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Abstract :

A submoduleA of amodule M is said to be strongly pure , if for each finite subset {a;}
in A, (equivalently, for each a €A) there exists ahomomorphism f : M —A such that

f(a) = &, Vi(f(a)=a).

A module M is said to be strongly F-regular if each submodule of M is strongly pure .
The main purpose of this paper is to develop the properties of strongly F—regular
modules and study modules with the property that the intersection of any two strongly

pure submodules is strongly pure .

Key words: Strongly pure submodule ,Strongly F-regular module , ldempotent

submodule , Fully idempotent module .

Introduction :

All rings are commutative with identity
element and all modules are unitary
left modules, unless otherwise stated .
Following [1] a submoduleA of a
module is called strongly pure if for
each finite subset{a} in A
(equivalently , for each a €A) there
exists ahomomorphism f : M —A such
that f(a;) =a; , Vi .

M is Z regular if for each a eM 3f
eM* = Hom (M, R) such that a = f (a)
a . Equivalently , each f.g. submodule
of M is projective direct summand [1] .
M is F — regular if eachsubmodule of
M is pure .

It is known that if N is a finitely
generated strongly pure submodule of
M, then N is a summand [1] . Clearly
that every strongly pure submodule of
a module M is pure ,The converse is
true if M is projective [1] .

Note that a ring R is Z-regular module
iff R is strongly F — regular iff R is F-
regular module iff R is a regular ring
(in the sense of Von Neumann) [1] .
Let R be an associative ring
withidentity , and let M be a (left)

unitary module Following [2] a
submoduleA of a module M is called
idempotent submodule of M provided
N = Hom (MA) A =
2L (A); f:M—=A}. Thatis A is an
idempotent submoduleof M if for each
xeN , there exist a positive integer k ,
homomorphismsfi; M —A (1<i<k)
such that x = fi(x1) +.... + fi(Xx).
Clearly every strongly pure submodule
is an idempotent submodule, The
converse is not true . A module M is
said to be fully idempotent if every
submodule of M is idempotent .

In [3] ,Naoum , A. G. Al — HashimiB.
A. and Al — Bahrani , B.H. studied
modules with the property that the
intersection of any two pure
submodules is pure (PIP) . This led us
to introduce the concept of a module
with the property that the intersection
of any two strongly pure submodules is
strongly pure (STPIP) .

In section 1 we study strongly F-—
regular. We prove that a module M is
strongly F-regular iff every essential
submodule of M is strongly pure , see
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prop 1.6. Also we prove that amodule
M is fully idempotent iff for every
submoduleA of M and for every
homomorphism 0 = f eHom(A, L)
where L is any module , there exists a
homomorphism g eHom(M,M) such
that f g(A)= 0, see propl.11.

Insection 2 of the paper we study
modules with the property that the
intersection of any two strongly pure
submodules is strongly pure . We
prove that if M is a module with the
STPIP . Then for every decomposition
M= A @& B and for every R-
homomorphism f:A—B, ker f is
strongly pure in M .

1. Strongly F — regular modules

First we recall some basic properties
of strongly pure submodules .

Lemma 1.1 [1]. Let M be an R—-module
and let A,B be submodules of M such
that A < B.

1) If A is a strongly pure submodule of
M , then A is a strongly pure sub
module of B .

2) If A'is a strongly pure submodule of
B and B is a strongly pure sub module
of M , then A is a strongly pure
submodule of M .

3) If A'is a fully invariant submodule
of M and B is a strongly

puresubmodule of M , then i is a

strongly pure submodule ofg :

Proof .clear

Lemmal.2 [1] Every f.g strongly pure
submodule is a direct summand .

Proof . Let A = Ra; + .... + Rabe a
strongly pure submodule of a module
M . Then there exist a homomorphism
f: M — A such that f(aj)) = a;, V1 <i<
k. Thus f(a) = a, V a €A. Clearlyfisa
split epimorphism .Thus A is a direct
summand of M , by [4] .
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Lemma 13Let M = A @ B be a
torsion free module . Then R(a + b) is
strongly pure in Ra @Rb , for every a
€A and b €B . Hence R(a+ b) is a
direct summand of Ra ®Rb .

Proof . Let f: Ra ®Rb— R(a + b) be a
map defined by f(ria + rob) =ri(a + b) .
Clearly f is a homomorphism and f(a +
b) =a+ b . Thus R(a + b) is strongly
pure in Ra ®Rb .

By Lemma 1.2 , R(a + b) is a direct
summand of Ra ®Rb .

Lemma 1.4 Let A and B be
submodules of a module M such that

AcBL.If A is strongly pure in M ,3 is
strongly pure in gand M is B -

projective , then B is strongly pure in
M.

Proof . Let x €B , then there exist a
homomorphism f : E—E such that f(x

+ A) = x + A . Now consider the
following diagram

03
3
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Wherer and =m; are the natural
epimorphisms Since M is B -
projective , then there exist a
homomorphism g : M — B such that
mg=fr.Sog(x) +A=f(x+A)=x+
A . Thus x—g(x) €A .But A is strongly
pure in M , therefore there is a
homomorphism h:M—A such that h (x
—g(x)) = x-g(x). Hence x = h(x) — hg(x)
+ g(x) = (h — hg + g)(x). Now consider
the homomorphism k = (ih — ihg + g):
M — B, where iis inclusion map. Thus
B is strongly pure in M .
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Proposition 1.5 The following
statements are equivalent for a module
M.

1) M is strongly F — regular .

2) Rm is strongly pure in M .¥VmeM .
3) Rm is a direct summand of M ,vm
eM.

Proof .Clear .

Proposition 1.6. A module M is
strongly F-regular iff every essential
submodule of M is strongly pure in M .

Proof .—) clear

<) Let A be any submodule of M and
B be a relative complment of A in M.
Then by [5] , A @ B is essential in M .
So A @ B is strongly pure in M .But A
is strongly pure in A @B , therefore A
is strongly pure in M, by lemma (1.1 -
2).

Lemma 1.7 . Let M be a f.g strongly F
— regular module and End(M) be the
endomorphism ring of M . Then for
every f eEnd(M) , f(M) is a direct
summand of M .

Proof . Since M is f.g and f(M) lﬁ

, then f(M) is f.g submodule of M .
Thus f(M) is a direct summand of M ,

by lemma 1.2 .
Let M be a module . M is called a
multiplication ~ module if each

submodule N of M has the form IM for
some ideal | of R[1] .

Proposition 1.8. Let M be a f.g
faithful multiplication module . If M is
strongly F-regular , then R is regular .

Proof . LetacR and f: M —aM be the
epimorphism defined by f(m) = am .
Since M is f.g and ?":f =aM , then aM

is f.g and hence a direct summand of
M, by Lemma 1.2 . Thus M = aM ®B
, for some submodule B of M . Since
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M is multiplication , then B = IM , for
some ideal | of R . Now M =RM = (a)
M®&IM=(@a @® )M .But M is a
cancellation module , by [6] . Thus R =
(@) @ I and hence R is regular .

Let R be an associative ring with
identity and let M be a module . In [2]
A submodule A of M s called
idempotent if A = Hom (M,A)A =
Z{f(A) f: M > A} . That is A is
idempotent in M if, for each xeA,
there exist a positive integer K,
homomorphismsf; : M—A (1<i<k) and
elements x; €A (1 <i< k) such that x =
fi(x)) + ... + fi(xy) . In[2] , M is
called fully idempotent if every
submodule of M is idempotent in M .
Now ,If M is a module over a
commutative ringwithl. Then Clearly
that every strongly pure submodule of
M is an idempotent .The converse is
not true in general . For example let Z
be the ring of integers . By ([2] , Coro
2.9) The sub module A =(2,0)Z @ (1,1)
Z is an idempotent sub module of the
free module Z ®Z . Claim that A is not
strongly pure in Z @Z .If not , then A
is a direct summand of Z ®Z , by
lemmal.2.

Thus (2,0)Z = 2Z ® 0 is a direct
summand of Z @®Z which is a
contradiction (since 2Z is not a direct
summand of Z) .

Now we give some results on
idempotent submodules.
Proposition 1.9. Let R be an

associative ring with 1. Let A be a
submodule of a module M . If for each
X € A, there exist a positive integer k ,
homomorphisms fieHom(M,R) (1 <i<
k) and elements x; €A (1 <i< k) such
that x = fy(x1)X1+ ... + fil(Xk)Xk, then A
is an idempotent submodule of M .

Proof . For each (1 <i< k), Letgi: R
—Rx; be the homomorphism defined
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by gi(r) = rx; and ji:Rx;—> A Dbe the
inclusion map .
So,hi:jigifi:M—>Aisa
homomorphism and x = hy(x;) + .... +
h«(xk) . Thus A is an idempotent
submodule of M .

Proposition 1.10 Let R be an
associative ring with 1 and A be an
idempotent submodule of a module M .
Then Hom(M,A) is an ideal of End(M)
the endomorphism ring of M iff Ais a
fully invariant submodule of M .

Proof. Let geEnd(M). Since A=
Hom(M,A)A = X{f(A)f. M—A},
then g(A) = g(Z f(4)) = Z{gf(A)f :
M —A}. But Hom(M,A) is an ideal in
End(M) , therefore gfeHom(M,A) ,
vfeHom(M,A) and hence g(A) c A .
Thus A is a fully invariant submodule
of M.

The converse ,Let ge End(M) and
feHom(M,A) Since A is fully
invariant in M , then (gf)(A) < A and
(fg)(A) < A . So Hom(M,A) is an ideal
of Hom(M,A) .

Recall that an R — module M is called
fully idempotent if every submodule of
M is idempotent , [2] .

Now , we give a characterization for
fully idempotent modules .

Proposition 1.11 . Let M be a module
over associative ring with 1.A module
M is fully idempotent iff for every
submodule A of M and every 0
#geHom(A,L) , where L is any
module , there exists heHom(M,A)
such that gh(A) =0

Proof . Let 0 #zgeHom(A,L) and X €
A such that g(x) = 0 .Then there exist a
positive integer k ,homomorphismsf; :
M — A (1 <i<Kk) such that x = f;(x;) +
o (XK .
Ifgfi(A)=0,V1<i<k,theng(x)=0
which is a contradiction .
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So g fi(A) #0 , for some 1 <i< k and f;
is the required homomorphism .

The converse . Let aeM and put
A=X { f (Ra):f ‘M—Ra}=
Hom(M,Ra)Ra. Clearly that A < Ra.
Cliim that A = Ra .If A #Ra, Let ©: Ra

. be the natural

epimorphism.Clearly that n=0 .So
there exist heHom(M,Ra) such that
(rh)(Ra) = 0 . So h(Ra) A which is a
contradiction . Thus A = Ra = Hom(M,
Ra)Ra.By ([2] , Lemma 2.15) M is
fully idempotent .

Recall that module M is said to have
the summand sum property (SSP) if
the sum of any two direct summand is
again a direct summand [7] .

Proposition 1.12Let M be a module
over associative ring with 1. If M is
fully idempotent and © ;M has SSP,
for every index set | , then M is
semisimple.

Proof.let A be a submodule of M.
since A is idempotent in M , then there
exists a family of R- homomorphisms
tf.\f, € Hom(M ,A),v, € A}such
that A = Z{f, (4)|a € A},

definef : &,..M — 4 by
fllm)ees) = Zoeafulmy). Clearly
that f is an epimorphism. Let i: A ->M
he the inclusion map. Since
(£, .M)E&M has SSP , then by [7]
Im if = A is a direct summand of M .
Thus M is semisimple.

Proposition 1.13.let | be an ideal of an
associative ring R with 1. If I is a pure
ideal of R, then I is idempotent. The
converse is true if I is fully idempotent

Proof . Let | be a pure ideal of R .then
for every ideal J of R, JI=JN T and
hence 1 = I . Thus | is an idempotent
ideal of R, by [2].
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The converse , Let t e I, there exist a
positive integer K,
homomorphismsf;:I =Rt (1 =i <k)

and elements r;, ER(1 =i =k)
such that t =
nfilt)+ o +1f (), by ([2]
Iemma 2.15).Since te 1 = I° , thent =

T=1 @;b; , where

b EINV1I=] =n).nowt =
Z:{ 1rf[2} 1 _;l _;l)_

E:{lrzjlj[) Let

fi-(b}-)— S;ytwhereS; ER(Y1i <k,1 £j =n)

So t = XL r Xl as;t
(Zi, XZroyraS;)t. Let S =
(T 1}:} \7:a;S;) €1 Thus t = st
and | is a pure ideal.

Proposition 1.14[2]. Let M be a
module over a commutative ring .
Then M is fully idempotent iff every
cyclic Submodule of M is a direct
summand .

Proposition 1.15.let R he a
commutative ring. Then an R — module
M is fully idempotent if f M is strongly
F —regular.

Proof .clear by Prop. 1.5

Theorem 1.15 [2] . The following are
equivalent for a commutative ring :

1. Every R- module is fully
idempotent .

2. Every injective R — module is
fully idempotent.

3. Every cyclic R — module is
injective .

4. R is semisimple.

2. Module with the Strongly Pure
Intersection Property.

In this section we introduce the
concept of the strongly pure
intersection property for modules
(STPIP) , and give some basic
Properties. We start by a definition .
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Definition 2.1.

A module has the strongly pure
intersection property (briefly STPIP) if
the intersection of any two strongly
pure submodules is again strongly
pure.

Recall that module M is called strongly
pure Simple if O and M are the only
Strongly pure Submodules of M.
Clearly that every strongly pure simple
module has the STPIP.For example Z
as Z —module.

Also every strongly F — regular module
satisfies the STPIP trivially.

The following example show that the
intersection of two strongly pure
submodules need not be strongly pure.

Example 2.2.Consider the module M
=Z4® Zyas Z—module. Let A=Z,® 0
and B=2Z (1,1). It is clear that A and B
are direct Summand of M. But A N B
= { (0,00 , (2,00} is not a direct
summand of M. Hence A N B is not
strongly pure in M, by lemma 1.2.

Proposition 2.3.

If a module M has the STPIP , then
every strongly pure submodule A of M
has the STPIP,

Proof.clear , by Lemma 1.1

Proposition 2.4. Let M be a quasi —
projective module and has the STPIP.
If A is a strongly pure submodule of M

and fully invariant , then E has the
STPIP.
Proof : Let < and = be strongly pure

submodules of g Since M is M —

projective , then by [8] M is C —
projective and M is D — projective. So
by Lemma 1.4. , C and D are strongly
Pure in M.Hence CND is strongly pure

in M. To show that 5 n E= ?is
strongly Pure |n —, Letx + A eﬂ X
e CND. So there ex1sts a

homomorphism f : M — CND Such
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that f(x) = x. Let f“:g = ? be a
map defined by
f'lm+4) =f(m) +A4. Since A is
fully Invariant , then 1" is well define.
Clearly thatf'(x+A) =x +A. Thus

M
" has STPIP.

Proposition 2.5.

Let M be a modulelf the
endomorphism ring End(M) is
commutative , then M has the STPIP.
Proof: Let A and B be strongly pure
submodules of M and xe ANB.So
there exist homomorphismsf : M —A
and g : M —B such that f(x) = x and
g(x) = x . Now , we can consider gf ,
fge End(M). Since E(M) s
commutative , then gf = fg. But (gf)
(M) cA N B. So there exist the
homomorphism igf : M — A N B such
that (igf) (x)=x, where i is the inclusion
map. Thus M has the STPIP .

Corollary : 2.6.every multiplication
module has the STPIP. In particular
every commutative ring with identity
has the STPIP as R-module.

Proof .Clear by [1]

Recall that an R — module M is a Quasi
— Dedekind module if every non zero
endomorphism of M is a
monomorphism [9] .

Proposition 2.8 Every Quasi —
Dedekind module is strongly pure
simple . Hence has the STPIP .

Proof . Let 0 = A be a strongly pure
submodule of M and 0 zacA.

So there is a homomorphism f: M —
Asuchthatf(a) =a.

Now consider the homomorphism 1 — f
‘M->M.(1-f)(a)=0.

So 0 # a eker (1 — f) which is a
contradiction . Thusf=1and A=M.
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The following theorem is the main tool
for our subsequent results

Theorem 2.9 . If a module M has the
STPIP , then for every decomposition
M = A @ B and every homomorphism
f: A— B, ker fis a strongly pure
submodule of M .

Proof . Let T={a+f(a):a e A}.To
showthat M =T @B,

LetxeM ,thenx=a+b,acA,b B
.Sox=a+f@)-f@@ +b,a+f() e
T,f(d+beB.Nowletx e TB.
Hence x =a+f(a),a€A.Soa=x -
f@) e AnB=0.Thus x =0.Since M
has the STPIP , then T n A is strongly
pure in M.It is easy to show that ker f =
T mA . Thus ker f is a strongly pure
sub module of M .

Proposition 2.10 . Let M be a strongly
pure simple module and Let N be any
module. If M @& N has the STPIP, then
either Hom(M,N)=0 or every non zero
homomorphism from M to N is a
monomorphism .

Proof . Assume Hom(M,N) # 0 and
Let f : M — N be a non zero
homomorphism.Since M @ N has the
STPIP , then ker f is strongly pure in
M. But M is strongly pure simple
,Soker f = 0 and f is a monomorphism .
The following corollary  follows
immediately from prop. 2.10.

Corollary 2.11 . Let M be a strongly
pure simple module.If M @M has the
STPIP , then M is Quasi — Dedekind .

Recall that an R module M is called a
flat R-module if  for any
monomorphismf:A—B, where A and
B are any two R-module, f® 1 : AQM
— B®M is a monomorphism , see[10].
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Proposition 2.12 .Let M be an R —
module . If R @ M has the STPIP, then
every cyclic submodule of M is flat .

Proof . Let m M . Consider the
following short exact sequence

0—>kerfi—">R£>Rm—>0
Where i, is the inclusion map and f is
defined as follows f(r) =rm ,V r eR .
Since R @ M has the STPIP, then by
Th. 2.9 ker f is strongly pure in R .
HenceRm is flat by [10] .

The direct sum of two modules with
the STPIP may not have the STPIP,
See example 2.2.

Now , we give a condition under which
the direct sum of modules with the
STPIPhas the STPIP.

Proposition 2.13. Let M and N be
modules with the STPIP such that ann
M + ann N = R, then M @ N has the
STPIP.

Proof . Let C and D be a strongly pure
submodules of M @N .Since ann M +
ann N = R, then by the same way of
the proof of [11, prop. (4.2), (4,1)] C =
A @ B and D = A;® B;, where A and
A; are submodules of M , B and B; are
submodules of N .Since M and N has
the STPIP, then A n A; is strongly
pure in M and B n By is strongly pure
in N . One can easily show that C n D
= (A n A) @ (B n By) is strongly
pure in M @ N. Thus M@ N has the
STPIP.

Theorem 2.14 . Let R be a ring .If all
R — modules have the STPIP Then all
R —modules are strongly F — regular.

Proof .Let A be a submodule of an R —
module M and Let n : M —% be the
natural  epimorphism By our
assumption M @% has the STPIP.

Therefore by Th. 2.9, kerr = A is
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strongly pure in M . Thus M is strongly
F —regular .

The converse is clear

Theorem 2.15.Let R be a ring . Then
all injective R — modules have the
STPIP iff all injective R — modules are
strongly F — regular

Proof .Let M be an injective R —
module and A be a submodule of M

Let « M —>g be the natural
epimorphism.If g is injective , then
M@g IS injective and hence M @% has

the STPIP.Thus , Ker =1 = A is a
strongly pure sub module of M . Thus
M is strongly F — regular .

Assumegis not injectivelet (f)be the

injective hull of Zandi:=— () be the
inclusion map . Now consider in: M—

) . Since M @ (§) has the STPIP,

then kerin= kerm = A is strongly pure
in M, by Th. 2.9. Thus M is strongly F
—regular .

The converse is clear .

Theorem 2.16. The following
statements are equivalent for aring R
1) R is semisimple .

2) All R — modules are strongly F —
regular .

3) All R —modules have the STPIP.

4) All injective R — modules are
strongly F —regular .

5) All injective R — modules have the
STPIP.

Proof .Clear by Th. 1.15 ,Th. 1.16, Th.
2.14 and Th. 2.15 .

Recall that an R — module M is said to
has the PIP if the intersection of any
two pure sub modules of M is again
pure, [3] .
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Theorem 2.17 [3] Let R be a ring .
The  following  statements  are
equivalent :

1) Ris aregular rings .

2) All R — modules have the PIP .

3) All injective R — modules have the
PIP.

Now , we show by an example that an
R — module that has the PIP, may not
have the STPIP.

Example 2.18.

Let R be a regular ring which is not
semisimple . By Th. 2.16, there exist a
module M such that M does not have

the STPIP. By Th.2.17 , M has the

PIP.
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