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Abstract : 
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} 

in A , (equivalently, for each a A) there exists ahomomorphism f : M A such that 

f(ai) = ai, i(f(a)=a). 

A module M is said to be strongly F–regular if each submodule of M is strongly pure . 

The main purpose of this paper is to develop the properties of strongly F–regular 

modules and study modules with the property that the intersection of any two strongly 

pure submodules is strongly pure . 

 

Key words: Strongly pure submodule ,Strongly F–regular module , Idempotent 
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Introduction : 
All rings are commutative with identity 

element and all modules are unitary 

left modules, unless otherwise stated . 

Following [1] a submoduleA of a 

module is called strongly pure if for 

each finite subset{ai} in A , 

(equivalently , for each a A) there 

exists ahomomorphism f : M A such 

that f(ai) =ai , i . 

M is Z regular if for each a M ,f 

M* = Hom (M , R) such that a = f (a) 

a . Equivalently , each f.g. submodule 

of M is projective direct summand [1] . 

M is F – regular if eachsubmodule of 

M is pure . 

It is known that if N is a finitely 

generated strongly pure submodule of 

M , then N is a summand [1] . Clearly 

that every strongly pure submodule of 

a module M is pure ,The converse is 

true if M is projective [1] . 

Note that a ring R is Z–regular module 

iff R is strongly F – regular iff  R is F–

regular module iff R is a regular ring 

(in the sense of Von Neumann) [1] . 

Let R be an associative ring 

withidentity , and let M be a (left) 

unitary module . Following [2] a 

submoduleA of a module M is called 

idempotent submodule of M provided 

N = Hom (M,A) A = 

. That is A is an 

idempotent submoduleof M if for each 

xN , there exist a positive integer k , 

homomorphismsfi: M A (1ik) 

such that x = f1(x1) + …. + fk(xk). 

Clearly every strongly pure submodule 

is an idempotent submodule, The 

converse is not true . A module M is 

said to be fully idempotent if every 

submodule of M is idempotent . 

In [3] ,Naoum , A. G. Al – HashimiB. 

A. and Al – Bahrani , B.H. studied 

modules with the property that the 

intersection of any two pure 

submodules is pure (PIP) . This led us 

to introduce the concept of a module 

with the property that the intersection 

of any two strongly pure submodules is 

strongly pure (STPIP) . 

In section 1 we study strongly F–

regular. We prove that a module M is 

strongly F-regular iff every essential 

submodule of M is strongly pure , see 
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prop 1.6. Also we prove that amodule 

M is fully idempotent iff for every 

submoduleA of M and for every 

homomorphism 0  f Hom(A, L) 

where L is any module , there exists a 

homomorphism g Hom(M,M) such 

that f g(A) 0 , see prop1.11. 

Insection 2 of the paper we study 

modules with the property that the 

intersection of any two strongly pure 

submodules is strongly pure . We 

prove that if M is a module with the 

STPIP . Then for every decomposition 

M= A  B and for every R–

homomorphism f:AB, ker f is 

strongly pure in M . 

 

1. Strongly F – regular modules  

First we recall some basic  properties 

of strongly pure submodules . 

Lemma 1.1 [1]. Let M be an R–module 

and let A,B be submodules of M such 

that A  B. 

1) If A is a strongly pure submodule of 

M , then A is a strongly pure sub 

module of B . 

2) If A is a strongly pure submodule of 

B and B is a strongly pure sub module 

of M , then A is a strongly pure 

submodule of M . 

3) If A is a fully invariant submodule 

of M and B is a strongly 

puresubmodule of M , then  is a 

strongly pure submodule of  . 

 

Proof .clear 

 

Lemma1.2 [1] Every f.g strongly pure 

submodule is a direct summand . 

 

Proof . Let A = Ra1 + …. + Rakbe  a 

strongly pure submodule of a module 

M . Then there exist a homomorphism 

f : M  A such that f(ai) = ai , 1 i 

k. Thus f(a) = a,  a A.  Clearly f is a 

split epimorphism .Thus A is a direct 

summand of M , by [4] . 

 

Lemma 1.3Let M = A  B be a 

torsion free module . Then R(a + b) is 

strongly pure in Ra Rb , for every a 

A and b B . Hence R(a+ b) is a 

direct summand of Ra Rb . 

 

Proof . Let f : Ra Rb R(a + b) be a 

map defined by f(r1a + r2b) = r1(a + b) . 

Clearly f is a homomorphism and f(a + 

b) = a + b . Thus R(a + b) is strongly 

pure in Ra Rb .  

By Lemma 1.2 , R(a + b) is a direct 

summand of Ra Rb .  

 

Lemma 1.4 . Let A and B be 

submodules of a module M such that 

AB.If A is strongly pure in M ,  is 

strongly pure in and M is B – 

projective , then B is strongly pure in 

M . 

 

Proof . Let x B , then there exist a 

homomorphism f :    such that f(x 

+ A) = x + A . Now consider the 

following diagram  

 

 
 

Where and 1 are the natural 

epimorphisms . Since M is B – 

projective , then there exist a 

homomorphism g : M  B such that 

1g = f . So g(x) + A = f(x + A) = x + 

A . Thus x–g(x) A .But  A is strongly 

pure in M , therefore there is a 

homomorphism h:MA such that h (x 

–g(x)) = x-g(x). Hence x = h(x) – hg(x) 

+ g(x) = (h – hg + g)(x). Now consider 

the homomorphism k = (ih – ihg + g): 

M  B, where iis inclusion map. Thus 

B is strongly pure in M . 



Baghdad Science Journal  Vol.11(1)2014 
 

811 

Proposition 1.5 . The following 

statements are equivalent for a module 

M . 

1) M is strongly F – regular . 

2) Rm is strongly pure in M .mM . 

3) Rm is a direct summand of M ,m 

M . 

 

Proof .Clear . 

 

Proposition 1.6. A module M is 

strongly F–regular iff every essential 

submodule of M is strongly pure in M . 

 

Proof .) clear 

 

) Let A be any submodule of M and 

B be a relative complment of A in M. 

Then by [5] , A  B is essential in M . 

So A  B is strongly pure in M .But A 

is strongly pure in A B , therefore A 

is strongly pure in M , by lemma (1.1 – 

2) . 

Lemma 1.7 . Let M be a f.g strongly F 

– regular module and End(M) be the 

endomorphism ring of M . Then for 

every f End(M) , f(M) is a direct 

summand of M .  

 

Proof . Since M is f.g and f(M)  

, then f(M) is f.g submodule of M . 

Thus f(M) is a direct summand of M , 

by lemma 1.2 . 

Let M be a module . M is called a 

multiplication module if each 

submodule N of M has the form IM for 

some ideal I of R[1] . 

 

Proposition 1.8. Let M be a f.g 

faithful multiplication module . If M is 

strongly F–regular , then R is regular . 

 

Proof . Let aR and f : M aM be the 

epimorphism defined by f(m) = am . 

Since M is f.g and  aM , then aM 

is f.g and hence a direct summand of 

M , by Lemma 1.2 . Thus M = aM B 

, for some submodule B of M . Since 

M is multiplication , then B = IM , for 

some ideal I of R . Now M = RM = (a) 

M  IM = ((a)  I)M .But M is a 

cancellation module , by [6] . Thus R = 

(a)  I and hence R is regular . 

 

Let R be an associative ring with 

identity and let M be a module . In [2] 

A submodule A of M is called 

idempotent if A = Hom (M,A)A = 

(A) :f : M  A} . That is A is 

idempotent in M if, for each xA, 

there exist a positive integer k, 

homomorphismsfi : MA (1ik) and 

elements xi A (1 i k) such that x = 

f1(x1) + …. + fn(xn) . In [2] , M is 

called fully idempotent if every 

submodule of M is idempotent in M . 

Now ,If M is a module over a 

commutative ringwith1. Then Clearly 

that every strongly pure submodule of 

M is an idempotent .The converse is 

not true in general . For example let Z 

be the ring of integers . By ([2] , Coro 

2.9) The sub module A =(2,0)Z  (1,1) 

Z is an idempotent sub module of the 

free module Z Z . Claim that A is not 

strongly pure in Z Z .If not , then A 

is a direct summand of Z Z , by 

lemma 1.2 . 

Thus (2,0)Z = 2Z  0 is a direct 

summand of Z Z which is a 

contradiction (since 2Z is not a direct 

summand of Z) . 

Now we give some results on 

idempotent submodules. 

 

Proposition 1.9. Let R be an 

associative ring with 1. Let A be a 

submodule of a module M  . If for each 

x  A , there exist a positive integer k , 

homomorphisms fiHom(M,R)  (1 i 

k) and elements xi A (1 i k) such 

that x = f1(x1)x1+ …. + fk(xk)xk, then A 

is an idempotent submodule of M . 

 

Proof . For each (1 i k) , Let gi : R 

Rxi be the homomorphism defined 
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by gi(r) = rxi and ji:Rxi A be the 

inclusion map . 

So , hi = jigifi : M  A is a 

homomorphism and x = h1(x1) + …. + 

hk(xk) . Thus A is an idempotent 

submodule of M . 

 

Proposition 1.10 . Let R be an 

associative ring  with 1 and A be an 

idempotent submodule of a module M . 

Then Hom(M,A) is an ideal of End(M) 

the endomorphism ring of M iff A is a 

fully invariant submodule of M . 

 

Proof. Let gEnd(M). Since A= 

Hom(M,A)A = ;f: MA}, 

then g(A) = g( ) = ;f : 

M A}. But Hom(M,A) is an ideal in 

End(M) , therefore gfHom(M,A) , 

fHom(M,A) and hence g(A)  A . 

Thus A is a fully invariant submodule 

of M . 

The converse ,Let g End(M) and 

fHom(M,A) . Since A is fully 

invariant in M , then (gf)(A)  A and 

(fg)(A)  A . So Hom(M,A) is an ideal 

of Hom(M,A) . 

 

Recall that an R – module M is called 

fully idempotent if every submodule of 

M is idempotent , [2] . 

Now , we give a characterization for 

fully idempotent modules . 

 

Proposition 1.11 . Let M be a module 

over associative ring with 1.A module 

M is fully idempotent iff for every 

submodule A of M and every 0 

gHom(A,L) , where L is any 

module , there exists hHom(M,A) 

such that gh(A)  0   

Proof . Let 0 gHom(A,L) and x  

A such that g(x)  0 .Then there exist a 

positive integer k ,homomorphismsfi : 

M  A (1 i k) such that  x = f1(x1) + 

…. + fk(xk) . 

If g fi(A) = 0 ,  1 i k , then g(x) = 0 

which is a contradiction . 

So g fi(A) 0 , for some 1 i k and fi 

is the required homomorphism .  

The converse . Let aM and put 

A= ;f :MRa}= 

Hom(M,Ra)Ra. Clearly that A  Ra. 

Claim that A = Ra .If A Ra, Let : Ra 

  be the natural 

epimorphism.Clearly that 0 .So 

there exist hHom(M,Ra) such that 

(h)(Ra)  0 . So h(Ra) A which is a 

contradiction . Thus A = Ra = Hom(M, 

Ra)Ra.By ([2] , Lemma 2.15) M is 

fully idempotent . 

 

Recall that module M is said to have 

the summand sum property (SSP) if 

the sum of any two direct summand is 

again a direct summand [7] . 

 

Proposition 1.12Let M be a module 

over associative ring with 1. If M is 

fully idempotent and    has SSP, 

for every index set I , then M is 

semisimple.  

 

Proof.let A be a submodule of M. 

since A is idempotent in M , then there 

exists a family of R- homomorphisms 

such 

that  .  

define  by 

. Clearly 

that f is an epimorphism. Let i: A M 

he the inclusion map. Since 

 has SSP , then by [7] 

lm if = A is a direct summand of M . 

Thus M is semisimple.  

 

Proposition 1.13.let I be an ideal of an 

associative ring R with 1. If I is a pure 

ideal of R , then I is idempotent.  The 

converse is true if I is fully idempotent 

. 

 

Proof . Let I be a pure ideal of R .then 

for every ideal J of R , J.I = J∩ I and 

hence I
2
 = I . Thus I is an idempotent 

ideal of R , by [2].  
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The converse , Let t  I, there exist a 

positive integer k, 

homomorphisms  

and elements  

such that t = 

 , by ([2] 

lemma 2.15).Since  t I = I
2
 , then t = 

 , where 

t = 

= 

  Let 

 So t =   = 

. Let S = 

. Thus t = st 

and I is a pure ideal.  

 

Proposition 1.14[2]. Let M be a 

module over  a commutative ring . 

Then M is fully idempotent iff every 

cyclic Submodule of M is a direct 

summand . 

 

Proposition 1.15.Let R he a 

commutative ring. Then an R – module 

M is fully idempotent if f M is strongly 

F – regular.  

 

Proof .clear by Prop. 1.5  

 

Theorem 1.15 [2] . The following are 

equivalent for a commutative ring : 

1. Every R- module is fully 

idempotent . 

2. Every injective R – module is 

fully idempotent. 

3. Every cyclic R – module is 

injective . 

4. R is semisimple.  

2. Module with the Strongly Pure 

Intersection Property.  

In this section we introduce the 

concept of the strongly pure 

intersection property for modules 

(STPIP) , and give some basic 

Properties. We start by a definition . 

 

 

Definition 2.1. 

A module has the strongly pure 

intersection property (briefly STPIP) if 

the intersection of any two strongly 

pure submodules is again strongly 

pure.  

Recall that module M is called strongly 

pure Simple if O and M are the only 

Strongly pure Submodules of M. 

Clearly that every strongly pure simple 

module has the STPIP.For example Z 

as Z – module. 

Also every strongly F – regular module 

satisfies the STPIP trivially.  

The following example show that the 

intersection of two strongly pure 

submodules need not be strongly pure. 

 

Example 2.2.Consider the module M 

=Z4 Z2 as Z – module. Let A = Z4 0 

and B = Z (1,1). It is clear that A and B 

are direct Summand of M. But A ∩ B 

= { (0,0) , (2,0)} is not a direct 

summand of M. Hence A ∩ B is not 

strongly pure in M , by lemma 1.2.  

 

Proposition 2.3. 

If a module M has the STPIP , then 

every strongly pure submodule A of M 

has the STPIP ,  

 

Proof.clear , by Lemma 1.1  

 

Proposition 2.4. Let M be a quasi – 

projective module and has the STPIP. 

If A is a strongly pure submodule of M 

and fully invariant , then  has the 

STPIP.  

Proof : Let    and    be strongly pure 

submodules of  . Since M is M – 

projective , then by [8] M is C – 

projective and M is D – projective. So 

by Lemma 1.4. , C and D are strongly 

Pure in M.Hence C∩D is strongly pure 

in M. To show that is 

strongly Pure in , Let x + A   , x 

 C∩D. So there exists a 

homomorphism f : M  C∩D Such 
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that f(x) = x. Let  be a 

map defined by 

 Since A is 

fully Invariant , then  is well define. 

Clearly  that  Thus 

 has STPIP.  

 

Proposition 2.5. 

Let M be a module.If the 

endomorphism ring End(M) is 

commutative , then M has the STPIP.  

Proof: Let A and B be strongly pure 

submodules of M and x A∩B.So 

there exist homomorphismsf : M A 

and g : M B such that f(x) = x and 

g(x) = x . Now , we can consider gf , 

fg End(M). Since E(M) is 

commutative , then gf = fg. But (gf) 

(M) A ∩ B. So there exist the 

homomorphism igf : M  A ∩ B such 

that (igf) (x)=x, where i is the inclusion 

map. Thus M has the STPIP . 

 

Corollary : 2.6.every multiplication 

module has the STPIP. In particular 

every commutative ring with identity 

has the STPIP as R-module.  

 

Proof .Clear by [1]  

 

Recall that an R – module M is a Quasi 

– Dedekind module if every non zero 

endomorphism of M is a 

monomorphism [9] . 

Proposition 2.8 . Every Quasi – 

Dedekind module is strongly pure 

simple . Hence has the STPIP . 

 

Proof . Let 0  A be a strongly pure 

submodule of M and 0 aA. 

So there is a homomorphism f : M  

A such that f(a) = a . 

Now consider the homomorphism 1 – f 

: M M . (1 – f) (a) = 0. 

So 0  a ker (1 – f) which is a 

contradiction . Thus f = 1 and A = M . 

 

The following theorem is the main tool 

for our subsequent results 

 

Theorem 2.9 . If a module M has the 

STPIP , then for every decomposition 

M = A  B and every homomorphism 

f : A  B , ker f is a strongly pure 

submodule of M . 

 

Proof . Let T = {a + f(a) : a  A} . To 

show that M = T B , 

Let xM , then x = a + b , a A , b B 

. So x = a + f(a) – f(a) + b , a + f(a)  

T , f (a) + b B . Now let x  T B . 

Hence x = a + f(a) , a A . So a = x – 

f(a)  A  B = 0 . Thus x = 0.Since M 

has the STPIP , then T  A is strongly 

pure in M.It is easy to show that ker f = 

T A . Thus ker f is a strongly pure 

sub module of M . 

 

Proposition 2.10 . Let M be a strongly 

pure simple module and Let N be any 

module. If M  N has the STPIP, then 

either Hom(M,N)=0 or every non zero 

homomorphism from M to N is a 

monomorphism .  

 

Proof . Assume Hom(M,N)  0 and 

Let f : M  N be a non zero 

homomorphism.Since M  N has the 

STPIP , then ker f is strongly pure in 

M. But M is strongly pure simple 

,Soker f = 0 and f is a monomorphism . 

The following corollary follows 

immediately from prop. 2.10. 

 

Corollary 2.11 . Let M be a strongly 

pure simple module.If M M has the 

STPIP  , then M is Quasi – Dedekind . 

 

Recall that an R module M is called a 

flat R-module if for any 

monomorphismf:AB, where A and 

B are any two R-module, f  1 : AM 

 BM is a monomorphism , see[10].  
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Proposition 2.12 .Let M be an R – 

module . If R  M has the STPIP, then 

every cyclic submodule of M is flat . 

 

Proof . Let m M . Consider the 

following short exact sequence  

0 ker f  R  Rm 0 

Where i1 is the inclusion map and f is 

defined as follows f(r) = rm , r R . 

Since R  M has the STPIP, then by 

Th. 2.9 ker f is strongly pure in R . 

HenceRm is flat by [10] . 

 

The direct sum of two modules with 

the STPIP may not have the STPIP, 

See example 2.2. 

Now , we give a condition under which 

the direct sum of modules with the 

STPIPhas the STPIP. 

Proposition 2.13. Let M and N be 

modules with the STPIP such that ann 

M + ann N = R, then M  N has the 

STPIP. 

 

Proof . Let C and D be a strongly pure 

submodules of M N .Since ann M + 

ann N = R , then by the same way of 

the proof of [11, prop. (4.2), (4,1)] C = 

A  B and D = A1 B1, where A and 

A1 are submodules of M , B and B1 are 

submodules of N .Since M and N has 

the STPIP, then A  A1 is strongly 

pure in M and B  B1 is strongly pure 

in N . One can easily show that C  D 

= (A  A1)  (B  B1) is strongly 

pure in M  N. Thus M N has the 

STPIP. 

 

Theorem 2.14 . Let R be a ring .If all 

R – modules have the STPIP Then all 

R – modules are strongly F – regular. 

 

Proof .Let A be a submodule of an R – 

module M and Let  : M   be the 

natural epimorphism . By our 

assumption M   has the STPIP. 

Therefore by Th. 2.9, ker = A is 

strongly pure in M . Thus M is strongly 

F – regular . 

 

The converse is clear  

 

Theorem 2.15.Let R be a ring . Then 

all injective R – modules have the 

STPIP iff  all injective R – modules are 

strongly F – regular  

 

Proof .Let M be an injective R – 

module and A be a submodule of M 

.Let  : M   be the natural 

epimorphism.If  is injective , then 

M  is injective and hence M   has 

the STPIP.Thus , Ker  = A is a 

strongly pure sub module of M . Thus 

M is strongly F – regular . 

Assume is not injectivelet ( )be the 

injective hull of  andi:  ( ) be the 

inclusion map . Now consider i: M 

( ) . Since M  ( ) has the STPIP, 

then keri= ker = A is strongly pure 

in M, by Th. 2.9. Thus M is strongly F 

– regular . 

 

The converse is clear . 

 

Theorem 2.16. The following 

statements are equivalent for a ring R  

1) R is semisimple . 

2) All R – modules are strongly F – 

regular . 

3)  All R – modules have the STPIP. 

4) All injective R – modules are 

strongly F – regular . 

5) All injective R – modules have the 

STPIP . 

 

Proof .Clear by Th. 1.15 ,Th. 1.16, Th. 

2.14 and Th. 2.15  . 

 

Recall that an R – module M is said to 

has the PIP if the intersection of any 

two pure sub modules of M is again 

pure , [3] . 
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Theorem 2.17 [3] Let R be a ring . 

The following statements are 

equivalent : 

1) R is a regular rings . 

2) All R – modules have the PIP . 

3) All injective R – modules have the 

PIP. 

Now , we show by an example that an 

R – module that has the PIP, may not 

have the STPIP. 

 

Example 2.18. 
Let R be a regular ring which is not 

semisimple . By Th. 2.16, there exist a 

module M such that M does not have 

the STPIP. By Th.2.17  , M has the 

PIP. 
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 طع قوي النقاءوخاصية التقا Fالمقاسات قوية النقاء من النمط 
 

 *بهار حمد البحراني
 

 جامعة بغداد ، كلية العلوم ، قسم الرياضيات *
 

 الخلاصة:
)يكافئ لكل  A{ من aiيدعى قوي النقاء إذا لكل مجموعة جزيئة منتهية } Mمن مقاس  Aالمقاس الجزئي 

a A يوجد تشاكل )f :M  A  بحيث انf(ai) = ai  لكل ،i I المقاس .M  يدعى قوي النقاء من النمطF  إذا

 قوي النقاء .  Mكان كل مقاس جزئي من 

ودراسة المقاسات التي  Fالغرض الرئيسي من هذا البحث هو تطوير خواص المقاسات قوية النقاء من النمط 

 تحقق خاصية تقاطع أي مقاس جزئيين قويين النقاء يكون قوي النقاء. 
 

 

 


