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Abstract:

In this paper we introduce and study a new concept named couniform modules, which
is a dual notion of uniform modules, where an R-module M is said to be couniform if
every proper submodule N of M is either zero or there exists a proper submodule N

of N such that = is small submodule of — (denoted by 2« L)
N1 N1 N1 N1
Also many relationships are given between this class of modules and other related

classes of modules. Finally, we consider the hereditary property between R-module M
and R-module R in case M is couniform.

Keywords: Epiform modules, Hollow modules, Coquasi Dedekind module,
Copolyform modules, Small submodules, Semismall submodule, Coessential

submodules.

Introduction:

Let R be a commutative ring with
unity and let M be an R-module.
Recall that a submodule N of M is said
to be small in M, (denoted by N << M

), if N+L=M for every proper

submodule L of M [1].And M is called
hollow module if every proper
submodule of M is small [2].Hollow
module is a dual notion of the uniform
module, where an R-module M is
called uniform if every nonzero
submodule N of M is essential; that is
NN L # 0 for every nonzero
submodule L of M [3]. In this paper
another dual notion of uniform module
is introduced which we call it
couniform module. In section 1 of this
paper, we give some basic properties
of couniform module. In section 2, we
study the relationships of couniform
modules with other types of modules
such as hollow modules, epiform
modules  and coquasi-Dedekind
modules. In section 3, we consider the
hereditary property between the ring R
and the R-module M.

CouniformModules — Basic
Properties:

Firstly, we introduce the following
concept.

Definition(1.1): A nonzero module M
is called couniform, if every proper
submodule N of M is either zero or
there exists a proper submodule N; of

N such that L s L
N1 N1

That is for each proper submodule N of
M, either N = 0 or there exists a proper
submodule N; of N such that N is
coessential submodule of N in M,
where N; is called coessential

submodule of N in M if —— <« —— [4].
Nl Nl

Examples and Remarks (1.2):

1. Every simple module is a
couniform module.

2. Semisimple module need not be
couniform module, as examples:
The Z-module Zg, Zip are not
couniform modules.

3. Every hollow module is a
couniform module. Since for each
submodule N of hollow module
M, N=z M.Hence either N # (0) or
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N= (0). If N= (0) then we are
done. If N # (0) then it 1s well
known that i « o for all

submodule K of N. Thus M is a
couniform module. And hence
every  chained module is
couniform module. In particular

each of the modules pr and Zg

are couniform Z-module.

4. Every proper submodule of a
couniform is not coclosed, where
N; is called coclosed submodule

of N in M if whenever: — <« M

M1
Then N = N;j [5].

5. The converse of (4) is not true in
general, as the following example
shows:

The Z- module Z is not hollow
module, but it is a couniform module.
To show this, let N be a nonzero
proper submodule of M. If N = << n =,

neZ.. By a fundamental theorem of
arithmetic, n = P,* B,® P.* ... ... p=

where P; is a prime number V i=
1,2,....s. Let:
t=max {ry, ro, ....,
(P (P)"......(Ps)
Then:

N

S _{(Pl)t-l’l (Pz)t-rz IIIIII

K

rsy + 1. Take K =

(Ps)t'rsj} <

Zp1y (... (Ps)t -

Since all submodules of Zpy

(Pt.....(psyt  are =< 0 =, -i(Pl) >,
(P =,=(P) =L, ,

<(Pf) =,......<(Ps) =, = (P =,

<(Py)

(P2) =, o coe. =, =(P1) (Bo),yen..

But the sum of each one with

< B ....B7 =isnotequal to

Z(pl)t (Pt......(Ps)t - Since the ng of
generator of each of one and

< P ....B7™ =isnotequal to 1.
Remark (1.3): The homomorphic
image of a couniform module may not

be couniform as the following example
shows.
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The Z-module Z is couniform
module, but if we take the natural
epimorphism:
nZo—— 2 Z

It is clear that Zg is not couniform Z-
module.
Proposition (1.4): A direct summand
of a couniform module is couniform.
Proof : Let N be a direct summand of a
couniform module M, thus M=N ® K
for some submodule K of M. Let N; be
a nonzero proper submodule of N, then
N; is a proper submodule of M. But M
is a couniform module, so there exists
a proper submodule

N1

N, of Nj such that — \_ thus —

NZK
N2

=

NZ 3K N1
= _@ . Thus \_—ﬂ e
N NZ 2K \1 - N
— - e —2(0)x —&
N2 N2 N2 N2
N2 QK

=
Hence by [5],

is a couniform module.

The direct sum of a couniform
moe may not be couniform, for
example the Z-modules Z, Z; are
couniform but Z, @ Z3 = Zs is not

couniform.

We claim that a submodule of
couniform module need not be
couniform, but we cannot find example
to ensure that. However, the following
proposition deals with the existences of
couniform submodules in nonzero
Artinian modules, where an R-module
M is called Artinian if every
descending chain of submodules in M
is stationary [ 1].

Proposition (1.5): Let M be a nonzero
Artinian  module, then M has a
submodule which is couniform.

Proof: Let K be a nonzero submodule
of M. If K is a couniform then we are
done. Otherwise, for each proper
submodule K; of K, the quotient

— \— Therefore N
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module % is not small submodule of
M
E.
Now, if Ky is a couniform submodule,
we are through, otherwise for each

proper submodule K; of K, the
quotient module }}:—1 is not small

M
submodule of -

If we continue in this way we will
arrive at a couniform submodule of M
in a finite number of steps, for
otherwise there exists an infinite
descending chain:
KoKio Kyo... ..
of submodule of M and this contradicts
our assumption.

Recall that an R-module M is
called embedded in N, if there exists a
monomorphism f: M — N [6].
Theorem (1.6): Let M be a couniform
module, and let N be a nonzero small
submodule of M. If M can be
embedded in N, then N is a couniform.
Proof: Let N; be a proper submodule
of M such that N; # 0. Since M is a
couniform module, so there exists a
proper submodule N, of N; such that
N2 N2
We claim that :—1 X \l To show this,

assume that:
N1 K _ N
For some N,c Kc M. Hence N; +K
=N.

On the other hand, M can be embedded
in N, so there exists a monomorphism

f: M — N. Since Ny N and N == M,
so that N; << M. Hence f(N;) << N. But
f(N1) = Nj, thus N; << N. It follows

that K = N, and this implies that \L =

N N1 N .
o And so o Therefore N is a

couniform module.

The Relation Between Couniform
Modules and Other Well Known
Classes of Modules;
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In this section we investigate the
relations between couniform modules
with other classes of modules such as
hollow, epiform, coquasi Dedekind
and copolyform modules. In Examples
and Remarks (1.2)(5), we see that a
couniform module may not be hollow.
However we have the following
proposition.

Proposition (2.1): Every Artinian
couniform module is hollow module.
Proof: Let M be an Artinian
couniform module, and let N be a
proper submodule of M, N# (0). To
prove N is small submodule of M.
suppose that N is not small submodule
of M, that is N+W=M for some proper
submodule W of M. Since M is a
couniform module, there exists a

proper submodule N; of M such that
N M

N1 N1

Note that Ni# (0) because if N;=(0)
then N is small submodule of M which
is a contradiction. On the other hand, it
is easily to show that N+W=M, implies
that N;+W=M, hence N; is not small
submodule of M. Again N is a non
zero proper submodule of M, so there

exists a proper submodule N, of N
such that :—1 <& :— Hence Ny# (0).

Since N;+W=M, then N;+W=M.
Repeating this process until we have
infinite strictly descending chain:

N > N> Ny o ------
of submodules in N. But this is a
contradiction since N is Artinian [1],
thus our assumption is false, therefore
N < M, that is M is a hollow module.

Remark (2.2): The condition "M is
Artinian" cannot be dropped from the
previous proposition, since Z is a
couniform as Z-module which is not
Artinian and not hollow module. Note
that each of the Z-modules Zg and Z1g
is not couniform module (see
Examples and Remarks 1.2(3)), and
they are Artinian Z-modules.
Definition (2.3)[7]: A proper
submodule N of an R-module M is
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called semismall, if either N=0 or for
each nonzero submodule K of N:

N M

— e —

K K
And an R-module M is called
semihollow, if  every  proper
submodule of M is semismall. It is
clear that every hollow module is
semihollow, but the converse is not
true, see [7]. So we have the
following.
Remark (2.4): A semihollow module
need not to be couniform module, for
example Zg as Z-module is semihollow
module but it is not couniform
Remark (2.5): A couniform module
need not to be semihollow, for
example the Z as Z module is a
couniform, but not semihollow
module. However, if M satisfies
d.c.c on non small submodules, then a
couniform module can be semihollow
as the following proposition shows.
Proposition (2.6): Let M be a module
which satisfies d.c.c on non small
submodules. If M is a couniform
module then M is semihollow.
Proof: Let N be a zero proper
submodule of M. Suppose M is not
semihollow, there exist a proper

submodule N; of N such that \\—1 is not

M .
small submodule of o Hence N is

not small submodule of M, so there
exists a proper submodule B of M such
that N +B = M. But M is couniform, so
there exists a proper submodule N, of

N such that L = L

N2 N2
It is clear that N,# 0, because if No= 0
then N<< M. On the other hand N +B =
M implies that N, +B = M, that is N3 is
not small submodule of M. Again, N,#
0 implies that there exists a proper

submodule N3 of N, such that al

M

— X

N3

—. It follows that N3# 0.

But N, + B =M implies that N3+ B
=M. Repeating this process until we
get strictly descending chain of non
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small submodule in N. But this
contradicts our assumption. Thus N is
semismall submodule of M. That is M
is a semihollow module.Recall that an
R-module M is called noncosingular
module, if for any nonzero module N
and for every nonzero homomorphism
f. M — N, Im f is not small
submodule of N [8]. And an R-module
M is called epiform, if every nonzero

homomorphism f: M — % with K a

proper submodule of M is an
epimorphism [9]. It was proved in
[9], that if an R-module M is
noncosingular, then M is an epiform if
and only if M is hollow module, so we
have the following.

Proposition (2.7): Let M be an
Artinian and noncosingular module. If
M is a couniform module, then M is
epiform module.

Proof: Since M is an Artinian and
couniform module then by prop.(2.1),
M is hollow module. But M is
noncosingular, thus it is an epiform
module [9, Prop. (2.5)]. Recall that an
R-module M is called cosemisimple, if

Rad(%) = 0, for all submodules K of

M [10].
Corollary (2.8): Let M be an Artinian
and cosemisimple module. If M is a
couniform module, then M is epiform
module.
Proof: By using Prop. (2.1) and [9,
Prop. (2.6)].

Recall that a nonzero module
M is called coquasi Dedekind, if every
proper submodule of M is coquasi
invertible, where a proper submodule
N of M is called coquasi invertible, if
Homg(M,N) =0 [11].
Theorem (2.9): Let M be an R-
module. If M is an epiform module
then M is couniform and coquasi
Dedekind module.
Proof: Since every epiform module is
hollow [9], then by (1.2)(4), M is a
couniform module. On the other hand
by [9, Rem.(1.2)], each nonzero
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homomorphism in  Endgr(M) is
epimorphism. By [11, Th.(2.1.4) ], M
is coquasi Dedekind.The following
example shows that a coquasi
Dedekind may not be epiform module,
before that let us recall that a
submodule N of an R - module M is
called corational submodule in M if

Homg(M, =) = 0 for all submodule K

of M such that K < N [11].
Example (2.10): The Z-module Q is a
coquasi Dedekind but not epiform
module, since if we assume that then
by [9], every proper submodule of Q is
corational, hence it is small
submodule[11], which implies that Q
is a hollow module[2]. But this is a
contradiction.However, under the class
of self projective modules we have the
following, but first recall that an R-
module M is called self projective, if
M is M — projective [3].
proposition (2.11): Let M be a self
projective R-module. Then M is an
epiform module if and only if M is
coquasi Dedekind module.
Proof: M is an epiform module <
each proper submodule of M is a
corational [9] <> each proper
submodule of M is coquasi invertible
[11, Th.(1.2.13)] <> M is a coquasi
Dedekind module [11].
Corollary (2.12): Let M be a self
projective  R-module, then the
following statement are equivalent:

1. Mis an epiform module.

2. M is a coquasi Dedekind

module.

3. M is a couniform and coquasi

Dedekind module.

Proof: (1) = (3): By Th. (2.9).
(3) = (2): Itis clear.
(2) = (2): It follows from
Prop. (2.11).

Note that the Z-module Q is not
self projective [12], so it is natural to
see that Q is a coquasi Dedekind and
not epiform module. On the other
hand, the Z-module Z, is a self
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projective and not coquasi Dedekind
module, thus Z, must be not epiform.
Now under the class of
multiplication  module the two
concepts of epiform and coquasi
Dedekind module are equivalent,
where an R-module M is called
multiplication, if each submodule N of
M can be written as the form N = IM,
for some ideal Iof R [13].
proposition (2.13): Let M be a
multiplication R-module. Then M is an
epiform module if and only if M is a
coquasi Dedekind module.
Proof: =) By Th.(2.9)
<) M is a coquasi Dedekind
module implies that every proper
submodule of M is acoquasi invertible
[11, Th.(1.2.13)]. But M is
multiplication module, so by [11,
Th.(1.2.7)], N is a corational. Thus M
is an epiform module [9].
Corollary (2.14): Let M be a
multiplication R-module. The
following statements are equivalent:
1. Mis an epiform module.
2. M is a coquasi Dedekind
module.
3. M is a couniform and coquasi
Dedekind module.
Corollary (2.15): Let M be self
projective module and J(End(M) = 0,
then:
1. Mis an epiform module.
2. Misahollow module.
3. M is a coquasi
module.
4. M is a couniform and coquasi
Dedekind module.

Dedekind

Proof: (1)<(3) < (4): Follows
from Cor. (2.14)
= (@) By [11,
Th.(1.2.16)].

Recall that an R-module M is
called copolyform, if HomR(M,%) =0,
for all submodule N of M with K
c N <« M [14]. The following
proposition appeared in [9].
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Proposition (2.16) [9]: An R-module
M is epiform if and only if M is a
hollow and copolyform module.
Corollary (2.17): Let M be an R-
module. If M is epiform then M is
couniform and copolyform module.
Proof: Since M is epiform module,
then by Th.(2.9), M is a couniform
module. Also by [9], M is copolyform
module.

The converse of Cor.(2.17) is not
true in general, for example Z as Z-
module is a couniform and copolyform
module but not epiform module.
Hereditary of couniform modules

This section deals with the
hereditary of a couniform property.
That is the transitivity of a couniform
property between M and the ring R
which defined on it. Note that a ring R
is called couniform ring if R is
couniform R-module. Let us begin by
the following theorem.
Theorem (3.1): Let R be a ring, and
let M be a finitely generated faithful
multiplication R-module. Then M is
couniform module if and only if R is a
couniform module.
Proof: =) Let I be a nonzero proper
ideal of R. Put IM= N. Then N is a
nonzero proper submodule of M. Since
M is a couniform module, so IN;< N

') i
such that — == —.
Nl N1l

Since M is a multiplication module,
then N; = JM for some proper ideal J
of R, therefore:

I

T & 3— We claim that -« = To

show thls assume that - - +—_ = —_ for

K R
some - <-.

Hence I + K = R and this implies that
I+ KM =M, so IM + KM = M. It
follows that

TR <<— HenceL+T-—: But
'%{{3_. Hence——— Thus KM
=M=RM.

248

Since M is a faithful finitely generated
multiplication module, therefore K =

R, and hence - =« 5. That is R is a

couniform module.

<) Let N be a nonzero proper
submodule of M. Since M is a
multiplication module, so N = IM for
some ideal T of R [13]. But M is a
finitely ~ generated  multiplication
module, so I is a nonzero proper ideal
of R [13]. On the other hand, R is a
couniform R-module, therefore there
exists a proper ideal J of I such that

-« -, Also J = T implies that JM =«

IM. We claim that - T E — . To show

. :Z'-'I. w
this assume that — +T =— for some

1_,\_ , hence IM +W M

Jod
But W = KM for some ideal K of R, so
IM + KM =M which implies that (I +

KM =M. BY [13], I + K = R.
Hence—=—That|s——]—‘=— But
- X —Thus—=— HenceK R

M

and soW KM =M. Thus—:

and % i % . Therefore M is a
couniform module.

From the above theorem we
conclude the following result, before
that we need the following lemma.
Lemma (3.2): let M be a finitely
generated faithful multiplication R-
module. Then M is coquasi Dedekind
module if and only if R is a coquasi
Dedekind R-module.

Proof: =) Let feEnd(R), f = 0. Then
f(r) =ra forsomea € R, a = 0.

Define g:M — M bY g(m) = am. Then
g= 0, hence g is an epimorphism that
is aM = M, which implies that <~ a = =
R, i.e f is an epimorphism.

<) Let feEnd(M), f = 0. Since M is a
finitely  generated  multiplication
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module, so for each m e M, there exist
anonzero a € R s.t f(m) = am.
Define g: R — R by g(r) =ra. g= 0,
hence g is an epimorphism; that is
<a>» = g(R) = R and so f(M) =
<a>=M = RM = M. Thus f is an
epimorphism that is M is a coquasi
Dedekind module.
Corollary (3.3): let M be a finitely
generated faithful multiplication R-
module. Then the following statements
are equivalent.

1. Mis an epiform module.

2. M is a coquasi Dedekind
module.
R is an epiform ring.
R is a coquasi Dedekind ring.
M is a couniform and coquasi
Dedekind module.
R is a couniform and coquasi
Dedekind ring.
Endgr(M) is a couniform and
coquasi Dedekind ring.
Proof: (1) = (2) <(5): It follows
from Cor.(2.14).

(3)= (4) <(6): It follows
from Cor.(2.14), since R is
multiplication module.

(5) = (6): It follows from
Th.(3.1) and Lemma(3.2).

(6)= (7): Since M is a
faithful ~ multiplication R-
module, then Endg(M) = R
and hence the result obtained.

3.
4.
5
6.

7.
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