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Abstract:
In this paper, we introduce an exponential of an operator defined on a Hilbert space
H, and we study its properties and find some of properties of T inherited to
exponential operator, sowe study the spectrum of exponential operatore™ according to
the operator T.
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Introduction:

LetB(H) bea space of all bounded
linear operator on a Hilbert space H
(real or complex).

We introduced anew bounded linear
operator defined on H, as a limit of
sequence or power series of linear
operator T.Giaquinta;Modica in [1]
gave a definition of an exponential
operatore™of a bounded linear operator
T as the sum of power series of T, and
it started the properties of exponential
operator of bounded linear operator T.
In this paper we study the inherited
properties of T into the operator eT,
and the spectrum of exponential
operatore™ according to the operator T.
Such properties of T can be found in

[21,[3],[41.[5].[6].[7] and [8].

Preminilaries:

Definition:

Let T € B (H) thene™: H — H defines as
eTx:Z;‘f;O%T“x S0, we write

w 1
eT:anoaTn.
We need to check the definition

of exponential operator is well-define,
i.e. The power series is convergent for

each xe H, by following propositionin
[1] ) - -
Proposition:
Let H be a Hilbert space andT € B(H).
1. If f(z) = Y5-pa,z" be a power
series with radius of convergence R >
Oand ||T|| <R
Then the series
Yo a, T"convergence in  B(H) and
define a linear continuous operator.
2. The series Zl‘f:()%Tk converges in
B(H) and define the Iinear continuous
operator =y O—Tk
Examples:
1 .e° =L Where 0 is a zero operator
and | is an identity operator defined on
H.
2. el =¥x 1" =% I =el

3. IfT is a nilpotent of degree n € N,
ie. T"=0 in [2], then eT=

1

Tkco T

1
eT — —_Tn
n!
n=0

— 1 2
=14+ T4 o T2 4 o

Tnl
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This paper consists of three
sections. Insection one we study some
properties of an exponential operator
on H.While, in section two we study
some properties operator T on H
inherited to operatore™.In section three,
we study the spectrum of exponential
operatore” according to the operator
T.

1. Some properties of an
Exponential _operator on _a
Hilbert space H:

In [1] Mariano gave some properties

of eTwithout proof. In this section we
present its proofs.

Proposition (1.1)
Let T,S € B(H) we have the following
properties ofe™:

1. IfT S= S T then TS =eTeS =
eSeT.
2.eTe™T =1, and hence the inverse of
eTise T, ie(eN 1 =eT.

3. e@*BT = eaTeBT ~ for any a,p
scalar.

4. ||eT|| < el

5.(eT)*=eT".

Proof:

1. By using of multiplication of
absolutely convergent series we get :
eTeS = Lo o= T" Ting—S™
2?10=0 ZE=O k!(nl_k)!Tk nok =
S0 Theo() THSM X =

w 1
anOE(T + S)n

—T+S.

2.eTe
1) .

3. The result following by part one of
this proposition.

4. We
have||Xh_, TX|| <

TRoolI T < ZRooli Tl -

T
— eT+(-T) — e0 =1

, by part
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And|
andyp_, L IITllto el™.S0 we have
lleT]| < elTll.
* o 1 *
5-(eT) = (Zn=0;Tn)
o 1 * o 1 * *
Yoo (TN =Xi— (T =e'.

PR % TX ” converges tolleT]|

There is another equivalent
definition of an exponential operator of
a bounded linear on a Hilbert space H,
as a limit of sequence of some bounded
operators [1].

Theorem (1.2)

LetT be a bounded linear operator

defined on a Hilbert space H , then
n

(I+%T) - el,

The proof of this theorem can be found

in[1]

2.Main Results:

In this section, we are going to
give some properties of linear
operators defined on a Hilbert space H,
that inherited an exponential operator
many them: self-ajoint, positive,
normral, quasinormal , hyponormal
and compact.

Lemma(2.1)[2]

1. If T is a self-adjoint operator.
Then aT is a self-adjoint, for all real
numbera.

2. If T,S are self-adjoint linear
operators on H. Then T+S is a self-
adjoint .

3. If T, Sare self-adjoint linear

operators on H. Then TS is a self -
adjoinet if and only if TS = ST.

4. If T is a self-adjoinet operator.
ThenT™ is a self-adjoint , too for any
positive integer n >2.

5. If (T,) is a sequence of bounded
self-adjoint linear operators on H, and
T, converges to a linear operator T .
Then the operator T is also self-
adjoint.

Proposition (2.2)
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If T is a self-adjoint operator on a
Hilbert space H, then so iseT.
Proof:

If T is self-adjoint operator and n
any positive integer, we have that
lemma (2.1) parts (1), (2) and (4)(1 +
%T)n is aself-adjoint But(I +
%T)n convergent to eT , then by lemma
(2.1) part (5) eTis self-adjoint

Definition(2.3)[2]

Let TeB(H) be a self-adjoint
operator, it is said a positive operator if
T>0,ie (Tx, x)=0 , forall xin
H.

Lemma (2.4)[2]

1. If T is a positive operator. ThenaT
IS a positive, each non negative scalar
.

2. If T,S are positive linear operators.
Then T + S is positive.

3. IfT,S are positive linear operators
andTS = ST. Then TS is positive.

4. If T is a positive operator . ThenT"
IS positive , too for any positive integer
n= 2.

5. The limit of a sequence of positive
linear operators on H, isapositive
operator.

Proposition (2.5)

If T is a positiveoperator on a Hilbert
space H, then so iseT

Proof :

If T is a positiveoperator and n any
positive integer, then by lemma (2.4)
parts (1),(2) and (4) we have (I+
ﬁT)rl is a positive operator. But(l +
iT)“converges toe, then by lemma
(2.4) part (5)we have eTis positive.
Remark (2.6)

IfT is a skew-self-adjoint operator
,i.e. T = =T in [2] , thene™ may not
be a skew, to see this, we have the
following example:

Let T= 2il be a linear operator on a
complex Hilbert space H. We have
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T* = (2i)* = —2il = —T,hence T is a
skew-self-adjoint  operator But
(eD* = (ezu)* = iD" =

e 2 je. eTis not a skew-self-adjoint.
Proposition (2.7)

If T is a normal operator on H ,theneT”
is also normal .

Proof :

T is a normal operator TT* = TT" in
thisimplies by (1.1) part (1),we have:
eTeT* — eT+T* — eT*+T — eT*eT’
hence eTis normal.

Definition (2.8)[3]

Let The a bounded linear operator on
H. It is called a quasinormal if T
commutes with T'T, i.e. T(T T) = (T~
T

Lemma (2.9)
Let T,S eB(H)
operators then :

1. oT is a quasinormal ,o for any
scalar.

2. T+S is aquasinormal with
property that each commute with the
adjoint of the other.

3. ST is a quasinormal if the
following conditions are satisfied:

(i) ST=TS (i) ST=T'S

4. The Ilimit of a sequence
ofquasinormal linear operators on H, is
aquasinormaloperator.

The proof of this lemma can be found

in [2],[3]

bequasinormal

Remark(2.10)

By using mathematical induction
and lemma (2.9) part (3) , we have T
is quasionormal operator on a Hilbert
space H, forn > 2.

Proposition (2.11)

Let T bea quasinormal operator on H,
then e is also quasinormal .

Proof :

If T is a quasinormal operator and
n any positive integer, then by lemma
(2.9) parts (1),(2) and (2.10) we have

(I+%T)rl is a quasinormal operator.
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But(I + %T)nconverges toeT |, then by
lemma (2.9) part (4) we havee'is
quasinormal.

Definition (2.12) [4]

An operator T on H is said a
binormalif TT commutes withT'T , i.e.
[TT, TT]=0
Remark (2.13)

If T is binormal operator on H. Then
e'may not be binormal , so we are
going to

example to show this :

0 1 ] .
LetT= (0 O) can easily verify
. 0 O
thatT be binormal andT?= ( 0 O)’
we have :

1 1 1
el = o= T'x =1+4T :(O 1),

. 1 0)
T '
= , that's
€ (1 1

* * 3 4
elel eT eT=(2 S)and

v orr.r_(3 2
e eee —(4 3).

Which are not equal, therefore
e’ is not binormal operator.
Definition (2.14)[4]
An operator T on a Hilbert space H. It
is said a hyponormal if T*T — T*T >
0,ie{(T*'T-T'T) x,x) =0, for
every xeH.

and why

Lemma (2.15)

Let T,S be hyponormal operators on
H, then:

1. oT is ahyponormal, for each o € C
2. If T,S are hyponormal operators
with the property either commute with
adjoint of the other. Then
T+Sishyponormal.

3. If T,:H—>H(n=1,2,...) is a sequence
of hyponormal operator and T,>T
then T hyponormal.

The proof of this lemma can be found
in [2].

Remark (2.16)

1270

In [5], P.R Halmos gave example of
a hyponormal operator T such that T2
is not hyponormal implies that T" may
not be a hyponormal for some n > 2.
proposition(2.17)

If T is a hyponormal and a
binormal operator, then T" is a
hyponormal for n> 1.

We can find the proof in [4].

We are going to proof that if T is
hyponormal and binormal then e is
hyponormal.

Proposition (2.18)
If T is a hyponormal and a binormal
operator theneTis hyponormal .

Proof:

If T is hyponormal andbinormal
operator and n any positive integer, we
have that lemma (2.15) parts (1),(2)

and proposition (2.17)(1 + iT)‘f1 is a
hyponormal . But(I + %T)rl convergent

toeT by lemma(2.15) part (3)eTis
hyponormal.

Definition (2.19)[2]

An operator T on a Hilbert space

H, is said to be compact if for each
bounded sequence (x,) in H, the
sequence(Tx,) containsandconvergent
subsequence .

Lemma (2.20)[2]

1. If T, S, U € B(H) are compact
operators on H, and a € C, then aT ,
T+S and UT, TU are compact
operators.

2. If T is a compact operator on H,
thenT™is a compact for any positive
integer n>2.

3. If (T,) is a sequence of compact
linear operators on H. Suppose that T,
converges to linear operator T , then
the operator T is compact .

Theorem (2.21)
IfT eB(H) is a compact operator.
Then:

1.eTis compact
dimension.

2.eT —1 is compact if H is infinite
dimension.

if H is finite
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Proof :
1.Iis a compact operator since H is
finite dimensional Hilbert space in[2] ,

hence = Zﬁ:oki,TkiS compact
operator by lemma (2.20) parts (1) and
(2), Therefore S,convergent to the
compact operator by (2.20) part ( 3),
i.e.eT is compact.

2. lis not a compact operator, if H is
infinite dimensional Hilbert space[2] .

ButS," = Yk- 1§Tk is
compact operator ifTis compact by
lemma (2.20) parts (1l)and (2),
therefore eT — I is compact .
Remark (2.22)

1. If T is a compact operator on
infinite dimensional Hilbert space H.
Thene™ is  not necessary
compact, to see this, theT = 0 (zero
operator) is a compact, whereeT =

= Iwhich is not compactin [2].

2. If T is isometric operator on H ,
then||Tx|| = |Ix|| V x € H. Then e"may
not be isometric ,to see this, we give
the following example:

IfT =1, then||T|| =1, hence |leT| =
lle'll = elllll = e.
3. IfTis a unitary operator on H, then
TT* = T*T = I. thereforee"may not be
unitary to see this,
we give the example:

If T= (? - —1) landT*

(£+%i)l , implies that TT* =

. =

T*T =1, i.e. Tis unitary operator . We

(30 (5

have e' = e\2 2 =e\2 2/ ]and
V3 1, V3 1.

el = e(7+ EI)I = e<7+ 51)1. But

eTeT =eV3 [ £ 1.

T —

of an
on a

3.The Spectrum
exponential __operator
Hilbert space H:

The spectrum of a linear operator
on a Hilbert space H, is a subset of the
set of complex numbers A, for which
T — Alis not invertible , denoted by
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o(T). The complement of the spectrum
of linear operator is resolvent, and it is
denoted byp(T).
Definition (3.1)[2]

Let T be a linear operator on a
Hilbert space H .
1. The eigenvalue of T is a complex
number A,for which T —Alis not
injective, i.e. There exists a non-zero
vector x in H, such that (T—-AD(x) =
0, the vector x is called eigenvector of
T and the set of all eigenvalues ofT
denoted byop(T)is called the set of
point spectrum ofT.
2. The continuous spectrum ofT, is a
set of complex numbersi , for which
T —Alis injective and T — Alis not
surjective, but the range of H by linear
operator T—AI is dense in H. The
continuous spectrum ofT is denoted by
o.(T).
3. The residual spectrum ofT, is the set
of all complex numbersa, for
whichT — Alis injective and the range
of H dose not equal H. The residual
spectrum of T denoted by oty .
4. The spectral radius of linear operator
T is denoted byr (T) and it is defined as
follows :

r(T)=sup { Al
limy oo || T
Proposition (3.2)
Let Te B (H) and Abe eigenvalue of
T, then e*is eigenvalue of eT.
Proof:

There exists a non zero vector X in

H, such that T x =Ax(sinceris an
eigenvalue of T), hence T"x = A"x

n
Ty _ Vo Lmong _ 00 7‘
Bute X = anoaT X = n=0"__,

reo(T )} =

n!
(00500 %) x = e* x.Therefore e*is an
eigenvalue of eT and x is a
corresponding eigenvector .

Remark (3.3)

In[2] E. Kreyszing, provedthat, if H is
finite dimensional Hilbert space. and
Te B(H), then o (T)#¢ . Furthermore
Aeo(T)if and only if A is eigenvalue of
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T. Hence if H is a finite dimensional
Hilbert space then Aeo (eT) if and
only if A is eigenvalue ofe™.

In the following example we are
going to compute the spectrum of the
some linear operators.

Examples (3.4)
1l.o(D)={1},s00(e®) =0 () = {1}
2.0 (e") = o (el) = {e}.

3. Let T be a nilpotent operator on a
finite Hilbert space H. With order n ,

11
we haveeT = Zﬂ:é;Tk, and o (eT) =

o(SRboT) = {Zhclaafin e
o(T)} by [2]. But & (T)={ 0 }by [2]
,hences (eT)={1}.
Theorem (3.5) [2]

Let T be a bounded self-adjoint
linear operator on a complex Hilbert
space H. Then:

1. The spectrum o(T) is real.

2. The residual spectrum o(T) is
empty.

3r(T)=TI.

Proposition (3.6)

IfT € B(H)and T is a self-adjoint
operator. Then :
1.op(eT)subset of real number and

Gr(eT) =0
2.1 (e") < e'®
Proof:

1.T is a self-adjoint operator, thene™
is self-adjoint by proposition (2.1).
Henceop(eT) is subset of real number
by theorem (3.5) and o,.(eT) = @ .

2. By theorem (3.5), we have r(e?) =
lleT|| and by proposition (1.1) part (4),
we have r(e”) <
QT — or(m).

Lemma (3.7) [2]

T is a positive self-adjoint if and only
if 6(T) < [0,00).

Proposition (3.8)

If T is a positive self-adjoint on a
complex Hilbert space H. Then
a(eNc [1,0).

Proof:
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If T is a positive operator , thenT"
is also positive ( by proposition (2.4)
part (4)), i.e. <T"x,x >=> 0, forx in
H and n positive integer. So, we have
<elx x> =< Z;‘f’zO%Tnx,x > =

w 1 '

Yoo <T™xx>= IxII? +
Zf;l% < T"x,x >. Hence inf

{<eTx, x> xe€eHand|x]| =1} >1
, then o (e [1,00).
Remarks (3.9)

1. In [6] M. Akkouch , proves that if
T is a normal operator on H. Then:

1) p(T)={2%eC,Ryy= H}
2) Gp(T) = {7\, 7\,6 C, RT—?»I #*H

3) O¢ (T) = {7\, re C !RT—XI = H}
4)o((T) is empty.

So, if eTis normal operator by
proposition (2.8), we have:

1) peN={rreCRur_; =H}
2) Gp(eT)= { L e C Rgr_;; # H}
3) Gc(eT)= {L: e C Rer_;;=H}

4) o.(eT) is empty.

2. In [6], we have if T isanormal
operator on a Hilbert space H, then
r(D) =TIl ,so r(e") = lle"|l <
e"™  (because eT is normal if Tis a
normal by proposition (2.8)) .

3. In [7] , we have if T is a
hyponormal operator , theno(T) =
op(T*) . Hences(eT) = op(e™) , (
because(eT)is hyponormal if T is

hyponormal  and binormal by
proposition (2.19)) .
4. In [8] , we have if T s a

hyponormal operator on a Hilbert
space H , the r (T ) | T || ,
thereforer (eT) = ||eT|| < ™™D ,
becausee®is hyponomral if ( Tis
hyponormal and  binormal by
proposition (2.19)) .
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