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Abstract:

This paper is dealing with non-polynomial spline functions "generalized spline™ to
find the approximate solution of linear Volterra integro-differential equations of the
second kind and extension of this work to solve system of linear Volterra integro-
differential equations. The performance of generalized spline functions are illustrated

in test examples.
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Introduction:

Integro-differential equation (IDE) is
an important branch of modern
Mathematics and arises frequently in
many applied areas which include
engineering,  mechanics,  Physics,
Chemistry, Biology, economics and
electrostatics, [1]. Authors and
researchers used numerical methods to
find a solution of the integro-
differential equations. Elayaraja and
Jumat, in [2], Generalized Minimal
Residual (GMR) method may be used
to approximate the solution of linear
Fredholm integro-differential equation
of second order which discretized by
using finite difference and trapezoidal
methods. Rostam and Kawa, in [3],
deal with introducing spline function to
find the approximate solution of
nonlinear fredholm integral equations.
Mortaza, in [4], presented Power series
method for finding the numerical
solution of linear and nonlinear
integro-differential equations system.
Muna in, [5], proposed numerical
methods to solve Volterra integral
equations and state theorem which
reduce high order system to first order
for linear Volterra integro-differential
equations. In this papear, generalized

spline functions will be used for
solving the following two problems:

e Linear Volterra integro-differential
equation (VIDE) of n" order :

(0" +§ P(IDW) = () + [k(x u(tet» x < [, b] (1)
i=0 a

with initial conditions

u(a),u’(a),..,u"*(a)are be given,

where, f, p; and k denote given

continuous functions.

e System of the 1% order linear

Volterra integro-differential equation

(VIDE's):

(D+p; (0 (x) = £ (%) +iiku (x,)u; (t)dt

:Xxel =[ab],i=12,...m --(2)
with the initial conditions: u.(a) =u,
1=12,...,.m

where the functions f; ,and p; ;

i=1,2,....m are assumed to be
continuous on | and k;; ; i,j=1,2,....,m

denotes some given continuous
functions.

Generalized Splines, [6]

Consider the linear differential

operator of order pe N
L=DP.+a,,(t)D"" +..+a (t)D.+a, (). ~=(3)
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real CPsmooth function in [a,b]. The
operator L is acting on the space

C™[a,b]of real functions defined in
[a,b]. Its adjoint is defined by

'=(-07D"+ ("D (a,. () +..- Dlat) +a, (). ~~(4)
L" is also acting on the space
C™[a,b]and the scalar product for
which it is computed is given by

j X, (t)X, (t)dt

Let A :
a=t, <t <..<t,=b,meN, be a
partition of [a,b], Q be the family of
real C2P?smooth functions in [a,b]
which are C??smooth in each interval
[t.,t..],i=01..,m-1and f €Q.
Definition (2.1), [7]:]

The function s [a,b]>R is an
interpolating generalized spline of f
associated to Aand L, if seQ, sisa
solution of the differential equation
L'L x = 0 in each interval
[t,,t..],.i=01..,m-1, and
st)=f({®)onA.

Definition (2.2), [7]:

An interpolating generalized spline of f
is of type I if it is such that
s®(t,) = FM(t,) and
s®(t,) = fO(,)for k=12,.,p-1
By interpolation and boundary
conditions gave in definitions (2,1) and
(2.2) respectively s is a generalized

spline of type I .
Now to construct the approximate

function, let q;,j=12,..,2h, be the

basis functions of generalized spline s,
where 2h is order of L'L x =0 gave in
definition  (2,1).Then  generalized
spline functions s is defined by:

sW=2¢0,0 06

In each interval
[t,t..],i=0L1..,m-1 where

c,,C,,...,C,, are constants to be found.

Xl,X2

735

Particularly consider the operator of
order 2™ given by:

L=D?.—-4 then its adjoint is
L'=D%—-4 by solving the
homogeneous differential equation
L'L=D*.-8D%+16, we have the
solutions: e*, e, te”,te™

so that the generalized spline function
ineach [t;,t,,], is:

s(t) =c,e? +c,e? +cte? +c,te®  ---(6)
Approximate Solution of n™ Order
Linear VIDE

In this section the reduction theorem,
[8] will be used to reduce the integro-
differential equations of arbitrary high
order to the first order in which one
can use the available spline function to
solve eq.(1).
Theorem (1.3):
Theorem),[8]
Let f, k be L? integrable functions on
interval [a,b] and p, e C"[a,b]. Then

eg.(1) may be reduced to the first order
linear VIDE of the form:

(D+ Py (XPux) =F, () +ikn,1(x,t)u(t)dt —(7)

a

with initial condition:

(The Reduction

u(a)=uo
where
Z TR 2)Ij(x 1)"2 f (t)dt +

n-2 n-1 n-1 ui+'—n—

$ Sy P @A, e and
k=0 j=k+li=n+k-] (i-1n!
K, (x,t) = 2)Ij(x 2,)"?k(z,,t)dz, —
n-2 k+1 X t
ZZ( 1’ pJ+nk2 nkz,j( kl)
k=0 j=0 H

with [A] and [B] being two special
constant matrices of dimensions (n-
2)x(n-2) and (n-1)x(n-1)
respectively.

For more details and proof about
reduction theorem see [8]

To find the approximate solution of
eq.(1), substitute eq.(5) in eq.(7) we
get:

D+0 055 0-

fob0Ysq 0800 —(®)

a
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261D+ py 5 () (9 [ o4 (x 1), (k] =

Let

Fa(X)

M (%) = [(D+ p,, (9)d; () - [ ko1 (x,D)g; (D)t

, 1=12,...,2h

where X = X,, r=0,,...,N, and adding
the initial condition of eq.(9) as a new
raw then we can write eg.(10) as in the
following system:

D+, (100~ j k0

(D+mWMAm—ﬂ ()t

then:

AC=F —--(11)

where A=(a;;j) as a matrix of order m
such that

k.,

ml

B0t
E

{M M () M (%) ] G y (%) _--(9)
.M(x) M)~ Myl o _| ©a L00)
A e e C: .
[My0) Ma(6,) = My(,) 2h
W‘.(a) qz(a) qzn(a) ) FH(XN)
Uo
or
AC=F —-(10)

A and F are constant matrices with
dimensions (N+2)x2h and (N+2)x1
respectively. Calculate A"AC = A'F
to find the ¢ ; j=1,2,...,2h and
substitute this solution in eq.(5) to get
the approximate solution of eq.(1).
Approximate Solution of System of
Linear VIDE

In this section the system of the 1°
order linear VIDE's given in eq.(2) will
be formulated in matrix form, as:

es +ﬁ (10 (1

a

X

(t)dt+...+ j ko (60U, ()t

m

Q@

H :Zkijuj i i, j=12,...,

i=1

a, = (D+ p, 00U, (9~ [ K, (x B (Ot

i=12,....m

m

C= [Cll’clz""'cl,zh’C21’C22""’C2,2h""’le’CmZ""’Cm,Zh]

F=[f,f,,.. f,]
Algorithm(1)
Step(1): Input N  (number of
subintervals). Set h1=b|:1—a’
Xr=a+rhl, forr=0,1,....N
and divide the interval [a,b]
into N subintervals,
a= X, (X (.{Xy =

let s,(a)=u, ;i=12..m
(which are the given initial
conditions ).

Step(2):

736

Step(3): let si(x)=icijqj(x) ;

i=12,...m
Step(4): using step(3) and eq.(11) to

find the coefficients
¢; 1=12,..,m
j=12,...,2h.

Step(5): substitute the results in step(4)
to get the approximation solution of
eq.(2).

Numerical Examples:

Three numerical test examples were
defined on the interval [0,1] and
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A:0=X, <X <X, <X, =1,where
h :%, for examples (5.1) and (5.2)

apply generalized spline function
defined in eq. (6) and for example (5.3)

apply generalized spline function
defined in step (3) of algorithm (1)
Example(5.1):

Consider the 1% order linear VIDE
problem

(D +cos(x))u(x) = cos(x)e* + x +1+ j(x —t)u(t)dt

, 0<x<1 --(12)
with initial condition:

u(0)=1 ---(13)
The exact solution is:

u(x) =e*

In eq.(6) the coefficients c,,c,,c,,C,
are unknown, four algebraic equations

are needed. substituting eq.(6) in the
initial condition eq.(13) yield:

c,+C,+C,+¢Cc, =1 ---(14)
substituting eq.(6) in eq.(12) for each
X=X, 1=0123 yield:

2,67 - 20,67 +¢,(1+2x)e™ +¢, (1-2X)e ™ +cos x(c,e™ +¢,e > +c,xe™ +¢,xe ) -

.[(x—t)(clezt s rete? e te M)t = f(x) ~(15)
0

where

f (x) =cos(x)e* +x+1

The system will construct from eq.(14)
and eq.(15) has 5 equations and 4
coefficients, therefore, calculate:

ATAC =A'F --(16)

where A is constant matrix of
dimension (5x4)gain from eq.(14)

and eq.(15) C=[c, ¢, ¢, ¢
F=[u@0) f(x) f(x) f(x)
f(x)]"

Finally, Gauss elimination method may
be used to solve system (16) to find
¢, =0.725, ¢, =0.275, c, =-0.371,
c,=0469, so the approximate
solution s(x) is:

s(x) =0.725™ +0.275¢ ™ - 0.371xe™ +0.469xe ™

Table(1), presents a comparison
between the exact and numerical
solution for u(x).

Table(1): Numerical Results of Example
(5.1

X exact approximate | absolute error

0 1 1 0
0.1 | 1.10517091 | 1.10375238 0.00141853
0.2 | 1.22140275 | 1.21809354 0.00330921
0.3 | 1.34985880 | 1.34637530 0.00348350
0.4 | 1.49182469 | 1.49110647 0.00071821
0.5 | 1.64872127 | 1.65394762 0.00522635
0.6 | 1.82211880 | 1.83561120 0.01349240
0.7 | 2.01375270 | 2.03565649 0.02190378
0.8 | 2.22554092 | 2.25216160 0.02662067
0.9 | 245960311 | 2.48124697 0.02164386

1 2.71800000 | 2.71986700 0.001867
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As a cooperation the least square error
is 5.158x107" while the partition
method gave in [9], is 9x107°.
Example(5.2):

Consider the 4™ order linear VIDE
problem

19 5, 29

(D* =D+ D? =D -x*)u(x) =24 —x* + = x® +——x" + [ (x+ t)u(t)dt
30 210 !

with initial conditions:
u(0)=u’(0)=u"(0)=u"(0)=0
The exact solution is:
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., X
u(x) =x"+ c
By using the reducing theorem we
have the following 1% order linear
VIDE problem:

(D-Du(x) =F(x) +.X[k3(x,t)u(t)dt -—-=(17)
where
i 19 9 29 XlO

F(x)=4x° ———+ x° +
210 15120 151200

4 3

koot = X Sy Mys 10y
24 6 4 6 24

with initial conditions

u() =0 ---(18)

As in example(5.1) Gauss elimination
method may be used to solve system
(16) for eq.(17) and eq.(18) to find
¢, =-0.296, c, =0.292, c, =0.436,
c,=0.748, so the approximate
solution s(X) is:

s(x) =—0.296e* +0.292e** +0.436xe** +0.748xe "

Table(2), presents a comparison
between the exact and numerical
solution for u(x).

Table(2): Numerical Results of Example
(5.2)

X exact approximate | absolute error
0 0 0.00400000 0.00400000

0.1 | 0.000102 | -0.00797161 0.00807361

0.2 | 0.001664 | -0.01547966 0.01714366
0.3 | 0.008586 | -0.01760769 0.02619369
0.4 | 0.027648 | -0.00498249 0.03263049
0.5 | 0.068759 | 0.03298172 0.03576827
0.6 | 0.145152 | 0.10891265 0.03623934
0.7 | 0.273714 | 0.23843232 0.03528167
0.8 | 0.475136 | 0.44128877 0.03384722
0.9 | 0.774198 | 0.74273250 0.03146549

1 1.200000 | 1.17500000 0.02500000

Example(5.3):
Consider the system of linear VIDE
problem

Du,(x) =1+ x+x* —uz(x)—j(ul(t)Jruz(t))dt

0<x<1 --(19)

DU, () = ~1— X+ U, ()~ | U, () ~U, ©)et
0<x<1 ---(20)

with initial conditions:

u,(0) =1, ---(21)
u,(0) =1, —(22)

The exact solutions are:
u,(x)=x+e*

u,(x) =x—e*

In this example as in step(3),
algorithm(1), u,(x) will approximate
by s,(x), where

5,(X) = 0% + e P +exe? +e xe ¥ --(23)
and u,(x) will approximate by s,(x),
where

s,(X) =C,7" +C,, 7+, xe”* +C,,xe ---(24)

To find the unknown coefficients
c;.1=12; j=1234, eight algebraic
equations are needed. Substituting
eq.(23) in the initial condition eq.(21)
yield:

C,+C,+Cy+C, =1 ---(25)

and eq.(24) in the initial condition
eq.(22) yield:

Cyy +Cpy +Cp+Cy =—1 ---(26)
substituting eq.(23) and eq.(24) in
eg.(19) and eq.(20) respectively for
each x=x;, 1=0,,2,3 yield:

2,87 —2¢,,6 72 +C5(L+2X)e* + ¢, (L—2X)e ™2 +(Cp 87" +C,p 2" +CpaXe™ + ¢, xe ) +

X
J' (c 8% +ce ™ +cte® +c te™
0

+C, 0% +Cpe? +C,ute® +c,,te ) dt = f,(x)-(27)
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2C,,67 —2C,,6 7 +C,5(1+2X)e™ +C,, (L—2X)e

P (C 7 e e e e xe ) +

X
j (c, 8% +c,e ™ +cte® +c te™ —c,e” —c,,e " —Cyte” —c,,te?)dt = f,(x)---(28)
0

where

f(X)=1+x+x°

f,(x)=-1-x

The system will construct from

eqs.(25)-(28) has 10 equations and 8
coefficients, therefore, calculate:

ATAC =ATF ---(29)
where A is constant matrix of
dimension (10x8)gain from the
egs.(25)-(28) and C=[c,; ¢C;, Cj;,
Cl4 C21 C22 CZ3 C24]T

F=[u1(0) UZ(O) fl(XO) fz(xo)
f(xa) f20q) fi(x) fo(x) fi(x;)
f, )"

Finally, Gauss elimination method may
be used to solve system (29) to find

c,, =1.011, c,, =—0.011,
c,, =—0.484, c,, =0.441,
c,, =—0.389, c,, =—0.611,
c,; =0.178, c¢,,=-0.621, so the
approximate  solutions s,(x) and
S, (x)are:

s,(x) =1.011e* —0.011e > — 0.484xe* +0.441xe >

s,(x) = —0.389e* —0.611e > +0.178xe** —0.621xe **

Table(3), and table(4), present a
comparison between the exact and
numerical solution for uy(x) and ux(x)
respectively.

Table(3): Numerical Results of Eexample
(5.3
X

exact approximate | absolute error

0 1 1 0

0.1 | 1.20517091 | 1.20282228 0.00234863

0.2 | 1.42140275 | 1.41557484 0.00582791
0.3 | 1.64985880 | 1.64416130 0.00569749
0.4 | 1.89182469 | 1.89347616 0.00165146
0.5 | 2.14872127 | 2.16742946 0.01870819
0.6 | 242211880 | 2.46885910 0.04674030
0.7 | 2.71375270 | 2.79931733 0.08556462
0.8 | 3.02554092 | 3.15870985 0.13316892
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[ 0.9 [ 335960311 | 3.54475599 [ 0.185152880 |
[ 1 ] 371800000 | 3.85200000 | 0.13400000 |

Table(4): Numerical Results of Example
(5.3)
X

exact approximate | absolute error

0 -1 -1 0
0.1 | -1.00517091 | -1.00447237 0.00069854
0.2 | -1.02140275 | -1.02003014 0.00137261
0.3 | -1.04985880 | -1.04907058 0.00078822
0.4 | -1.09182469 | -1.09343021 0.00160552
0.5 | -1.14872127 | -1.15448545 0.00576418
0.6 | -1.22211880 | -1.23319162 0.01107282
0.7 | -1.31375270 | -1.33006131 0.01630860
0.8 | -1.42554092 | -1.44507875 0.01953782
0.9 | -1.55960311 | -1.57754250 0.01793939

1 -1.71800000 | -1.72600000 0.00800000

The method in [4], defines the error
between the exact solution and the
Taylor polynomial solution by the

reminder O(x").

Conclusions:
In this paper, the researcher have
constructed generalized spline

functions for solving linear VIDE's of
n™ order and system of linear VIDE's
based on interpolation and boundary
conditions of the generalized spline.
The choice of the linear differential
operator gave the basis which form the
approximate  function. Three test
examples are considered, the first deal
with 1™ order linear VIDE's, the
second reduce 4™ order linear VIDE's
to 1™ order by reduction theorem, and
the third solve system of linear first
order VIDE's. As a comparison with
the exact solution, tables (1), (2), (3),
and (4) showed the results.
Comparison  with  methods in
references [9] and [4] are given.
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