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Abstract:

In this paper, some probability characteristics functions (moments, variances,
convariance, and spectral density functions) are found depending upon the smallest
variance of the solution of some stochastic Fredholm integral equation contains as a
known function, the sine wave function.

Key words: Sine wave function, stochastic Fredholm integral equation.

Introduction: depending upon the smallest variance

The aim of this paper is finding of the solution of the following
some probability characteristics like stochastic Fredholm integral equation
moments,  variances,  covariance (SFIE),

function and spectral density function,

u(w,t) = F(w, t) + [ k(w, t,s)u(w,s)ds . (1.1
o

such that, - stochastic process defined for

- f(wt) is a sine wave function t > 0 with the formula

(sinusoidal wave) which is a

f(wit)=Asinwt+B),t>0,0<w<2r L (1.2)
where A is the peak deviation In this paper, two cases of the
(amplitude) of the function from its phase shift B will be considered,
center position, w is the angular T T : :

frequency  specify how  many Bzg and Bzg associated with
oscillations occur in a unit time two values of the amplitude A.
interval  (scalling by degrees per Also, the paper consider that, the
second) and B is the phase shift, [1]. kernel k(w,t,s) have the following

defined byt>0and s € S, where S
IS a compact metric space.

- u(s,t) is a scalar function defined
for the timet>0,s € S.

k(w,t,5) =e "™ 0<s<2m, t>0,0SW<Tt e, (1.3)
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Preliminaries By substituting (1.2) and (1.3) into
(1.1), we get
u(w, t) = Asin(wt + B) + Je‘“”””u(w,s) ds (2.1)
0
To find the solution of this equation, (A.D.M) will be used which briefly
Adomain  decomposition  method depend on the following steps, [2],
Uo(w ) =f(w.) = Asinwt+8B) (2.1a)
uo(w,s) = f(w,s) =Asin(ws+B) .(2.1b)
2n
Upa(W,) = [e ", (w)ds, m=012... (2.10)
0
that is to obtain the following
stochastic solution,
u(w,t) =up(w, )+ u,(w,t)y (2.2)
n=1
(S;ltcr;:slt when m = 0, by (2.1b) and ul(w,t)=A_fe(S”W) sin(ws + B) ds
2nt+B
=%e‘<w‘3) J' e”’sinydy, y=ws+B
or
A —w - -nt H
uy(w,t) = e {(sinB+cosB)—e ™ (sin(2nt + B) +cos(2nt + B))} ... (2.3)

and when m = 1, by (2.1c) and (2.3),

u,(w,t) = J'e‘(s”w)ul(s,t) ds
0

A {(sin B+ cosB) —e ™™ (sin(nt + B) + cos(nt + B))} Ie’se’(s‘*w’ds
0

2t
= %e’w {(sin B+ cosB) —e ™" (sin(nt + B) + cos(nt + B))} ]:e’“*l)sds
or
A . . 1-g™®
u,(w,t)=—e™!(sinB+cosB)—e ™ (sin(nt + B) + cos(nt + B (2.4
2(wt) =" {( )(()())}(t+1 (24)

and when m = 2, by (2.1c) and (2.4)

T

_ am(t+D)
u, (w,t) = %e’W {(sin B+ cosB) —e ™ (sin(nt + B) + cos(nt + B))} [l € jje‘””sds
0

t+1
or
A i s 1-g ™ )’
u3(w,t)=ze {(smB+cosB)—e (sm(nt+B)+cos(nt+B))}[ 1 ] e (2.5)
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By iteration form =3, 4, 5, ... and adding (2.3) — (2.5), we get,

© 0 —m(t+1)
Zun(w,t): {(smB+cosB) e ™ (sin(nt + B) + cos(nt + B)) }Z(l € ]

n=1 k=0 t+1

= Zéte_w {(sin B+cosB)-e™ (sin(nt + B) + cos(mt + B) ( tjm) j

or

e (2.6)
D u (W, t) =AM e ™

n=1
where

(sinB+cosB) —e ™ (sin(xt + B) + cos(nt + B)) A t+1
® = ot (t +en(t+l))

Finally, by substituting (2.1a), (2.6)
into (2.2) which represents the
stochastic solution of (2.1) we get,

Ugy W, 1) =A[ sin(Wt+B)+Me™ |, 0<w<mt>0 . (2.7)
Moreover, this solution can be the solution by one and find the value
considered as a solution for the time t of the amplitude A, (i.e.), we write,

e T such that T=

10.1,02,0.3,....,2.0}. jfu(B) (w,t)dw = TA[sin(Wt +B)+Mge™ Jdw =1
0 0

Moments, Variances of the
Solution:

In order to find the moments,
variances of the solution (2.7), it must
be that this solution is a probability
density function of w. So, we equate

A= 1

which yields to,

0.975M g,

Hence the solution (2.7) with the
following formula

—1[cos(nt+B)—cosB] ..................... G.1)

sin(wt+B)+M e
Uy (W, t) = =

0.975M g, — 1 [cos(nt + B) —cos B]

is a probability density function.
First moment:
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)

E, [w.t]= ]EW[U(B) (w, t)]dw

Tw[sin(wt +B)+ M(B)e‘w}dw
0

0.975M g, — i[cos(nt +B)—cosB]|

tlz[sin(nt +B)—sinB] —%cos(nt +B)+(1-e" —me " )M,

0.975M g, — 1[cos(nt +B)—cosB]

or

tiz[sin(nt +B)-sinB]- %cos(nt +B)+0.821M,,

0.975- % [cos(nt + B) — cos B]

Second moment:

E.., [wz , t] = _T|£w2 [u(B) (w, t)] dw

jfwz [sin(vvt +B)+ M(B)e’“’]dw
0

0.975M 4, —1[cos(nt +B)—cosB]

2
tza[cos(nt +B)—cosB]+ ?sin(nt +B) —nTcos(nt +B)+ [2 —(n® +2n+2)e" ] Mg,

0.975- 1 [cos(nt + B) — cos B]

or

2
%[cos(nt +B)—cosB]+ 2—fsin(nt +B)— " cos(xt + B) +1.215M g,
2 t t t
E“(B) |:W ‘t:l =

1 w...(3.1.2)
0.975—E[cos(nt +B)—cosB]

Calculations of var, [w,t] (defined (0.05271) at ( t = 0.9), while the
(B’n smallest variance when the phase shift
g el g% s 002077) at (¢ = 140)

for teT-=
{0.1,0.2,...,2.0} in tables (1), (2)
which shown that the smallest variance

in 2.6), when B=

ola

Therefore, the stochastic solution (3.2)
can be rewritten as the following two
formulas,

when the phase shift B:g IS

sin(0.9w + g) +1.743e™"

u(n) (w,0.9) =

3

O<W<T e
2.5484
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sin(L.1w +g) +1.226e™

u(n) (w,1.1) =

6

2.6188

......................... .(34
,0<w<m SR

(Figure (1) represent the curves of u(n) (w,0.9), u(n) (w,1.1)).
3 6

3

Covariance Function of
Ug)(W,t):

When B _I
3

Foranys>t=0.9,t=s-0.9and
— 1 = 0.9 — s, the covariance function
C(-t) =C(0.9+1,0.9)

=C(0.9,09+7)
=C(1)

of u(n)(w,o.g) is an even function
3

depends on the difference |s — 0.9] =
|z| =109 —s | and can be found as
following, [3]

=E, [w,09]-E, [w,09+1]-E, [w,09]E, [w,0.9+1]
8] ) ) @

3

=E, [w?09]-E, [w,09+1]E, [w,09+1]-E, [w?09]-E, [w,09]E, [w,0.9+1]
5] @ @ ) ) )

—E, [w?09]+E, [w,09]E, [w,09+1]-E, [w?09]-E,
& @ ) @

3

=E, [w?0.9]+E, [w,0.9](E,
&) (6 (

3

)

3 3 3

[w,0.9]E, [w,0.9+1]
) &

(3 3

[w,09+1]-E, [w?09])-E, [w,0.9]E, [w,0.9+1]
@ 6 )

=E, [w?09]+E, [w,09]E, [w,09+1]-(E, [w?0.9])*-E, [w,09]E, [w,0.9+1]
5] @ @ @ @ (6

=E, [w?09]+(E, [w,09])
& @

3

=Var, [w,0.9]
)

So, by table (2) whent=0.9,
C(-1) =C(1) =0.05271,t >0

(
When B=Z2
6
For any s >t = 1.1, as previous,

the covariance function of u _ is

)

C(- 1) = C(x) = 0.02077, 1 > 0

Spectral Density Function
of U(B)(W,t):

When B _I
3

C(—1) =C(x) = var, . [w,1.1]

and by table (3) whent=1.10

The spectral density function of
u(n)(w,0.9) for known C(r) = 0.05271

3
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can be found by Khinchine's formula andfort=s-09,-t=09-5
as following, [4], 5-09
1% . f(u, ,A)= 005271 j cosAt dt

f(u, A)=— j C(r) e gt ) T 0

- 2m *, or

_92rd J. (cosAt—isinAt)dt
n —0

fw,, 2 =001678"E=0N 3 <R L) e D)

3
(Figure (2) represents the curves of for known C(t) = 0.02077 as
f(u, A).0"<r<2n and s = 59, following,

3 0.02077 ¢ .
10.9). f(u@;k) - [ (cosrz—isinaz)de

00

When B= 2~
6 andfort=s-11,-t=11-5

Th tral density functi f
e spectral density function o 0.02077° 1

u(n)(w,l.l) can be found as previously f(u_;n) j cosit dt
5 (E) T 0
or
f(u n);;\v) — 0006618”1[}\“(8 _11)] ’ A< nm,ne R* U{0+} ............ (521)

6

T, .
Figure (3) represents the curves of phase B=5 (t=1.10, variance

f(U(E);k),OKMZTc and s = 6.9, = 0.02077) is less than the speed
6
11.1. when B :g (t = 0.90, variance =
. _ 0.05271), that is meaning, any
Conclusions : _ increase in the shift phase followed
1- Any increase in the shift phase B by an increase in the speed V.
followed by an increase in the 3- For future work, we recommend to
value of the variance of the of the find Variances’ Spectra' density
solution. functions for different values of the

2- The speed V of the sine wave T
) W ) phase shift B (B=0, —,...,—).
equation VzT when th shift 12 2
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