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Abstract:

In this paper, Bayes estimators of the parameter of Maxwell distribution have
been derived along with maximum likelihood estimator. The non-informative priors;
Jeffreys and the extension of Jeffreys prior information has been considered under
two different loss functions, the squared error loss function and the modified squared
error loss function for comparison purpose. A simulation study has been developed in
order to gain an insight into the performance on small, moderate and large samples.
The performance of these estimators has been explored numerically under different
conditions. The efficiency for the estimators was compared according to the mean
square error MSE. The results of comparison by MSE show that the efficiency of
Bayes estimators of the shape parameter of the Maxwell distribution decreases with
the increase of Jeffreys prior constants. The results also show that values of Bayes
estimators are almost close to the maximum likelihood estimator when the Jeffreys
prior constants are small, yet they are identical in some certain cases. Comparison
with respect to loss functions show that Bayes estimators under the modified squared
error loss function has greater MSE than the squared error loss function especially
with the increase of r.

Key words: Maxwell distribution, Bayes Estimators, informative and non-
informative prior information's, square and modified square error loss
functions.

Introduction: estimates and minimum variance

In physics particularly statistical unbiased estimators of the parameter
mechanics, the Maxwell-Boltzmann and reliability function. The leading
distribution describes particle speeds in software ‘Mathematica’ has included
gases, where the particles move freely Maxwell distribution and its properties
between short collisions, but do not in its software library[4]. Bekker and
interact with each other, as a function Roux (2005) studied Empirical Bayes
of the temperature of the system, the estimation for Maxwell distribution[5].
mass of the particle, and speed of the Ali Kasmiet al (2012) discussed
particle[1]. The Maxwell distribution Baysian estimation for two component
gives also the distribution of speeds of mixture of Maxwell distribution,
molecules in thermal equilibrium as assuming type | censored data[6].This
given by statistical mechanics[2].The study attempts to deal with the problem
Maxwell  distribution  was  first of Bayesian estimation in Maxwell
introduced in the literature as a lifetime distribution. We propose to obtain
model by Tyagi and Bhattacharya Bayes estimators based on a class of
(1989)[3]. They obtained Bayes non-informative  priors under the
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assumption of two loss functions; the
squared error loss function and the
modified squared error loss function.
We consider two non-informative
priors; Jeffreys prior and the extension
of Jeffreys prior. The obtained Baysian
estimates of the shape parameter 6 are
compared to its maximum likelihood
counterpart. The performance of these
estimates is assessed using Monte
Carlo simulation study, considering
various sample sizes; several specific
values of the parameter 6 and Jeffreys
prior constants. The results are
summarized in tables and followed by
the conclusions.

Maxwell Distribution

Let us consider X; X; .. Xpto be
independent and identically distributed
random variables from Maxwell
distribution having pdf:

f(x16)
41

=—=—x‘e
Vig
0<x<oo; 6> 0(1)

where 0 is the shape parameter. The
cumulative distribution function (cdf)
in its simplest form is given by:

1 x? 3

3 F(ﬂ)
r(3)
wherel'(x, a) = fox u®le tdu
Yet there are other forms of the cdf
found in Krishna H. and Malik M.
(2009)[4].

F(x|0) =

Maximum Likelihood Estimator

The likelihood function for Maxwell
pdf is given by:

L(x;; 6)

= (\%)ngi/zﬁx expl 2i-

By taking the log and differentiating
partially with respect to 4, we get:

481

dlnL(x;6) _
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Then the MLE of @ is the solution of
equation (2) after equating the first
derivative to zero is given by:

~ n ,2
R )

Bayes' Estimators

To obtain Bayes estimators, we
assume that @ is a real valued random
variable with probability density
function 7(0). The posterior
distribution of @ is the conditional
probability density function of 6 given
the data, which is given by:

ic1 f (x:]6) m(6)

h(6|x) =

fy H L, f(xi|0)m(6)d6
(4)
Once the posterior has been

obtained, a loss function is attached to
indicate the loss coming up when the
estimate @ deviates from the true
value. The loss should be zero if and

only ifd = 6. We consider two loss
functions

1- The squared error loss function:

L,(8,6) = (6 - 0)°
Bayes' estimator will be the estimator
that minimizes the posterior risk given

by
Rl(éoo— 0) = E[L,(6,6)]

=J (6 -0)" h(8|x) do
0
which is minimized when:

O=E®|x)= [0 h(®|x) do(5)

2- The modified squared error loss
function: L,(8 — 8) = 67(8 — 6)°
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Bayes' estimator will be the estimator
that minimizes the posterior risk given
by

R, (6 — 6) =E[L,(8,0)]

=f 67(6 - 6)° h(8x) d6
0
which is minimized when
-~ E(@0™x)
~ E@7|x)
(6)

where

E(07|x) = fwerh(mx) de
0

Bayes estimators for the parameter 6,
was considered with non-informative
priors.

It refers to the case when very little or
limited information is available a
priori[7]. As a general rule to find a
non-informative prior, Jeffreys
suggested the following rule for the
likelihood f (x|6)

m(0) < /I1(0) , where I(6) is the
Fisher information. Then,

m(8) = constant /1(0).

Following is the derivation of these
estimators

i )Jeffreys prior information, under
squared error loss function

When we introduce a power ¢ > 0,
we arrive at the  following
generalization of the non- informative
Jeffreys prior:

m,(0) = & ; ¢c>0

(7)

The posterior distribution for the
parameter 4 given the data (X1, X2... xn)

IS.
h(6 | x)
L f(x0) m(6)
f H " f (x|0)m(6)de

n 4,2 —3n-2c
ZL 1 lg

e

e

Zn x2 —3n-2c
i=1 LBT
6

do

n o2
Let y=%,then
h(6|x)

3n+2c

y 2 e”

3n+2c—4

Lxt [y 2 eV dy

And the posterior distribution become
as follows

3n+2 c—2 _Z?zl Xiz
——(2:1 ]_X 2 e o

3n+2c
bl 3n+2c-2
0 T (*55)

h(@|x) =

(8)

According to the squared error loss
function, the corresponding Bayes'
estimator for the parameter 6 is such
that:

01 = E(01x)(9)
Substituting the posterior distribution
(8) in (9), we get:

3n+2c-2

_(211X ) e
T (3n+§c 2)

©  _gn-zctz  —IL,xf
0 - e o dfb
0

E@|x) =

Let
_ ?:1351‘2
6
Then
(Zn 2)3n+2£—2
—\Li=1%;
E(6]x) = 3n+2c—2)
2
0 5 —3n-2c+2 n 5
[~(5F) T e

0

And after few steps
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E(O|x)

no42 o 3n+2c—6
_ =17 eV > d
- 3n+2c-2 y y
T 0
2
3n+26—4)

n 2
i—1 X; | (
=1 2

r (3n+§c—2)

Hence
. 2y 1x
0 = ——/m/m}m
3n+2c—4

ii )Jeffreys' prior information, under
modified squared error loss function
Now, according to the modified
squared error loss function, the
corresponding Bayes' estimator for 0 is
such that:
o: E(9r+1|x)
GHES

(10)

Substituting the posterior distribution
(8) in (10), we get:

3n+2c—-2

_(21 1 Xj )

T (3n+§c 2)

2

®©  _3n-zct2r —Xieq X
6 2 e o6 df
0

E(0"|x) =

Let
_ ?=1xi2
0
Then
(Z )3n+§c—2
— X
E(9r|x) - = 31n+Zc 2
>—)
0 3n+2c-2r n )
[olm)
0 z 1% y
Hence,
n 3n+2c 2r— 2)
E@"]x) = (Zx ) 3n+2c 2
=1 2 )
(11)

In the same manner, we find the
numerator of 6; which become:

E(0r+1|x)

n r+1 r 3n+2c-2r—4
- (2 xlz) E (3n+ic—2) )

i=1 2

(12)
And from (11) and (12), we get:

o* = 23" x?
2 B3n+2c-2r—4)

iii ) Extension of Jeffreys' prior
information, under squared error
loss function

The extension of Jeffreys' prior
ism(0) < [1(6)]¢, ceR*

c
With (8) x [1] , then
m,(0) = —C c>0,andk is a

92c )

constant. (13)

The posterior distribution for the
parameter 6 given the data (X1, X... xn)
is:
h(@ | x)
i=1 f (x:16) m(6)
f F[ =1 f(x;|0)(6)do

n 42 —3n-—4c
B xf i

e o

Let
_ ?=1xi2
2]
, then
3n+4c _y
y z e
h(6]x) =

{111.[ y 2 e7¥dy

And the posterior distribution become
as follows:
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n .2
3n+4c—2  Xj—1 %j

=1

CLixf) 2z e o
3n+4C —
eTF(3n+4»c 2)

2

h(B|x) = —

(14)

According to the square error loss
function, the corresponding Bayes'
estimator for the parameter € is such
that:

0; = E(6]x)

(15)

Substituting the posterior distribution
(14) in (15), we get:

3n+4c-2

—QLix) 7

T (3n+;1»c 2)

2

E@|x) =

©  _3p—actz -~ i, %}
j 0 e 6 db
0
Let
2
_ i1 X
7]
Then
(Z )3n+4c 2
- i=1%i
E(8|X) = 3n+4c—2)
2
[°e) 3n+4c—-2

d

o) 5t
5 ?:13‘1'2 y?

And after few steps

E(0]x)

n 2
i=1%i

foo 3n+4c-6
= — e_yy 2
3n+4c-2

F( ) 0

2

n 2 3n+4c—4
i=1%i F( 2

T (3n+;tc—2)

dy

Hence,

8* _ 22?=1x2
3 3n+4c—4
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iv ) Extension of Jeffreys' prior
information, under modified square
error loss function
Now, according to the modified
squared error loss function, the
corresponding Bayes' estimator for 0 is
such that:
« _ E(@™ )
% = @ ()
Substituting  with  the  posterior
distribution (14) in (16), we get:

3n+4c—2

_(21 1%j )

r (3n+:c 2)

2

E@7|x) =

®  _3n—dct2r —XieqiX;
f 0 2 e o db
0
Let
_ ?=1xi2
6
Then
(Z )3n+2c2
X
EO"|x) = =

r (3n+§c 2)

3n+2c-2r

o0 > _ n x
[olFm) e
0 111 y

Hence,
n r r (3n+4—c2—2r—2)
E(erlx) = Z xiz 3n+4c-2
=1 I ( 2 )
(17)

In the same manner, we find the
numerator of 8, which become:

E(9r+1|x)

n r+1 T 3n+4c-2r—4
- (Z xlz) 1{ (3n+ic—2) )

i=1 2

(18)
And from (17) and (18), we get:

gt — 23" x?
* T Bn+4c—2r—4)
Simulation study
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Monte-Carlo simulation study is
performed to compare the efficiencies
of various estimates developed in
previous sections. For the generation of
a sample from Maxwell distribution,
we followed an algorithm suggested by
Krishna and Malik (2009)[4]. For this
study I = 2000 samples of size n = 20,
50, and100 were generated from
Maxwell distribution with 6 = 0.5, 1,
and 2. Three values of ¢ (c =1, 3, and
5) and four values of r (r = -1, 1, 3,
and 5) are chosen. The averages of the
estimated values of 6 and the

corresponding mean square errors
(MSE) were computed, to compare the
efficiency of each of the five
estimators, where

2000( 4 2
MSE(8) = 222 (f )

The results are summarized and
tabulated in the following tables for
each estimator and for all sample sizes.
The entries within parenthesis indicate
the MSE.

Table 1: Estimates ofthe parameterd® and MSE with # =0.5,c =1

5 ‘ 6 ‘ 6;
" 6 o r=1 | r=3 | r=5 % r=1 | r=3 | r=5
20 4997 | 5169 | 5354 | 5766 | .6246 | .4997 | .5169 | .5552 | .5996
(.0083) | (.0091) | (.0107) | (.0169) | (.0284) | (.0083) | (.0091) | (.0132) | (.0218)
5 4997 | 5064 | 5133 | 5278 | .5431 | .4997 | .5064 | .5205 | .5353
(.0033) | (.0034) | (.0037) | (.0045) | (.0058) | (.0033) | (.0034) | (.0040) | (0050)
100 4997 | 5030 | .5064 | 5134 | .5205 | .4997 | .5030 | .5099 | .5169
(.0016) | (.0017) | (.0018) | (.0019) | (.0022) | (.0017) | (.0017) | (.0018) | (.0021)
Table 2: Estimates ofthe parameter@ and MSE with # =0.5,¢c =3
0 o1 r=1 | r=3 | r=5 s r=1 | r=3 | r=5
20 4997 | 4836 | 4997 | 5354 | 5766 | .4409 | .4543 | .4836 | .5169
(.0083) | (.0080) | (.0083) | (.0107) | (.0169) | (.0099) | (.0089) | (.0080) | (.0091)
50 4997 | 4931 | 4996 | 5133 | .5278 | 4743 | 4804 | .4931 | .5064
(.0033) | (.0032) | (.0033) | (.0037) | (.0044) | (.0036) | (.0034) | (.0033) | (.0034)
100 4997 | 4964 | 4997 | 5064 | 5134 | .4867 | .4899 | .4964 | .5030
(.0017) | (.0017) | (.0017) | (.0018) | (.0019) | (.0018) | (.0017) | (.0017) | (.0018)
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Table 3: Estimates ofthe parameter® and MSE with # =0.5,c=5

~ . 0, . 0,
n 0 & r=1 r=3 | r=5 % r=1 r=3 r=>5
20 4997 | 4543 | 4685 | .4997 | 5354 | .3945 | .4543 4283 4543
(.0083) | (.0089) | (.0083) | (.0083) | (.0107) | (.0163) | (.0089) | (.0112) | (.0089)
50 4997 | 4804 | .4867 | .4997 | 5133 | .4515 | .4804 4684 4804
(.0033) | (.0034) | (.0033) | (.0033) | (.0037) | (.0051) | (.0034) | (.0039) | (.0034)
100 4997 | 4899 | 4931 | 4997 | 5064 | 4774 | .4899 AT74 4899
(.0017) | (.0017) | (.0017) | (.0017) | (.0018) | (.0022) | (.0017) | (.0020) | (.0017)
Table 4: Estimates ofthe parameter® and MSE with#=1,c=1
" 0 o1 r=-1| r=1 | r=3 %5 r=-1| r=1 1| r=3
20 9994 | 1.0339 | .9994 | 1.0708 | 1.1532 | .9994 | .9672 | 1.0339 | 1.1105
(.0330) | (.0365) | (.0330) | (.0429) | (.0674) | (.0330) | (.0320) | (.0356) | (.0530)
50 9993 | 1.0128 | .9993 | 1.0267 | 1.0556 | .9993 | .9862 | 1.0281 | 1.0409
(.0132) | (.0138) | (.0100) | (.0147) | (.0179) | (.0132) | (.0131) | (.0138) | (.0160)
100 9994 | 1.0061 | .9994 | 1.0129 | 1.0267 | .9994 | .9927 | 1.0061 | 1.0198
(.0067) | (.0068) | (.0067) | (.0071) | (.0078) | (.0067) | (.0067) | (.0068) | (.0074)
Table 5: Estimates ofthe parameter® and MSE with# =1,c=2
R ) 0; ) 0;
n 0 01 r=-1 | r=1 r=3 % r=-1 r=1 r=3
20 9994 | 9994 | 9672 | 1.0339 | 1.1105 | .9369 .9085 9672 1.0339
(.0330) | (.0330) | (.0320) | (.0365) | (.0530) | (.0330) | (.0356) | (.0320) | (.0365)
50 9993 | 9993 | .9862 | 1.0128 | 1.0409 | .9733 .9609 .9862 1.0128
(.0132) | (.0132) | (.0131) | (.0138) | (.0160) | (.0133) | (.0138) | (.0131) | (.0138)
100 9994 | 9994 | .9927 | 1.0061 | 1.0198 | .9862 9798 9927 1.0061
(.0067) | (.0067) | (.0067) | (.0068) | (.0074) | (.0067) | (.0069) | (.0067) | (.0068)
Table 6: Estimates ofthe parameterd® and MSE with # =2,c =2
R . 6, ) 64
n 0 01 r=-1 r=1 r=3 03 r=-1 r=1 r=3
20 1.9988 | 1.9988 | 1.9344 | 2.0678 | 2.2209 | 1.8739 | 1.8171 | 1.9344 | 2.0678
(.1321) | (.1321) | (.1280) | (.1459) | (.1321) | (.1320) | (.1426) | (.1280) | (.1459)
50 1.9986 | 1.9986 | 1.9723 | 2.0265 | 2.0819 | 1.9467 | 1.9217 | 1.9723 | 2.0256
(.0530) | (.0530) | (.0523) | (.0550) | (.0642) | (.0531) | (.0551) | (.0523) | (.0550)
100 1.9987 | 1.9987 | 1.9855 | 2.0121 | 2.0395 | 1.9724 | 1.9595 | 1.9855 | 2.0121
(.0268) | (.0268) | (.0267) | (.0273) | (.0295) | (.0269) | (.0274) | (.0267) | (.0273)
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Discussion:

In general, comparison shows that

Bayes' estimator of the parameter 6§ of
Maxwell distribution based on Jeffreys
prior with respect to the squared error
loss function gives less MSE than the
extension of Jeffreys prior, only when
6 is small.
Comparison also shows that Bayes
estimators with Jeffreys prior and
under squared error loss function, gave
identical results with the maximum
likelihood estimator, when c=2. While
estimators of the extension of Jeffreys
prior under the squared error loss
function was identical to maximum
likelihood estimator when c=1.

It is obvious from tables 1 - 6 that
all the estimates of the parameter 6 and
the MSE are reduced with the increase
in the sample size. Under the modified

squared error loss function one can
easily observe that the parameters are
generally overestimated with the
increase of r. The extent of
overestimation is higher for small n.
On the other hand the estimates of the
parameter based on both Jeffreys and
the extension of Jeffreys prior are
observed to be underestimated with the
increase of c. The extent of
underestimation is higher in the case of
small n.

Finally, from the results, we can
conclude that though the extension of
Jeffreys prior gives the opportunity of
covering a wide spectrum of priors, yet
at times Jeffreys prior gives better
Bayes estimates.
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