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Abstract:

In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 ,
and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra
integral equations of the second kind , and we find that the solution computed by this
procedure is very close to exact solution.
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Introduction:

Integral equations are equations in The general form of Volterra integral

which the unknown function appears equation is

under the sign of integral [1]. It is well hApsdu{29F Mathematics, College of Science for Women,
known that integral equations arise in x

many branches of science, for example =f(x)+ Af R(x,y,u(y))dy ...(1)

biological species [2],[3], sliding a 2

bead along a wire [4], human

population[4].Also integral equations and this equation is said to be :

have a relation with initial and  Volterra integral equation of the
boundary value problems[1],[3]. firstkind if h(x) = 0.

The theoretical methods for solving e \olterra integral equation of the
Volterra integral equations second kind if h(x) = 1.
aresuccessiveapproximation, e Linear if R(x,y,u(y)) =
successive  substitution,  Laplace k(x,y)u(y), otherwise it is nonlinear.
transformation, Adomian e Homogeneous if f(x) =
decomposition and series solution 0, otherwise it is nonhomogeneous.
methods. Many researchers study the

numerical And,for more details see[1].

solution[4],[5],[6].[7].[8].[9]
Bernstein Polynomials [13]:

Block-by-block -method 'is used for Bernstein polynomials are defined by
solving linear Volterra integral ny . .
equations [10]. Quadrature Bin(t) = (z) @A -"" ..(2)
method is used for solving linear Where (r_u): n!

Volterra integral equations of the t iln-!

second kind [11],[12]. They are n+1 polynomials of degree

n. For mathematical Convenience,

. weusually set  B;, =0 ifi<
Volterra Integral Equations: y in f

Oor i>n.

[1]1[3] For n=1
BO,l(t) = 1 _— t and Bl,l(t) = t
For n=2
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Boo(t) = (1 =t)% By(t)
= 2t(1
—t) and B,,(t) = t*
A recursive definition of Bernstein
polynomials is given by
Bin(t) = (1 = )Biny (1)
+ tBi—1n-1(t)
These polynomials are non-negative
over the interval [0,1] and form a
partition of unity
[30,1(t) + By, (t)
= 1,By(t) + B1,(t)
+ By, (1)
=1 and so on].

The Modified Simpson's 3/8 Rule:
By the Bernstein polynomials
n

2 () (o

k=0
Where fis a function, k = 0,1, ..., n.
Then

P(x)=f (g) (:)l) x0(1 —x)"°
+/ () ()xa

_ x)n—l

o1 (5) ()0

_ x)n—3
+ -+ f (%) (Z) xn(l _ x)n—n
=f0O)A-x)"

1 () G ) v -+
|
() G a0+

() Gy a0+

+ f(1)x™
=fO)@-x)"

1
+ nf (E) x(1—x)"1
D)
— )" +

nn—1)n-2) f (3) (1

31 n

— )"+ -+ f(Dx®
By substituting n=3. Then
P(x) = f(0)(1 — x)?

1
+ 3f <§> x(1 — x)?

2
+ 3f <§> x2(1—x)

3
+3f (5) x3(1—x)°
Let

0 =301 (5) =37 ()

=y, f(1) =y;3
P(x) = yo(1 —x)% + 3y;x(1 — x)?
+ 3y,x2(1 —x)
+ y3x3 . (3)
By integrating both sides of equation
(3) From 0 to 1, one can have:-

folf(x)dx ~ folP(x)dx

1
= [ o1 = 0° + 37,20~ 27
0
+ 3y,x%(1 — x)
+ y3x3] dx
1
= f [yo(1 — 3x + 3x2 — x3)
0

+ 3y, (x — 2x? + x3)
+ 3y, (x*—x?)
+ ysx3]dx
3 1
=y0(x—zx2 + x3 —Zx“) 2

1
+ 3_’)11 (Exz —§X3

ran(i-d) 4 ]
Y2 37 % 43’3
1 3 3 1

=30 +E3’1 +E}’2 +z)’3

1 1 1
=770 +Z3’1 +ZY2 +Z3’3
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1
:Z(YO-l' yit y2+ y3)

=%(fo + A+ 2+ f3)
Now, by using the transformation
x=a+tbh—a), h= D_Taand above
equation, we get:-

b
[ rwax=T1h+ 5+
+ 3] ..(4)

This formula is said to be modified
Simpson’s 3/8 rule.

The  Composite  Modified

Simpson's 3/8 Rule:

The Composite modified Simpson's
3/8 rule can be derived by extending
the modified Simpson's 3/8 rule.

This procedure is begin by dividing
[a,b] into n subintervals (n is multiple
of three), and applying the modified
Simpson's 3/8 rule over each interval,
then the sum of the results obtained for
each interval isthe approximate value
of integral, that is

J:f(x)dx

a+3h a+6h
j f(x)dx + J f(x)dx
a a+3h

a+(n-3)h
+ . + ] f(x)dx
a+(n—-6)h
b

+j f(x)dx , where h
a+(n-3)h
b—a

n

g 3h
| feax =@+ f@a+ )

+ f(a+2h)+ f(a
+ 3h)]
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3h
+T[f(a+ 3h) + f(a + 4h)

+ f(a + 5h)
+ f(a+ 6R)] + -

+ %[f(a+ (n—6)h)
+ f(a+ (n—5)h)

+fla+ (n—4h)
+f(a+ (n—3)h)]

+%[f(a+ (n—3)h)
+ f(a+ (n—2)h)
+ f(a+ (n—1)h)
+ f(b)]

=%[f(a)+f(a+h)+f(a+2h)

+ 2f(a+ 3h)

+ f(a + 4h)

+ f(a+5h) + -
+2f(a+ (n—3)h)
+ f(a+ (n—2)h)
+ f(a+ (n—1)h)
+ f(b)]

fla)+ Z £ ()

j=1,4,7,...

+f(x{lt13)]
2 > f(x)

j=3,6,9...

+F(b) ] . (5)

This formula is said to be the
composite modified Simpson’s 3/8
rule.

_3h
T4

Numerical Solution for Solving
The One-dimensional Volterra
Linear Integral Equation Using
The  Composite  Modified
Simpson’s 3/8 Rule:

In this section, we use the composite
modified Simpson’s 3/8 rule for
solving the one-dimensionalVolterra
linear integral equations of the second
kind given by
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() = £G0) + 2 f K y)u@)dy

x=a..(6)
First, we divide the interval [a, b] into
n subintervals[x;, x;+1], i =
0,1,2,..,n—1,such that x; =a+
ih, i =0,1,..,n where n is multiple

of three and h = b%a. So, the problem

here is to find the numerical
solution of equation (6) at each
x;, i=0,1,..,n. Then by setting
x = x; in equation (6), we get

u(x;)
= f(x)
Xi
2 [ kG yuGdy, i
a
=0,1,..,n ..(7)
For i=3,6,9,..n.We approximate

the integral that appeared in the right
hand side of equation (7) by the
composite modified Simpson’s 3/8 rule
to obtain:-
Uo = fo

3h

u; = —

i—

2
+ [k (i, % )y

1,4,7
( vx]+1)uj+1]
i-3
+2 k(xl-,xj)uj + k(xl-,xl-)ui] ,
j=3,6,9,.
i=369,..,n...(8)

And, for i+#369,..,n ,  we
approximate the integral that appeared
in the right hand side of equation (7)
by the composite modified Trapezoidal
rule [13] to get

=fi +

— |k Cxy x0)ug
i-2

+ 2 Z [k(xi, x])u]
j=1

+ k(xi, Xj+1)u]'] , i

#3,69,..,1n..(9)
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To illustrate this method, we consider
the following examples:

Example (1):

Consider the one-dimensional Volterra
linear integral equation of the second
Kind:-

2 X
u(x) =x+§f xyu(y)dy 0<x
0

<2
x2
whose exact solution isu(x) = xes,
this equation can be solved
numerically with the composite
modified Simpson’s 3/8 rule. First, we

divide the interval [0, 2] into 9
subintervals, such that
x==, i=0,1,..9.  Thenu, =
f(0)=0, and the -equation (8)
becomes:-
u; = Z (xixu;
30
j=1,4,7,..
+ xix]'u]'+1)
i-3
1
+ I | XiXjU;
j=3,6,9
1 2
+ %xi u;,
i=3,69, ..(10)
and the equatlon (9) becomes:-
u; = 45 Z X x]u]
45x fup o, 1
+3,6,9, ...(11)

By setting i = 1 in the equation (11)
one can get u; = 0.2224663554

By setting i = 2 in the equation (11)
one can get u, = 0.4473848062

By settingi = 3 in the equation (10)
one can get uz = 0.6822919096.

By continuing in this manner one can
get the following values:
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Uo:0

U3=0.6822919096
Us=1.5752706589
Uy=3.4840871196

Second, we divide the interval [0, 2]
into 18 subintervals, such that

x; = g i=0,1,..,18.  Theny, =
f(0) =0, and the equations (8), (9)
become:-

U;=0.2224663554
U,=0.9330498672
U,=2.0084545071

1 -2

U; = X; + @ . (xixju]

j=1,4,7,——

xixj+1uj+1)
i-3
+ 2 Z XiXjU;
j=3,6,9,——

+ x?

Uo=0 U,=0.1111263548

U3=0.3342955701
U =0.6805480476

U4 =0.4471364570
U7 =0.8028413818

U,=0.4473848062
Us=1.2202686732
Ug=2.6015170971

, 1=3,69,...,18.
and

. (12)
i-1

B 1 1, )
u; =x; + EZ XiXjU;j +%X1 u;, 1
=
#3,6,..,18. ...(13)

By setting i = 1 in the equation (13)
onecangetu; = 0.1111263548

By setting i = 2 in the equation (13)
one can get u, = 0.2224052300

and by setting i =3 in the equation
(12) one can get u; = 0.3342955701
And, By continuing in this manner one
can get the following values:-

=0.2224052300
=0.5620748374
=0.9318813651

Ug=1.0704371891
U1,=1.5650052777

U10=1.2182194913
U13=1.7675583096
U16=2.5897590702

U11:13813511291
U14=2.0014643364
U17=2.9658216063

U1=3.4276679769

Third, we divide the interval [0, 2] into
36 and 72 subintervals such that
i

xizﬁ , i:O,'].,Z,...,36, X;
l
_% , 1
=0,12,..,72

Respectively and by following the
same previous steps, one can get the
results that can be found in the
appendix of example (1). Some of
these results are tabulated down with
the comparison with the exact solution.

Table (1) represents the exact and the numerical solution of example (1)at

specific points for different values of n

. Numerical Solution
X Exact Solution N=9 N=18 N=36 N=72
0.222222222 | 0.2223848585 | 0.2224663554 | 0.2224052300 | 0.2223899536 | 0.2223861320
0.444444444 | 0.4470533010 | 0.4473848062 | 0.4471364570 | 0.4470740553 | 0.4470584955
0.666666667 | 0.6799663130 | 0.6822919096 | 0.6805480476 | 0.6801117669 | 0.6800026778
0.888888889 | 0.9314983085 | 0.9330498672 | 0.9318813651 | 0.9315949132 | 0.9315223638
1111111111 | 1.2175126789 | 1.2202686732 | 1.2182194913 | 1.2176873746 | 1.2175566340
1.333333333 | 1.5615934837 | 1.5752706589 | 1.5650052777 | 1.5624459538 | 1.5618065712
1.555555556 | 1.9992459998 | 2.0084545071 | 2.0014643364 | 1.9998129746 | 1.9993862624
1777777778 | 2.5855576010 | 2.6015170971 | 2.5897590702 | 2.5865822277 | 2.5858171455
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| 2

| 3.4092097306 | 3.4840871196 | 3.4276679769 | 3.4134233850 | 3.4103583731 |

1.98 A

1.76

1.54

1.32

1.10

0.88 -

0.44 - e Exact Solution

@ Numerical Solution N=9

0.22 1 Numerical Solution N=72

0.00

2i

0 022 044 066 088 1.1 132 154 176 1.98

Fig(1): Graph of exact and
numerical solution of example 1.
Example(2):

Consider the one-dimensional Volterra
linear integral equation of the second
kind:-

4 7
u(x) —x——xz

e

—y) udy 0<x
<2
Whose exact solution is u(x) = x. We
solve this equation numerically with
the composite modified Simpson's 3/8
rule. First, we divide the interval [0, 2]
into 9 subintervals such that

Uo:0

U3=0.6576958875
Us=1.3079521615
Uy=1.9464920052

Second, if we divide the interval [0, 2]

into 18 subintervals, such that
x; = g i=0,1,..,18. Then

equations (8), (9) become:-

the

U;=0.2216310035
U,=0.8844957113
U;=1.5427891825

Xi =3 i=01,..,9. Thenu, =
£(0) = 0,and the equations (8),(9)
become:-
4 Z
u; = X; — gxl
i-2
+ g . z [(xi
j=1,4,7,.
3
- x]-)zuj + (xi
3
- xj+1)2uj+1]
i-3
1 .
§ z (x; — x])Zu] ) l
j=3,6,9,.
=3,6,9, ...(14)
and
U = Xx; —gxl +— Z(xl x])zu“
i + 3, 6 9 .(15)

By setting i =1 in equation (15) one
canget u; = 0.2216310035.

By setting i = 2 in equation (15) one
can get u, = 0.4429149690.

By setting i =3 in equation (14) one
can get u; =0.6576958875.

And, by continuing in this manner one
can get the following values:-

U,=0.4429149690
Us=1.1046072143
Ug=1.7602438383

4 7
i =X~ %xlz
1 i—2
tg D, |G
j=1,4,7,——
3
- xj) U;
3
+ (xl x]+1)2u]+1]
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By setting i =1 in equation (17) one
can get u; = 0.1110588543.

By setting i =1 in equation (17) one
can get u, = 0.4429149690.

By setting i = 3 in equation (16) one
can get u; =0.3325444915

And, by continuing in this manner one
can get the following values:-

1 i-3 \
+8 Z (i —x)2u; , 0
j=3,6,9,.
=3,6,9,..,18. (16)
and
4 7
U = x; — gxf |
1 i—-1
j=1
3
)
# 3,6,9,...,18. ...(17)
Up=0 u;=0.1110588543

u3=0.3325444915
Us=0.6645903134
Ug=0.9962027164
U12=1.3273025035
U15:16577165689

u4=0.4440838939
U7=0.7769297456
U10=1.1095483963
U13=1.4418215959
U16=1.7735580777

u2=0.2220880359
us=0.5550527639
ug=0.8878314093
u11=1.2203506870
U14=1.5524695371
Uu17=1.8839681446

U1s=1.9871689996

Third, we divide the interval [0, 2] into
36 and 72 subintervals such that

Respectively and by following the
same previous steps one can get the

_ b — 0.1 . 36 d results that can be found in the
YiT1g T b and x; appendix of example (2). Some of
_ b =01 . 72 these results are tabulated down with

36" 0 TV the comparison with the exact solution.

Table (2)represents the exact and the numerical solution of example (2) at

specific points for different values of n

. Numerical Solution

X Exact Solution N=9 N=18 N=36 N=72
0.222222222 0.2222222222 0.2216310035 0.2220880359 0.2221907850 0.2222147077
0.444444444 0.4444444444 0.4429149690 0.4440838939 0.4443581710 0.4444235479
0.666666667 0.6666666667 0.6576958875 0.6645903134 0.6661767275 0.6665490295
0.888888889 0.8888888889 0.8844957113 0.8878314093 0.8886332252 0.8888264788
1.111111111 1.1111111111 1.1046072143 1.1095483963 1.1107322356 1.1110185287
1.333333333 1.3333333333 1.3079521615 1.3273025035 1.3318853591 1.3329816693
1.555555556 1.5555555556 1.5427891825 1.5524695371 1.5548073905 1.5553725636
1777777778 17777777778 1.7602438383 1.7735580777 1.7767539344 1.7775274066

2 2.0000000000 1.9464920052 1.9871689996 1.9969012387 1.9992444590
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1.54

132
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1.10 - /<]
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0.00
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Fig (2):

Graph of exact and

numerical solution of example 2
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