
n

Z n

1
ann Z p Z pZ

p
    

. But 

Z Z np

1
ann Z ann Z

p
     , so 

p
Z   is 

not a semi-bounded module. 

6. Every cyclic R-module is a semi-

bounded. 

Proof: It follows directly by [2, 

Corollary 1.1.3, ch.1] and (1.2,1). 

However, the converse is not true in 

general for example: The Z-module Q 

is a semi-bounded by (1.2,3), but not 

cyclic. 

7. For each positive integer n, Zn as a 

Z-module is a semi-bounded. 

It is known that, if M is an R-module 

and I is an ideal of R which is 

contained in annRM then M is an R\I-

module, by taking (r+I) x = r 

x, xM, rR  Now, we can give the 

following result. 

Theorem 1.3   Let M be an R-module 

and let I be an ideal of R, which is 

contained in annRM. Then M is a semi-

bounded R-module if and only if M is 

a semi-bounded R\ I- module. 

Proof: If M is a semi-bounded R-

module. To prove M is a semi- 

bounded  R\I-module , we must prove 

R\I R\I
ann M ann (x) , for some 

xM .  

 It is clear that 

)(\\ XIRannMIRann  .Let (r 

+ I)  )(\ XIRann  ,then (r+I)
n
 x=0 

for some nZ+, and so (r
 n

 

+I)x=0.Hence r
n
x=0,  then 

r )(XRann . But M is a semi-

bounded R-module ,so r MannR  

and  r
 n
 MannR . Then  

r
 n

m = 0 for some nZ+ and for all 

mM and hence r
 n

m =(r
 n

 +I)m = 

(r+I)
n
 m = 0 for all mM. This implies 

(r+I)
n
  Mann IR\  and so (r+I) 

R\I
ann M . 

Therefore,
R\I R\I

ann M ann (x)  and 

hence M is a semi-bounded R\I-

module. 

 Conversely , if  M is a semi-bounded 

R\I-module, to prove M is a semi- 

bounded R-module,we must prove 

)(XRannMRann  , for some x 

 M. It is clear that 

)(XRannMRann  . Let r 

 )(XRann , then r
n
x=0, for some 

nZ+, but r
n
x = (r

 n
 +I)x=(r+I)

n 
x = 0 , 

then (r+I )  )(\ XIRann . But M is a 

semi-bounded R\I-module, so ( 

r+I)
R\I

ann M and (r+I)
 n 

 Mann IR\ . Then, (r+I)
 n  

m = 0 for 

some nZ+  and for all m M and 

hence (r
 n

 +I) m = r
n
m = 0. This implies 

r
n
 MannR  and so are 

r MannR .Therefore, 

)(XRannMRann   and hence M is a 

semi- bounded R-module  .     

The following result is an immediate 

consequence of theorem (1.3). 
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Corollary 1.4:  

 Let M be an R-module, then M is a 

semi-bounded R-module if and only if 

M is a semi-bounded R\annR M-

module. 

 Recall that an R-module M is called 

the internal direct sum of two R-

modules M1 and M2 of M, written as 

M=M1M2 if and only if M=M1+M2 

and M1M2={0}. 

  Now, the following result has been 

stated and proved. 

Proposition 1.5:  

  Let M1 and M2 be two semi-bounded 

R-modules, then M1M2 is a semi-

bounded R-module. 

Proof: There exists xM1 such that 

R 1 R
ann M ann (x) . Also there 

exists yM2 such that 

R 2 R
ann M ann (y) . So (x,y) 

M1M2. We claim that 

R 1 2 R
ann (M M ) ann ((x,y)) 

. Let r
R

ann ((x,y)) , then 

r
n
(x,y)=(0,0) for some nZ+, and so 

(r
n
x,r

n
y)=(0,0). It follows that r

n
x=0 

and r
n
y=0, that is r

n
annR(x) and 

r
n
annR(y) and so 

r
R R 1

ann (x) ann M  and 

r
R R 2

ann (y) ann M . Now, if 

(m,m')M1M2 then 

r
n
(m,m')=(r

n
m,r

n
m')= (0,0) for some 

nZ+, implies that r
n
annR(M1M2) 

and so r
R 1 2

ann (M M ) . 

Therefore 

R 1 2 R
ann (M M ) ann ((x,y)) 

. 

Recall that a submodule B of an R-

module M is called a direct summand 

of M if and only if there exists a 

submodule C of M such that M=BC, 

[3,p.31]. 

Note that a direct summand of a semi-

bounded module need not be semi-

bounded in general for example: 

   Let M=Z
p

Z   as a Z-module, M is 

semi-bounded since 

Z Z
ann M ann ((1,0)) , but 

p
Z   

is not semi-bounded Z-module, by 

(1.2,(5)). 

By proposition (1.5) and by 

mathematical induction we have the 

following. 

Corollary 1.6:  

A finite direct sum of semi-bounded R-

modules is semi-bounded. 

Remark 1.7:  

If M/N is a semi-bounded R-module, 

then it is not necessary that M is a 

semi-bunded R-module as the 

following example shows. 

 Let M=Z2 p

p 2

Z


 as a Z-module and 

N=
p 2
 Zp is a submodule of M, where 

p is a prime number, so M/NZ2 is a 

semi-bounded Z-module. But M is not 

a semi-bounded Z-module. 

Recall that a submodule N of an R-

module M is said to be pure if                  

I MN=I N for every ideal I of R. In 

case R is a principal ideal domain 

(PID) or M is cyclic, then N is pure if 

and only if rMN=rN, rR, [4]. 

By using this concept, we have the 

following: 

Proposition 1.8:  

Let N be a pure submodule of an R-

module M such that M/N is a semi-

bounded R-module and 

annRM=[N
R
: M]. Then M is a semi-

bounded R-module, where 

[N
R
: M]={rR;rMN}. 

Proof: Since M/N is a semi-bounded 

R-module, then there exists xM/N 

such that 
R R

ann M/ N ann (x) . 

But [N
R
: M]=annRM by hypothesis. 

And on the other hand 

annRM/N=[N
R
: M], hence  
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R R
ann M ann (x)                                                                                       

…(1) 

No we can show that 

R R
ann (x) ann (m)  for some 

mM. By [2,proposition (1.1.21), 

ch.1], we have 
R R

ann (x) ann (m)  

for some mM. Therefore 

R R
ann (x) ann (m)                                                                                    

…(2) 

Thus by (1) and (2), 

R R
ann M ann (m)  for some 

mM and M is a semi-bounded R-

module by definition (1.1). 

  Recall that an R-module M is called 

F-regular if every submodule of M is 

pure, [4]. 

The following result follows 

immediately from proposition (1.8). 

Corollary 1.9:  

 Let M be F-regular R-module and N 

be a submodule of M such that M/N is 

a semi-bounded and annRM=[N
R
: M]. 

Then M is a semi-bounded R-module. 

Corollary 1.10:  

 Let N be a submodule of an R-module 

M, if every finitely generated 

submodule of N, is pure in M such that 

M/N is a semi-bounded and 

annRM=[N
R
: M]. Then M is a semi-

bounded. 

Proof: Since every finitely generated 

submodule of N is pure in M, implies 

that N is pure submodule by 

[4,corollary 2]. Therefore M is a semi-

bounded by proposition (1.8). 

Hence we have another consequence of 

proposition (1.8). 

Corollary1.11:  

 Let R be a (PID), M is an R-module, 

N is a divisible submodule of M such 

that M/N is a semi-bounded R-module 

and annRM=[N
R
: M], then M is a semi-

bounded. 

Proof: It is enough to show N is pure 

in M. Since N is a divisible submodule 

of M, then rN=N for every 0rR and 

so rMN=rMrN=rN. Thus N is pure. 

Therefore M is a semi-bounded R-

module by proposition (1.8).Recall that 

a subset S of a ring R is called 

multiplicatively closed if 1S and 

abS for every a, bS, we know that 

a proper ideal P in R is prime if and 

only if R\P is multiplicatively closed, 

[5 ,p.42]. 

 Now, let M be an R-module and S be 

a multiplicatively closed subset of R 

and let RS be the set of all fractional 

r/s  where r R  and s S and MS be 

the set of all fractional x/s where 

x and sS. For x1, x2 and s1, 

s2  S,     x1/s1= x2/s2 if and only if 

there exists tS such that t(s1x2–

s2x1)=0 .  So, we can make MS in to 

Rs-module by setting 

x/s+y/t=(tx+sy)/st and   r/tx/s=rx/ts for 

every x,yM and s, tS, r R . and 

MS is the module of fractions.  If 

S=R\P where P is a prime ideal we 

write Mp instead of Ms and Rp instead 

of Rs. Rp is often called the localization 

of R at P, and Mp is the localization of 

M at P.  In order, we investigate the 

behaviour of a semi-bounded module 

under localization. But first we state 

and prove the following lemma. 

Lemma 1.12:  

  Let M be an R-module, let S be a 

multiplicatively closed subset of R. If 

(annR(x))S=
SR Sann (x) , then 

 
SR R S

S

ann (x) ann (x) . 

Proof: Let m R
S

ann (x) , then 

m=r/s for some r
R

ann (x)  and 

sS and hence 

m
n
=(r/s)

n
(annR(x))S=

SR Sann (x)  for 

some nZ+. Thus m=r/s
SR S

ann (x)  

and so  
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 
SR R S

S

ann (x) ann (x)              

…(1) 

    Now, let m=r/s
SR S

ann (x)  then 

m
n
=(r/s)

n
=r

n
/s

n


SR Sann (x) =(annR(x))

S for some nZ+. Hence, there exists 

r1annR(x) and tS such that r
n
/s

n
=r1/t 

and so there exists t1S such that 

t1tr
n
=t1r1s

n
annR(x), which implies that 

t1tr
n
annR(x) and so 

t1tr R
ann (x) .Therefore, 

m=r/s=t1tr/t1ts R
S

ann (x) and  

 
SR S R

S

ann (x) ann (x)           

…(2) 

By (1) and (2) we get 

 
SR R S

S

ann (x) ann (x) . 

 

 Now, the following proposition has 

been stated and proved: 

Proposition 1.13:  

       Let M be a finitely generated 

semi-bounded R-module and S be a 

multiplicatively closed subset of R, 

then MS is a semi-bounded RS-module. 

Proof: Since M is a semi-bounded R-

module, then there exists xM such 

that 
R R

ann M ann (x) , and so 

   R R
S S

ann M ann (x) . And 

since M is a finitely generated, so 

(annRM)S=
SR S

ann M  by [6,proposition 

3.14,p.43]. Hence 

 
SR R S

S

ann M ann M  by 

[7,lemma 2.1.24,ch.2]. 

On the other hand, 

 
SR R S

S

ann (x) ann (x)  by 

lemma (1.12). Therefore 

S SR S R S
ann M ann (x)  and MS is 

a semi-bounded RS-module. 

 

  The following corollary follows 

immediately from proposition (1.13). 

If P is a prime ideal of R and M is a 

finitely generated semi-bounded   R-

module, then MP is a semi-bounded 

RP-module. 

2. Some Relations Between Semi-

Bounded Modules and Other Modules 

In this section, we study the 

relationships between semi-bounded 

modules and other modules such as 

bounded modules, prime, quasi-

Dedekined, cyclic and multiplication 

modules.  As we have mentioned in 

(1.2(1)), that bounded module is a 

semi-bounded module and the 

converse need not be true in general. 

However the following result shows 

that the converse is true. But first the 

following definition is needed.Recall 

that a submodule N of an R-module M 

is said to be semi-prime if for every 

rR, xM, kZ+, such that r
k
xN, 

then rxN, see [7]. 

Proposition 2.1:  

If M is a semi-bounded and (0) is a 

semi-prime submodule of M, then M is 

a bounded R-module. 

Proof: To prove M is a bounded 

module, we must prove 

annR(M)=annR(x) for some xM.It is 

clear that annR(M)annR(x). Let 

rannR(x), hence r
R

ann (x) . But 

M is a semi-bounded module, so 

R R
ann M ann (x) . Hence, 

r
R

ann M , which implies that 

r
n
annR(M) for some nZ+. Thus, 

r
n
m=0 for each mM. But (0) is a 

semi-prime submodule of M, then 

rm=0 and hence rannR(M), so that 

annR(x)annR(M). Therefore, 

annR(x)=annR(M), that is M is bounded 

R-module. 

Next, we study the relationship 

between semi-bounded modules and 

prime modules. And we give a 

condition under which the two 

concepts are equivalent.   Recall that 
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an R-module M is said to be prime 

module if annRM=annRN for every 

non-zero submodule N of M, [8].  It is 

clear that every prime R-module is 

bounded and hence it is semi-bounded, 

but the converse need not be true in 

general, for example: 

Let M=Z8 as a Z-module is bounded 

and so semi-bounded, but not prime 

module since annZZ8=8Z but 

annZ (2) =4Z. In order we can give the 

following result. But first we need the 

following definition.     Recall that a 

submodule N of an R-module M is 

called a bounded if there exists xN 

such that annRN=annR(x), see [2]. 

Proposition 2.2:  

 Let M be an R-module and let 0xM 

such that: 

1. 
R R

ann M ann (x)  

2. (0) is a semi-prime submodule of M. 

3. Every non-zero submodule N of M 

is bounded. Then M is a prime R-

module. 

Proof: Let N be a non-zero R-

submodule of M, to prove 

annRM=annRN. Since every non-zero 

submodule N of M is bounded, then 

annRN=annR(x) for some xN. 

Therefore (by condition 1) 

R R
ann M ann N  and M is a 

primary R-module by [7,theorem 

(2.1.3),ch.2]. But (0) is a semi-prime 

submodule of M (by condition 2), then 

M is a prime R-module by [7,corollary 

(2.3.3),ch.2]. 

The following corollary, we give a 

condition under which a semi-bounded 

module is prime. 

Corollary 2.3:  

If M is a semi-bounded R-module such 

that every non-zero submodule N of M 

is bounded and (0) is a semi-prime 

submodule of M, then M is a prime R-

module  Next, we study the 

relationship between semi-bounded 

and quasi-Dedekined module.Now, the 

following definitions are needed.    Let 

M be an R-module. A submodule N of 

M is called quasi-invertible if 

HomR(M\N,M)=0 [9,definition 

1.1.1,ch.1]. And M is called quasi-

Dedekined R-module if every 

submodule N of M is quasi-invertible, 

[9,definition 2.1.1,ch.2]. 

Remark 2.4:  

 Every quasi-Dedekind R-module is a 

semi-bounded R-module. 

Proof: By [9,theorem 1.7,ch.2] 

everyquasi-Dedekind is prime and 

hence it is semi-bounded. However, 

the converse is not true in general, for 

example:Z8 as Z-module is semi-

bounded. But it is not prime (since 

annZZ8=8Z and annZ( 2 )=4Z). So it is 

not quasi-Dedekind.   In the following 

proposition, we give a condition under 

which the converse of remark (2.4) is 

true. 

proposition 2.5:    If M is a uniform 

semi-bounded R-module such that (0) 

is a semi-prime submodule of M and 

every non-zero submodule of M is 

bounded, then M is a quasi- Dedekind. 

Proof: By proposition (2.3), M is a 

prime R-module. But M is uniform, so 

by [9,theorem 11,ch.2] we obtain the 

result. As we mentioned in (1.2,(6)), 

that cyclic module is a semi-bounded 

and the converse need not be true in 

general. However the following result 

shows that the converse is true. But 

first the following definition is needed.  

Recall that an R-module M is said to 

be fully stable if annM(annR(x))=(x) for 

each xM. [10,corollary 3.5]. In the 

following proposition, we give a 

condition under which the converse of 

(1.2,(6)) is true. 

Proposition 2.6:  

If M is a fully stable semi-bounded R-

module and (0) is a semi-prime 

submodule, then M is cyclic R-module. 

Proof: Since M is a semi-bounded R-

module and (0) is a semi-prime 

submodule, then M is a bounded by 

proposition (2.1). But M is a fully 

stable, so by [2,proposition 1.1.4,ch.1] 
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we obtain the result.    Now, the 

relationship  between semi-bounded 

modules and multiplication modules 

has been studied. And we give a 

condition under which the two 

concepts are equivalent.   Recall that 

an R-module M is said to be 

multiplication module if for every 

submodule N of M, there exists an 

ideal I in R such that N=I M, [11].  

Note that it is not necessary that every 

semi-bounded is multiplication for 

example: Q as a Z-module is semi-

bounded, but not multiplication, since 

Z is a submodule of Q, but  I an 

ideal of Z such that IQ=Z.   In the 

following corollary, we give a 

sufficient condition for semi-bounded 

module is multiplication. 

Corollary 2.7:  

If M is a fully stable semi-bounded R-

module and (0) is a semi-prime 

submodule, then M is a multiplication 

R-module. 

Proof: By proposition (2.6), we obtain 

that M is a cyclic R-module. Then it is 

clear that M is a multiplication R-

module. In the following proposition, 

we give some condition under which 

the converse of corollary (2.7) is true. 

But first we need the following 

definition. Recall that an R-module M 

is called a quasi-prime R-module if 

and only if annRN is a prime ideal for 

each non-zero submodule N of M, [6]. 

Proposition 2.8:  

 If M is a multiplication quasi-prime R-

module, then M is a semi-bounded R-

module. 

Proof: Since M is a multiplication 

quasi-prime R-module, so M is a prime 

module by [6,theorem 1.4.1,ch.1], 

hence it is a bounded. Therefore M is a 

semi-bounded R-module by (1.2,(1)). 
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*عدوية جاسم عبد الخالق  
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 الخلاصة :
عنصرا ً  xمقاسا ً مقيدا ً اذا وجد  M. اطلق على Rمقاسا ً احاديا ً على  Mحلقة ابدالية ذات محايد وليكن  Rلتكن 

.كتعميم لهذا المفهوم، قدمنا مفهوم مقاس شبه  [1]في المصدر annR(M) = annR(x)بحيث   Mينتمي الى 

بحيث  Mعنصرا ً ينتمي الى  xمقاسا ً شبه مقيدا ً اذا وجد  Mمقيدا ً كما يلي:يطلق على 

R R
ann M ann (x)  في هذا البحث، تم تعريف بعض الخواص والتميزات حول المقاسات شبه.

المقيدة. كذلك دُرست بعض النتائج الاساسية حول المقاسات شبه المقيدة. بالاضافة الى هذا دُرست بعض العلاقات 

  قاسات شبه المقيدة مع انواع اخرى من المقاسات.بين الم

 


