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Abstract:

The paper is devoted to solve n™ order linear delay integro-differential
equations of convolution type (DIDE's-CT) using collocation method with the aid of
B-spline functions. A new algorithm with the aid of Matlab language is derived to
treat numerically three types (retarded, neutral and mixed) of n™ order linear DIDE's-
CT using B-spline functions and Weddle rule for calculating the required integrals for
these equations. Comparison between approximated and exact results has been given
in test examples with suitable graphing for every example for solving three types of
linear DIDE's-CT of different orders for conciliated the accuracy of the results of the
proposed method.
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Introduction:

One of the most important and differential equation is often more
applicable  subjects of  applied stable for today's extremely fast
mathematics, and in developing machine computation. Delay integro-
modern mathematics is the integral differential equation of convolution
equations. The names of many modern type has been developed over twenty
mathematicians  notably, Volterra, years ago where one of its types widely
Fredholm, Cauchy and others are is used in control systems and digital
associated with this topic [1]. communication systems as, lag-lead
The name integral equation was compensation and spread spectrum
introduced by Bois-Reymond in 1888 designs [1,3].
[2]. However, in 1959 Volterra's book In this paper, B-spline
" Theory of Functional and of Integral functions  were employed with
and Integro-Differential Equations™ collocation method to solve n™ order
appeared [1]. linear (DIDE's-CT) where they are
The integral and integro- standard representation of smooth
differential equations formulation of geometry in numerical calculations and
physical problems are more elegant the required integrals in this method
and compact than the differential are calculated using Weddle rule as
equation  formulation, since the well as Gauss elimination method has
boundary conditions can be satisfied been used to solve the resulting
and embedded in the integral or equations.
integro-differential equation. Also the To facilitate the presentation
form of the solution to an integro- of the material that followed, a brief
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review of some background on the
linear DIDE's-CT and their types are
given in the following section.

Delay Integro-Differential
Equation of Convolution Type
(DIDE-CT):

Integro-differential ~ equation
(IDE) is an important branch of
modern  mathematics and  arises
frequently in many applied areas which
include  engineering,  mechanics,
physics, chemistry astronomy, biology,
economics, potential theory and
electrostatics [3]. IDE is an equation
involving one (or more) unknown

function  Y(t) together with both

differential and integral operations on
Y. It means that it is an equation

containing derivative of the unknown
function y(t), which appears outside

the integral sign [1,4].

The delay integro-differential
equation is a delay differential
equation in  which the unknown
function y(t)can appear under an
integral sign [5]. The main difference
between delay differential equation and
ordinary differential equation is the
kind of initial condition that should be
used in delay differential equation
differs from ordinary differential
equation, so that one should specify in
delay differential equations an initial
functions on some intervals say
[t, -z.t,] and then try to find the

solution for all t>t, [6,7].

When the kernel K(t,X)in

integral equation depends only on the
differencet — X, such a kernel is called
a difference kernel and the integral
equation with this kind of kernel is
called an integral equation of
convolution type.

So, the general form of n™ order

linear delay integro-differential
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equation of convolution type denoted
by (DIDE-CT) is given by:

> 0 3 0 T

b(t)

g(t)+ﬂjk(t—x) y(x—7)dx

+Zr(t)y(t )=

te[a,b)]

(D
with initial functions:
y(t) = 4(t)
y(:t):¢(t) for t<t, -

yO P () =¢"" (1)

where
g(®), p; (t), a; (¥), r; (1), k(t —x) are
known functions of t, y(t)is the
unknown function, Ais a scalar

parameter (in this paper 4=1), aand
b(t) are the limits of the integral where
ais a constant and b(t) either is given
constant or function of t and
T,Ty, Tyy.--y T, are fixed positive
numbers. The integral term of eq.(1)
can be classified into different kinds
according to the limits of integral and
the kernel. If the limit b(t) in eq.(1) is
constant (b(t) =b) then equation (1) is
called a delay Fredholm integro-
differential equation while if b(t) =t
in eq.(1), then eq.(1) is called a delay
Volterra integro-differential equation
[8,9]

The DIDE-CT is an important
equation in  many applications.
Convolution can be found in various
places in applied mathematics since it
plays an important role in heat
conduction, wave motion, time series
analysis, control systems and digital
communication systems [5,6].

DIDE's-CT are classified into
three types [10, 11]:-

First type:- Equation (1) is called
Retarded type if the derivatives of
unknown function appear without
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difference argument (i.e. the delay
comes in y only) and the delay appears
in the integrand unknown function (i.e.
7#0).

Second type: Equation (1) is called a

neutral type if the highest-order
derivative of unknown function
appears both with and without

difference argument and the delay does
not appear in the integrand function
(i,e. =0).

Third type:- All other DIDE's-CT in
eq.(1) are called mixed types, which
are combination of the previous two
types.

B-Spline Functions:

The n™ order B-splines as
appropriately scaled n™ is divided into
difference of truncated power function;
these  functions  have  several
mathematical definitions [4].

B-spline functions have an
explicit function form and are easy to
integrate and  differentiate  [12].
Schoenberg [13] introduced the B-
spline in 1949 and B-splines have been
applied to geometric modeling since
1970's [4]. According Schoenberg, B-
spline means spline basis and the letter
B in B-spline stands for basis [4].
Given t,,t,,..,t, knots e [0,1] with
t, <t <..<t,. Then, a B-spline of
degree n is a parametric curve, B:
[0,]] > R™
Composed of basis B-spline of degree

m+1
n: Bt)=> pB,(t) te[0d].

i=0
where the p;, i=0,1,...,m+1 are called
control points or de Boor points.
The B-spline of degree n can be
defined wusing the Cox-de Boor
recursion formula as [4,13]:

.. () :{1 if t <t <tk+1}m )

0 otherwise
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t—t,

Bk,n (t) =

t

Bk,n—l (t) +

k+n k . (3)

k+n+l

t Byo,a(® n>1 k>0

k+n+l — “k+l

When the knots are equidistant
the B-spline is said to be uniform
otherwise it is non-uniform [14].

The B-spline can be defined in
another way which is [13,15]:

B, ()= @tk @-t)"* k>0,n>0... (4

(n} n!
where =
k kI(n—k)!

There are (n+1) n™ degree B-spline

polynomials for mathematical
convenience, we usually  set
B.,()=0 if k<O or k>n.

1. Some Types of B-Spline
Functions [4,13,14]:
1.1 The Constant B-spline By ,(t):

The constant B-spline or B-
spline of order O is the simplest spline.
It is defined at only one knot span and
IS not even continues on the knots.

1 if t <t<t
Bk . (t) — k . k+1
' 0 otherwise
1.2 The Linear B-spline B ,(t):

The linear B-spline or the first
order of B-spline is defined on two

consecutive knot spans and is
continues on the knots.
t-—t .

ﬁ if tk <t< tk+1

B, () = {2 =t if ., <t<t,,
' tk+2 _tk+1
0 t=t,, or t<t,

or By, (t)=1-t , B, ()=t

1.3 Quadratic B-spline B, , (t):

Quadratic B-spline (or the 2"
order of B-spline) with uniform knot-
vector is a commonly used form of B-
spline which is:
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t—t,)? .

t-t) if t, <t<t,,
( k+2 t )(tk+1 )

t—t,)(t - i

(t—t) (.2 — 1) (tes —OE ) if t,,, <t<t,,
Bk'2 (t) — ( k+2 -t )(tk+2 k+1) (tk+3 k+1)(tk+2 tk+1)

t, ., —1)° .

(k+3 ) |f tk+2 St<tk+3
(tk+3 _tk+1)(tk+3 _tk+2)
0 t>t,_, or t<t,

or  By,(t)=@1-t)?* ,

1.4 Cubic B-spline B, 4(t):

Cubic B-spline (or the 3" order
of B-spline) with uniform knot-vector
is the most commonly used form of B-
spline which is:

Bos()=(-1)° , B ()=3t-1)’,
B,,(t)=3t*1-t) and B,,(t)=t’

2 Some Properties of B-Spline

Functions [12,15]:
2.1 The Integration property:

For
k=01..,n and n>0:
B, . (t) =
J- kn() n+1

2 2 The D|fferent|at|on property:
The i derivative of B-spline

polynomials B, , (t) is given by:
d ! Bk n (t) n!

dt’i (n |)I;( l) [ ] k+r—i,n—i (t)

2.3 The Product property:

For
nm>0, i=01..,n and j=01..m
i)
« N
Bln(t) Bjm(t) Bi+j,n+m(t)'

o)

B,,(t)=2t(1-t) and B,,(t)=t>.

Weddle Method:

Weddle method is one of the
basic ~ formula  of  quadrature
approximation methods for integration.
Quadrature rule is generic name given
to any numerical method for the
approximate calculation of definite
integral I[u]of the function u(t)over

finite integral [a,b] which is [1,3] :
I[u] = j u(t)dt

Weddle formula approximates
the function on the interval [t,,t;]1by a
curve that possesses through seven
points. When it is applied over the
interval [a,b], the composite Weddle
rule is obtained as [1,4]:

a<b.

fo+5f +f,+6f,+f, +5f, +
3H 2f #5F, + f, +6f, + T, +
10 5f, +-+2f 45f, + ., +

6f, 5+ fy,+5f,, +f,

j f(t)dx =

. (5

where a, b are the limits of the integral,
H:(b;a)’ N is the number of

intervals

(Ito.t,], [t,, t,]..... [ty . ty 1) which s
the multiple of (6), fi=f() t,=a,
ty =band t, =a+iH are called the

integration nodes which are lying in
the interval [a,b] where 1=0,,...,N.
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The Solution of n™ Order Linear
DIDE-CT Using Collocation Method
with B-Spline Functions and Weddle
Rule:

Collocation method [16,17] is
one of the efficient methods used to
solve differential and integro-
differential equations without time lag.
In this section, collocation method with
the aid of B-Spline functions and
Weddle rule are candidates to find the
approximated solutions for three types
of n'" order DIDE's-CT as follows:

n di M n di M n M
z pi(tj)iizcaBa,M (tj)+zqi(tj)7izca8a,M t; _Ti)+zri (tj)ZCaBa,M (t;—7)
i=0 dt a=0 i=1 dt a=0 i=0 a=0 .

b(t;)

Recall eq.(1), to solve it the unknown
function y(t) is approximated by a set
of B-spline functions as:

y(t) = yy () = an B, (t))... (6)

where
j=014.,M, M>0 andc,,c,,...,
are (M+1) unknown coefficients.

Cwm

By substituting eq.(6) into eq.(1)
and by putting t=t; one gets the
following formula:

(7

=g(t;) + j k(t; —x)icaBmM (x —7)dx

a

Hence, by using B-spline's property
(3.2.2) for eq.(7) yields:

Zp(t )2 [ Z ['r] w-i.M-i(t,-)]+
|

Zq (t )ZC [(M )'Z( 1)’ (rj 7i(tj Ti)J+
Zr'(tj)zcaBa,M(tj_Ti)_
n(‘)
j K, —X)anBaM(x 7)dx=g(t,)
then,

Zpi(t,-)[(M I),Z( )(] Mi(t,-)j+
Zc >a, )[(M Z( )U (t,-—ri)]+

b(t;)

jk(t

Zr(t )Bowm (t; -
.. (8)

where j=01,..,M and M >0.

(1 M (X—Z')dX

In Collocation method the
unknown coefficients c,,c,,...,c,, In

=g(tj)
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eq.(8) are chosen to minimize the
residual equation Ey (t) by setting its
weighted integral equal to zero, i.e.

[w,E, (dt=0 j=01..,M
D
. 9)

where D is a prescribed domain and w;
are weighting functions which are:

1 ift=t,

0 otherwise

where the fixed points

t,eD and j=01..,M are
called collocation points.

By substituting eq.(10) into eq.(9)
yields:

JD‘WJEM(t)dt:EM(tj)'ledt:O N D
Ew(t,)=0 j=01..M

The residual equation Ew (t;) of DIDE-
CT is defined by:
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i (i
Z p; (t )( I)',Z;(_l) (Jeri,Mi (tj)J+

M .. (12)
Ew (tj):ZC ZQ( )((M TP z [ J wrr-imi (4 _Ti)j_'_ -g(t;)

b(t;)

Zri (t,)B,w(t, —7,) - jk(tj —X)B,,  (x—7)dx

By substituting eq.(12) into eq.(11) we get:

ipl(tl)( I)' ( J o+r—i,M—i (tJ)J+

Ew (tj):;C ZQ( )((M _ )IZ( D’ { j asr-im-i (& _Ti)J+ -g(t;)=0

b(t;)

_zri (t))B,w (t; —7) = [k(t; —X)B, , (x—7)dx

for j=01...,.M.

Hence,

Z Pt )((M _ ).Z( 1)r(lera+ri,Mi(tj)]+

r=0

! ) .(13)
zca zq( )[(M —i)! ZO ( J a+r—i,M—i(tj _Ti)j+ _g(tl)

a=0

b(t;)

Zr (t;)Bou (t; - jk(t —X)B,,  (x—7)dx

The values required integrals in eq.(13) are evaluated numerically using Weddle
method in eq.(5) as follows:

Let w(t;,x) =k(t; —X) B, y (Xx—7), then
b(t;)
Ju(t;. x)dx = Weddle(y (¢, %), a,b(t;), N ) =

w(t;,a)+5p(t;, %) +w(t;, X,)+6p(t;, X;)+

E "'+2'//(tjaXN—6)+5‘//(tj’XN—5)+'//(tjaXN—4)+

By (tXus) + W (8 Xu) S )+ DD | g

where H =

(b(til\l)‘a), x —a+iH and i=0,1,...N.

By substituting eqg.(14) into eq.(13) we get:
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Se.[Sac, )(

a=0

Zn (t;)B.u (;

So, by evaluating eq.(15), we have
(M+1) simultaneous equations with
(M+1) unknown

coefficients c,,c,,...,c,, -

Hence, eq.(15) can be written in
matrices form as DC=G which they:

dOO dOl dOM
N
dMO dMl MM _|(M +1)x(M +1)
Co a(t,)
t
Cc- C:l and G g(:l)
Cu 9(tw)
... (16)
where
zp( )[ TR 1>f['rJBwi,Mi(tj)]+
da‘j = z ( z ( j ar- i,Mfi(tj _Ti)]+
A > (t,)B, (tj7ri)7Weddle(y/(tj,x),a,b(tj),N)

Zpi(t )((M _ )IZ( D’ ( j a+r—i,M-i(tJ)J+

( j a+r—i,M—i(tj _Ti)]“‘

~7,) —Weddle(l//(tj ,X),a,b(t,),N)

forO(=0,:L...,|V|and j=0,l,...,|\/|.

Then, use Gauss elimination method to
find the coefficients ¢,'s,a=01..,M
which satisfy eq.(6) (the approximate
solution y(t) of eq.(1)).

The solution of three types n™ order

linear DIDE's-CT using Collocation
method with B-Spline functions and
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.. (15)
:g(tj)

Weddle method can be summarized by
the following algorithm:

DIDECT-CBSW Algorithm :
INPUT

e n : (the order of DIDE-CT).

e N: (the number of intervals of
Weddle method)

e M: ( the order of B-spline function

By ().

t,, b, t, (the (M + 1)

collocation points).

a & b(t; ): (the limits of the integral

of DIDE-CT) .

The function g(t) of DIDE-CT.

The difference kernel of the DIDE-

CT.

OUTPUT

e C,'s,a=01..,.M
coefficients of eq.(6)).
e vy, (t): ( the approximate solution
of DIDE-CT)

Step  1: Set
Y (€) =CoBy (1) +C,By () +---+Cy, By, (1)

(the  unknown

Step 2: Define y(t;,x)in eq.(14).
Step3: Compute B-splines
B,w(®),x=01...,Min (step 1) as:
(@)Set =0

(b)Fori=a : M do step (c)

(c)Sum=Sum+(—1>“”’)(-M ]@t

(d) B,y (t)=Sum
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(e) Set a=a+1

(f) If a =M+1 then stop and go to
(step 4). Else go to step (b)

Step4: Set j=0

Step 5: Compute eq.(10)

Step 6: Put j=j+1

Step 7: If j=M+1 then stop and

go to (step 8). Else go to (step 5)
Step 8:  Find the B-spline functions
in (step 5) using eq.( 4).

Step  9:  Express the (M+1)
simultaneous equations in step(5) by
matrices form DC=G as eq.(16).

Step 10: Use Gauss elimination
method for finding the
coefficientsc,'s,a=01,..., M which

satisfy the solution y(t) in (step 1).

6. Test Examples:
Example (1):
Consider the following 1% order linear

Retarded Volterra integro-differential
equation of convolution type [11]:

WO L y-1y=L (1 t+el)+
dt .. (17)

I e y(x—1)dx 0<t<0.5
with initial function:
yt)=e'-1  -05<t<0.

The exact solution of eq.(17) is:
yt)=t+3 0<t<05.

Assume the approximate solution of
eq.(17) in the form:

Ym (t) = an Ba,M (t)

When the algorithm (DIDECT-CBSW)
is applied, table (1) presents the
comparison results between the exact
and  collocation  with  B-Spline
functions and Weddle method for
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eq.(17) depending on least square error
(L.S.E) where m=10, h=0.05,

t,=jh, j=0L...m.

Table (1) The solution of Ex.(1).

Collocation with B-Splines and
Weddle
t Exact (DIDECT-CBSW)
ym(t)
M=1 M=2

0 0.5000000 0.5000000 0.5000000
0.05 | 0.5500000 0.5500000 0.5500000
0.10 | 0.6000000 0.6000000 0.6000000
0.15 | 0.6500000 0.6500000 0.6500000
0.20 | 0.7000000 0.7000000 0.7000000
0.25 | 0.7500000 0.7500000 0.7500000
0.30 | 0.8000000 0.8000000 0.8000000
0.35 | 0.8500000 0.8500000 0.8500000
0.40 | 0.9000000 0.9000000 0.9000000
0.45 | 0.9500000 0.9500000 0.9500000
0.50 | 1.0000000 1.0000000 1.0000000
L.S.E. 0.0000000 0.0000000

Fig. (1) shows the solution of eq.(17)
using DIDECT-CBSW algorithm and
the exact solution.

095}
k=13
085}
08t
£075
07
0651
06}

0.55 -

0.

. -. - Exact solution

*-*- DIDECT-CBSWalgorithm M=1
0-0- DIDECT-CBSWalaorithm M=2

L L L L L L L L L
o 005 01 015 02 025 03 035 04 045 05

t

Fig.(1) The comparison between the
DIDECT-CBSW
algorithm for eq.(17) in Ex.(1).

exact

Example (2):

order

and

Consider the following second

neutral

Volterra

integro-
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differential equation of convolution
type [10]:
d’y(t-1) dy(t-0.5)_

dt? dt

(—GSint—t‘"’ +3t° +9t—271j+ ... (18)

Isin(t—x) y(x)dx 0<t<1
0

with initial functions :

y(t) =t° t<0

y'(t) = 3t? t<0

The exact solution of eq.(18) is:
y(t) =t° 0o<t<1.

Assume the approximate solution of
eq.(18) in the form:

Y4 (t) = an Ba,4 (t)

When the algorithm (DIDECT-
CBSW) is applied, table (2) presents
the comparison between the exact and
approximated solutions for eq.(18)
using collocation  with  B-spline
functions and Weddle method for

m=10, h=0.1, t; = jh, j=01...,m
with least square error (L.S.E.).

Table (2) The solution of Ex.(2).

t Exact (DIDECT-CBSW) algorithm

ym(t)

0 0.0000000 0.0000000
0.1 | 0.0010000 0.0010000
0.2 | 0.0080000 0.0080000
0.3 | 0.0270000 0.0270000
0.4 | 0.0640000 0.0640000
0.5 | 0.1250000 0.1250000
0.6 | 0.2160000 0.2160000
0.7 | 0.3430000 0.3430000
0.8 | 0.5120000 0.5120000
0.9 | 0.7290000 0.7290000

1 1.0000000 1.0000000

L.S.E. 0.0000000
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Fig. (2) shows the solution of eq.(18)
by using DIDECT-CBSW algorithm
and the exact solution.

. -. - Exact solution
08¢ 0-0-DIDECT-CBSW
algorithm solution

o & L L L L L L
0 0.1 02 08 04 06 06 07 08 08 1
t

Fig.(2) The comparison between the
exact and DIDECT-CBSW solution
for eq.(18) in Ex.(2)

Example (3):
Consider the following third
order mixed Fredholm integro-

differential equation of convolution
type [6]:
d’y(t-1)

119, 719
t)=|-t'+—t——— |+
e y(t) [ s ]

30
1

j (t—x)y(x-Ddx O0<t<1

0

... (19)

with initial functions :
y(t) =t*
y'(t) = 4t°
y"(t) =12t*

-1<t<0,.

The exact solution of eq.(19) is:
y(t) =t* 0<t<1

Assume the approximate solution of
€g.(19) in the form:

Ys (t) = an Ba,5 (t)
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When the algorithm (DIDECT-
CBSW) is applied, table (3) presents
the comparison between the exact and
approximate solutions of eq.(19) using
collocation with B-spline functions and
Weddle method for m=10, h=0.1,

t;=jh, j=01..,m depending on
least square error (L.S.E.).

Table (3) The solution of Ex.(3).

B-Spline and Weddle

t Exact (DIDECT-BSB)

y(t)

0 0.0000000 0.0000000
0.1 0.0001000 0.0001000
0.2 0.0016000 0.0016000
0.3 0.0081000 0.0081000
0.4 0.0256000 0.0256000
0.5 0.0625000 0.0625000
0.6 0.1296000 0.1296000
0.7 0.2401000 0.2401000
0.8 0.4096000 0.4096000
0.9 0.6561000 0.6561000

1 1.0000000 1.0000000

L.S.E. 0.0000000

Fig.(3) shows the solution of eq.(19)
by using DIDECT-CBSW algorithm
and the exact solution.

. -. - Exact solution
oaf 0-0- DIDECT-CBSW algorithm

0 . . I I I L L
a a1 02 02 04 05 06 07 08 09 1
t

Fig.(3) The comparison between the
exact and DIDECT-CBSW solution
for eq.(19) in Ex.(3)
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Conclusions:

Collocation method with the aid of
B-Spline functions and Weddle method
have been presented to find the
approximated solutions for n™ order
retarded, neutral and mixed linear
DIDE's-CT. The results show a marked
improvement in the least square error
(L.S.E.). From solving three test
examples, the following points are
drawn:

Collocation method with B-
spline functions and Weddle method
give qualified way for solving 1% order
linear DIDE's-CT as well as n™ order
linear DIDE-CT

The good approximation of
Weddle method depends on the size of
H, if H is decreased then the number of
nodes increases and the L.S.E.
approaches to zero where this gives the
advantage in numerical computation.

The good  approximation
solution of DIDECT-CBSW algorithm
depends on the number M of B-spline
functions where as M increased, the
error term approaches to zero.
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