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Abstract: 
The paper is devoted to solve n

th
 order linear delay integro-differential 

equations of convolution type (DIDE's-CT) using collocation method with the aid of 

B-spline functions. A new algorithm with the aid of Matlab language is derived to 

treat numerically three types (retarded, neutral and mixed) of n
th

 order linear DIDE's-

CT using B-spline functions and Weddle rule for calculating the required integrals for 

these equations. Comparison between approximated and exact results has been given 

in test examples with suitable graphing for every example for solving three types of 

linear DIDE's-CT of different orders for conciliated the accuracy of the results of the 

proposed method.  
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Introduction: 

One of the most important and 

applicable subjects of applied 

mathematics, and in developing 

modern mathematics is the integral 

equations. The names of many modern 

mathematicians notably, Volterra, 

Fredholm, Cauchy and others are 

associated with this topic [1].  

The name integral equation was 

introduced by Bois-Reymond in 1888 

[2]. However, in 1959 Volterra's book 

" Theory of Functional and of Integral 

and Integro-Differential Equations" 

appeared [1].   

The integral and integro-

differential equations formulation of 

physical problems are more elegant 

and compact than the differential 

equation formulation, since the 

boundary conditions can be satisfied 

and embedded in the integral or 

integro-differential equation. Also the 

form of the solution to an integro-

differential equation is often more 

stable for today's extremely fast 

machine computation. Delay integro-

differential equation of convolution 

type has been developed over twenty 

years ago where one of its types widely 

is used in control systems and digital 

communication systems as, lag-lead 

compensation and spread spectrum 

designs [1,3]. 

In this paper, B-spline 

functions were employed with 

collocation method to solve n
th

 order 

linear (DIDE's-CT) where they are 

standard representation of smooth 

geometry in numerical calculations and 

the required integrals in this method 

are calculated using Weddle rule as 

well as Gauss elimination method has 

been used to solve the resulting 

equations.     

  To facilitate the presentation 

of the material that followed, a brief 
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review of some background on the 

linear DIDE's-CT and their types are 

given in the following section. 
 

Delay Integro-Differential 

Equation of Convolution Type 

(DIDE-CT): 
Integro-differential equation 

(IDE) is an important branch of 

modern mathematics and arises 

frequently in many applied areas which 

include engineering, mechanics, 

physics, chemistry astronomy, biology, 

economics, potential theory and 

electrostatics [3]. IDE is an equation 

involving one (or more) unknown 

function )(ty together with both 

differential and integral operations on 
y . It means that it is an equation 

containing derivative of the unknown 

function )(ty , which appears outside 

the integral sign [1,4].   

  The delay integro-differential 

equation is a delay differential 

equation in which the unknown 

function )(ty can appear under an 

integral sign [5]. The main difference 

between delay differential equation and 

ordinary differential equation is the 

kind of initial condition that should be 

used in delay differential equation 

differs from ordinary differential 

equation, so that one should specify in 

delay differential equations an initial 

functions on some intervals say 

 00 , tt   and then try to find the 

solution for all  0tt   [6,7]. 

When the kernel ),( xtk in 

integral equation depends only on the 

difference xt  , such a kernel is called 

a difference kernel and the integral 

equation with this kind of kernel is 

called  an integral equation of 

convolution type.  

So, the general form of n
th 

order 

linear delay integro-differential 

equation of convolution type denoted 

by (DIDE-CT) is given by: 
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where 

)(),(),(),(),( xtktrtqtptg iii   are 

known functions of t, )(ty is the 

unknown function,  is a scalar 

parameter (in this paper  =1), a and 

)(tb are the limits of the integral where 

a is a constant and )(tb  either is given 

constant or function of t and 

n ,....,,, 10  are fixed positive 

numbers. The integral term of eq.(1) 

can be classified into different kinds 

according to the limits of integral and 

the kernel. If the limit )(tb  in eq.(1) is 

constant ( btb )( ) then equation (1) is 

called a delay Fredholm integro-

differential equation while if ttb )(  

in eq.(1), then eq.(1) is called a delay 

Volterra integro-differential equation 

[8,9] 

The DIDE-CT is an important 

equation in many applications. 

Convolution can be found in various 

places in applied mathematics since it 

plays an important role in heat 

conduction, wave motion, time series 

analysis, control systems and digital 

communication systems [5,6].   

             DIDE's-CT are classified into 

three types [10, 11]:-  

First type:-  Equation (1) is called 

Retarded type if the derivatives of 

unknown function appear without 
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difference argument (i.e. the delay 

comes in y only) and the delay appears 

in the integrand unknown function (i.e. 

)0 . 

Second type: Equation (1) is called a 

neutral type if the highest-order 

derivative of unknown function 

appears both with and without 

difference argument and the delay does 

not appear in the integrand function 

(i.e. )0 . 

Third type:- All other DIDE's-CT in 

eq.(1) are called mixed types, which 

are combination of the previous two 

types.  

B-Spline Functions: 
 The n

th
 order B-splines as 

appropriately scaled n
th

 is divided into 

difference of truncated power function; 

these functions have several 

mathematical definitions [4].  

 B-spline functions have an 

explicit function form and are easy to 

integrate and differentiate [12]. 

Schoenberg [13] introduced the B-

spline in 1949 and B-splines have been 

applied to geometric modeling since 

1970's [4]. According Schoenberg, B-

spline means spline basis and the letter 

B in B-spline stands for basis [4].  

 Given mttt ,...,, 10  knots   [0,1] with  

mttt  ...10 . Then, a B-spline of 

degree n is a parametric curve,  B: 

[0,1] nR
.
  

Composed of basis B-spline of degree 

n: ]1,0[)()(
1
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nii . 

where the  pi , i=0,1,…,m+1 are called 

control points or de Boor points.  

The B-spline of degree n can be 

defined using the Cox-de Boor 

recursion formula as [4,13]: 
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When the knots are equidistant 

the B-spline is said to be uniform 

otherwise it is non-uniform [14]. 

 The B-spline can be defined in 

another way which is [13,15]: 

0,0)1()(, 







  nktt

k

n
tB knk

nk
… (4)  

 where        
)!(!

!

knk

n

k

n











. 

There are (n+1) n
th

 degree B-spline 

polynomials for mathematical 

convenience, we usually set  

nkorkiftB nk  00)(,  . 

1. Some Types of B-Spline 

Functions [4,13,14]: 

1.1 The Constant B-spline )(0, tBk : 

 The constant B-spline or B-

spline of order 0 is the simplest spline. 

It is defined at only one knot span and 

is not even continues on the knots.   

          






 




otherwise

tttif
tB

kk

ok
0

1
)(

1

,  

1.2 The Linear B-spline )(1, tBk : 

 The linear B-spline or the first 

order of B-spline is defined on two 

consecutive knot spans and is 

continues on the knots.     





























































kk

kk

kk

k

kk

kk

k

k

ttortt

tttif
tt

tt

tttif
tt

tt

tB

2

21

12

2

1

1

1,

0

)(

 

 

or     ttBttB  )(,1)( 1,11,0  

1.3 Quadratic B-spline )(2, tBk : 

 Quadratic B-spline (or the 2
nd

 

order of B-spline) with uniform knot-

vector is a commonly used form of B-

spline which is: 
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1.4 Cubic B-spline )(3, tBk : 

 Cubic B-spline (or the 3
rd

 order 

of B-spline) with uniform knot-vector 

is the most commonly used form of B-

spline which is: 
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2 Some Properties of B-Spline 

Functions  [12,15]: 
2.1 The Integration property: 

 For 

0,...,1,0  nandnk :   
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Weddle Method: 
Weddle method is one of the 

basic formula of quadrature 

approximation methods for integration. 

Quadrature rule is generic name given 

to any numerical method for the 

approximate calculation of definite 

integral ][uI of the function )(tu over 

finite integral [a,b]  which is [1,3] :    
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the function on the interval ],[ 60 tt by a 

curve that possesses through seven 

points. When it is applied over the 

interval [a,b], the composite Weddle 

rule is obtained as [1,4]: 
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where a, b are the limits of the integral, 

N

ab
H

)( 
 , N is the number of 

intervals 

)],[,],,[],,[( 12110 NN tttttt  which is 

the multiple of (6),  fi = f (ti)  at 0 , 

btN  and iHati   are called the 

integration nodes which are lying in 

the interval [a,b] where  Ni ,,1,0  . 
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The Solution of n
th

 Order Linear 

DIDE-CT Using Collocation Method 

with B-Spline Functions and Weddle 

Rule: 

            Collocation method [16,17] is 

one of the efficient methods used to 

solve differential and integro-

differential equations without time lag. 

In this section, collocation method with 

the aid of B-Spline functions and 

Weddle rule are candidates to find the 

approximated solutions for three types 

of n
th

 order DIDE's-CT as follows: 

Recall eq.(1), to solve it the unknown 

function y(t) is approximated by a set 

of B-spline functions as: 

 
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where  
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are (M+1) unknown coefficients.  

       By substituting eq.(6) into eq.(1) 

and by putting t=tj one gets the 

following formula: 
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Hence, by using B-spline's property 

(3.2.2) for eq.(7) yields:  
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where .0,...,1,0  MandMj  

 

In Collocation method the 

unknown coefficients
Mccc ,,, 10   in 

eq.(8) are chosen to minimize the 

residual equation EM (t) by setting its 

weighted integral equal to zero, i.e. 
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where the fixed points 

MjandDt j ,...,1,0  are 

called collocation points.  

By substituting eq.(10) into eq.(9) 

yields: 
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The residual equation EM (tj) of DIDE-

CT is defined by: 
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By substituting eq.(12) into eq.(11) we get: 
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


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


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




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
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

 




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M
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
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







 

Mjfor ,...,1,0 . 

                                                                   

Hence, 
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r
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
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

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








 































   … (13) 

 

The values required integrals in eq.(13) are evaluated numerically using Weddle 

method in eq.(5) as follows: 

Let )()(),( ,    xBxtkxt Mjj , then 

 































))(,(),(5),(),(6

),(),(5),(2

),(6),(),(5),(

10

3

),(,),,(),(

123

456

321

)(

jjNjNjNj

NjNjNj

jjjj

jj

tb

a

j

tbtxtxtxt

xtxtxt

xtxtxtat
H

NtbaxtWeddledxxt

j











     … (14) 

where  
N

atb
H

j ))(( 
 , iHaxi    and  i = 0,1,…,N. 

By substituting eq.(14) into eq.(13) we get: 
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         … (15) 

  

So, by evaluating eq.(15), we have 

(M+1) simultaneous equations with 

(M+1) unknown 

coefficients
Mccc ,,, 10  . 

Hence, eq.(15) can be written in 

matrices form as DC=G  which they: 

 

       

















































































)(

)(

)(

,
1

0

1

0

)1()1(10

11110

00100

MM

MMMMMM

M

M

tg

tg

tg

Gand

c

c

c

C

ddd

ddd

ddd

D











           

… (16) 
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for M,,1,0  and Mj ,,1,0  .  

 

Then, use Gauss elimination method to 

find the coefficients sc ' , M,...,1,0  

which satisfy eq.(6) (the approximate 

solution  y(t) of eq.(1)). 

The solution of three types n
th

 order 

linear DIDE's-CT using Collocation 

method with B-Spline functions and 

Weddle method can be summarized by 

the following algorithm: 

 

DIDECT-CBSW Algorithm : 

INPUT   

 n : (the order of DIDE-CT). 

 N: (the number of intervals of 

Weddle method) 

 M: ( the order of B-spline function 

)(, tB Mk ). 

 Mttt ,...,, 10  : (the (M + 1) 

collocation points). 

 a & b(tj ): (the limits of the integral 

of DIDE-CT) . 

 The function g(t) of DIDE-CT. 

 The difference kernel of the DIDE-

CT. 

OUTPUT  

 sc ' , M,...,1,0  (the unknown 

coefficients of eq.(6)). 

 )(tyM : ( the approximate solution  

of DIDE-CT) 

Step 1:    Set 

)()()()( ,,11,00 tBctBctBcty MMMMMM  

 

Step 2:    Define ),( xt j in eq.(14). 

Step3: Compute B-splines  

MtB M ,,1,0),(,  in (step 1) as: 

(a) Set 0  

(b) For i =  : M do step (c) 

(c) Sum=Sum+ ii t
i

i

M
















 



 )()1(  

(d) )(, tB M Sum 
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(e) Set 1  

(f) If    =M+1 then stop and go to 

(step 4).  Else go to step (b)  

Step 4:    Set 0j  

Step 5:    Compute eq.(10)  

Step 6:    Put    j = j+1 

Step 7:    If   j = M+1   then stop and 

go to (step 8).  Else go to (step 5)  

Step 8:    Find the B-spline functions 

in (step 5) using eq.( 4).             

Step 9: Express the (M+1) 

simultaneous equations in step(5) by 

matrices form DC=G as  eq.(16).  

Step 10:  Use Gauss elimination 

method for finding the 

coefficients sc ' , M,...,1,0  which 

satisfy the solution  y(t) in (step 1). 

 

6. Test Examples: 

Example (1):   

Consider the following 1
st
 order linear 

Retarded Volterra integro-differential 

equation of convolution type [11]: 

 

5.00)(

1
2

1
)(

)(

0

2
1)(

2
1






 tdxxye

ettyt
dt

tdy

t

xt

t

 … (17) 

with initial function:  

05.0)(
2
1  tety t

. 

The exact solution of eq.(17)  is:     

5.00)(
2
1  ttty  . 

Assume the approximate solution of 

eq.(17) in the form: 

                 



M

MM tBcty
0

, )()(


  

When the algorithm (DIDECT-CBSW) 

is applied, table (1) presents the 

comparison results between the exact 

and collocation with B-Spline 

functions and Weddle method for 

eq.(17) depending on least square error 

(L.S.E.) where m=10, h=0.05, 

mjjht j ,...,1,0,  . 

 

Table (1) The solution of Ex.(1). 

t Exact 

Collocation with B-Splines and 

Weddle 

(DIDECT-CBSW) 

yM(t) 

M=1 M=2 

0 0.5000000 0.5000000 0.5000000 

0.05 0.5500000 0.5500000 0.5500000 

0.10 0.6000000 0.6000000 0.6000000 

0.15 0.6500000 0.6500000 0.6500000 

0.20 0.7000000 0.7000000 0.7000000 

0.25 0.7500000 0.7500000 0.7500000 

0.30 0.8000000 0.8000000 0.8000000 

0.35 0.8500000 0.8500000 0.8500000 

0.40 0.9000000 0.9000000 0.9000000 

0.45 0.9500000 0.9500000 0.9500000 

0.50 1.0000000 1.0000000 1.0000000 

L.S.E. 0.0000000 0.0000000 

 

Fig. (1) shows the solution of eq.(17) 

using DIDECT-CBSW algorithm and 

the exact solution. 

 

 

Fig.(1) The comparison between the 

exact and DIDECT-CBSW 

algorithm  for eq.(17) in Ex.(1). 

 

Example (2):   

 Consider the following second 

order neutral Volterra integro-

. -. - Exact solution 

*-*- DIDECT-CBSWalgorithm M=1 

o-o- DIDECT-CBSWalgorithm M=2 
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differential equation of convolution 

type [10]: 

10)()sin(

4

21
93sin6

)5.0()1(

0

23

2

2



















 tdxxyxt

tttt

dt

tdy

dt

tyd

t

  … (18) 

with initial functions :   

03)(

0)(

2

3





ttty

ttty
 

The exact solution of eq.(18) is:       

10)( 3  ttty   . 

 

Assume the approximate solution of 

eq.(18) in the form: 

     



4

0

4,4 )()(


 tBcty  

When the algorithm (DIDECT-

CBSW) is applied, table (2) presents 

the comparison between the exact and 

approximated solutions for eq.(18) 

using collocation with B-spline 

functions and Weddle method for 

m=10, h=0.1,  mjjht j ,...,1,0,   

with least square error (L.S.E.). 
 

Table (2) The solution of Ex.(2). 
t Exact 

(DIDECT-CBSW) algorithm 

yM(t) 

0 0.0000000 0.0000000 

0.1 0.0010000 0.0010000 

0.2 0.0080000 0.0080000 

0.3 0.0270000 0.0270000 

0.4 0.0640000 0.0640000 

0.5 0.1250000 0.1250000 

0.6 0.2160000 0.2160000 

0.7 0.3430000 0.3430000 

0.8 0.5120000 0.5120000 

0.9 0.7290000 0.7290000 

1 1.0000000 1.0000000 

L.S.E. 0.0000000 

 

 

Fig. (2) shows the solution of eq.(18) 

by using DIDECT-CBSW algorithm 

and the exact solution. 

 

 

Fig.(2) The comparison between the 

exact and DIDECT-CBSW solution 

for eq.(18) in Ex.(2) 

 

Example (3):   

 Consider the following third 

order mixed Fredholm integro-

differential equation of convolution 

type [6]:                     

10)1()(
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119
)(

)1(

1

0

4

3

3


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 … (19) 

 

with initial functions :   

01

12)(

4)(

)(

2

3

4
















t

tty

tty

tty

. 

The exact solution of eq.(19) is:    

10)( 4  ttty  

Assume the approximate solution of 

eq.(19) in the form: 





5

0

5,5 )()(


 tBcty  

 

. -. - Exact solution 

o-o-DIDECT-CBSW 

algorithm solution 
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When the algorithm (DIDECT-

CBSW) is applied, table (3) presents 

the comparison between the exact and 

approximate solutions of eq.(19) using 

collocation with B-spline functions and 

Weddle method for m=10, h=0.1,  

mjjht j ,...,1,0,   depending on 

least square error (L.S.E.). 

 

Table (3) The solution of Ex.(3). 

t Exact 

B-Spline and Weddle 

(DIDECT-BSB) 

y(t) 

0 0.0000000 0.0000000 

0.1 0.0001000 0.0001000 

0.2 0.0016000 0.0016000 

0.3 0.0081000 0.0081000 

0.4 0.0256000 0.0256000 

0.5 0.0625000 0.0625000 

0.6 0.1296000 0.1296000 

0.7 0.2401000 0.2401000 

0.8 0.4096000 0.4096000 

0.9 0.6561000 0.6561000 

1 1.0000000 1.0000000 

L.S.E. 0.0000000 

 

Fig.(3) shows the solution of eq.(19) 

by using DIDECT-CBSW algorithm 

and the exact solution. 

 

 

Fig.(3) The comparison between the 

exact and  DIDECT-CBSW solution 

for eq.(19) in Ex.(3) 

Conclusions: 
Collocation method with the aid of 

B-Spline functions and Weddle method 

have been presented to find the 

approximated solutions for n
th

 order 

retarded, neutral and mixed linear 

DIDE's-CT. The results show a marked 

improvement in the least square error 

(L.S.E.). From solving three test 

examples, the following points are 

drawn: 

1. Collocation method with B-

spline functions and Weddle method 

give qualified way for solving 1
st
 order 

linear DIDE's-CT as well as n
th

 order  

linear DIDE-CT 

2. The good approximation of 

Weddle method depends on the size of 

H, if H is decreased then the number of 

nodes increases and the L.S.E. 

approaches to zero where this gives the 

advantage in numerical computation. 

3. The good approximation 

solution of DIDECT-CBSW algorithm 

depends on the number M of B-spline 

functions where as M increased, the 

error term approaches to zero. 
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التكاملية التباطؤية الألتفافية الخطية من  -لمعادلات التفاضليةلتقريبية لاالحلول 

 و طريقة ويدل لدوال الثلمة التوصيليةباستخدام ا  nالرتبة 
  

 *اسراء هادي حسن                                   *رغــد كاظم صـالح
 * أثـيـر جــواد كاظم

 

 لجامعة التكنولوجيةا/قسم العلوم التطبيقية*

 
 الخلاصة:

باسثثتخمام  nمثثا الحةبثثة  خطيثثةالتباطؤيثثة اتلتفاةيثثة الالتفاضثثلية  البحثثم مكثثحل لحثثا ال عثثاامل التكامليثثة

( Matlabالثماا  اللل ثة التولثيليةي  يثم ةثم ا ثتقاز يواجدميثة جميثمم ة ث  بحمجت ثا بل ثة   طحيقة التج يع مثع

ا ال تضثث نة  التحاجعيثثة    خطيثثةالتكامليثثة التباطؤيثثة اتلتفاةيثثة ال -فاضثثليةالتل عالجثثة ثةثثثة ع ثثوال مثثا ال عثثاامل 

الماا  اللل ة التوليلية مع استخمام قاعثمم ايثم   باستخمام طحيقة التج يع مع  nال تعاالة اال ختلطة(  ما الحةبة 

 يثم مثا ال  كثا مة كثة ةفثاطم الطحيقثة ا اقثة الحسثابال ةي ثاي ة ثا ة ث   لحساب التكامةل للطحيقة ال قتح ثة

مثا يثة  اتمللثة ا الحسثوم  مقاج ة النتائج التقحيبية ا الحقيقية للةثة ع وال  مثا الحةثا ال ختلفثة ل ثلم ال عثاامل

 اقم ةم الحصو  على  تائج اقيقةي
  

 
 

 


