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Abstract:

In this paper the modified trapezoidal rule is presented for solvingVolterra
linear Integral Equations (V.1.E) of the second kind and we noticed that this procedure
is effective in solving the equations. Two examples are given with their comparison

tables to answer the validity of the procedure.
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Introduction:

The quadrature methods are bases of
every numerical method for finding
solution of integral equations [1].

The  problem of  numerical
quadrature arises when the integration
can not be carried out exactly or when
the function is known only at a finite
number of data. Furthermore numerical
quadrature methods are primary tools,
used by engineers and scientists to
obtain  approximate answers for
definite integrals that cannot be solved
analytically [2].

The main purpose of this paper is to
use Bernstein polynomials to derive
the composite modified trapezoidal
rule of first order. Moreover, This
method is used for solving Volterra
linear integral equations of the second
kind. Integral equations are solved by
interpolation and Gauss quadrature
method. [3]. (V.L.LE) of the 2nd kind
with convolution kernal are solved by
using the Taylor expansion method.
[4]. Linear integral equations are
solved with repeated Trapezoidal
guadrature method. [5].

Integral equation in Urysohnform are
solved numerically [6]. Fredholm
integral eigen value problems are
solved Dby alternate  Trapezoidal
quadrature method.[7]. Collocation

method is used for solving Fredholm
and Volltera integral equation.[8]

The modified Trapezoidal rule

of first order [9]

Polynomials are useful mathematical
tools as they are simply defined, can be
calculated quickly by a computer
system and represent a tremendous
variety of functions. They can be
differentiated and integrated easily,
and can be pieced together to form
spline curves that can approximate any
function to any accuracy desired. Most
students are introduced to polynomial
at a very early stage in their studies of
mathematics, and would probably
recall them in the form below
P(t) = apt™ + ap_(t" 1+ +ayt

+ ag

Which represents a polynomials linear
combination of certain elementary
polynomials {1,t,t?,...,t"}.

In general, any polynomial
function that has degree less than or
equal to n, can be written in this way
and the reasons are simply.

- The set of polynomials of
degree less than or equal to n forms a
vector space. Polynomials can be
added together, can be multiplied by a

*University of Baghdad, College of Science for Women, Mathematics department
**University of Diala, College of Administration and Economy

1629



Baghdad Science Journal

Vol.11(4)2014

scalar and all the vector space
properties hold.
- The set of functions

{1,t,t%,...,t"} form a basis for this
vector space-that is, any polynomial of
degree less than or equal to n can be
uniquely  written as a linear
combinations of these functions.

This basis commonly called the power
basis is only one of an infinite number
of bases for the space of polynomials.
Consider Bernstein polynomials given
by the following equation:-

n

i) (e

k=0
Where f is a functionk = 0, 1, ..
Then:-

., n

o= - (-
) E)ea-0 i) Qe
ny (M
+--+ f(H) (n) x"(1—-x)"™"

= f(0)(1 —x)" + f(%) (ﬁ

f(;) (30 ) 02 +
f(%) (#’_3)') 31— x)"3 4 oo 4 (DX

=f(0)(1 —x)" + nf(%) x(1—-x)"1 +

n(n—1)(n - 2)
3

By substituting n = 1. Then

p(x) = f(0)(1 —x) + f(1)x(1 —x)°
= £(0)(1 — %) + f(1)x

Let
yo = f(0)and y; = f(1) then
P(x) =yo(1 —x) +y;x (1)

By integrating both sides of above
equation from (0 tol) one can get:-

fol f(x)dx = folp(x)dx

1
3 (Yo +y1)

Now by using the transformation.
b—a

1

then from the above equation, one
can get

x=a+t(b—a)h=

1630

'_ 1)!> x(1—x)""1 +

f(%) x3(1—=x)"3 + -+ f(D)x"

[fo +£:]1(2)

NS

fb f(x)dx =

This formula is the modified

trapezoidal rule of first order .

1-The composite modified

Trapezoidal Rule of first order :-

It can be derived by extending the
modified trapezoidal rule of first order
.This procedure begins by dividing [a,
b] into n subintervals and applying the
modified trapezoidal rule of first order
over each interval then the sum of the
results obtained for each interval is the
approximate value of integral ,that is
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b a+h a+2h a+(n-1)h b
.f f(x)dx = J. f(x)dx + f f(x)dx + .-+ f f(x)dx + f f(x)dx
a a a+h a+(n—-2)h a+(n-1)h

b_
whereh = Ta

=2[f(a) + ()] + 2 [f(a + h) + f(a + 2W)] + .. +
f(a+ (n— Dh)] +2[f@+ (n— 1)h) + f(b)]
=2 [f(a) + 2f(a + h) + 2f(a + 2h) + -+ 2f(a + (n — 2)h) + 2f(a +
(n — Dh) + {(0)I(3)

N | =

[f(a+ (n—2)h) +

-1
h
= > [f(a) +2 Z f(x;) + f(b)] 4

=1
This formula is said to be the B X
composite modified Trapezoidal Rule u(x) = f(x) +7‘fa K& yuy)dy ,x
of the first order. >a (6)

First, the interval [a, b] is divided into

Numerical solution for solving nsubintervals, [xi, Xi41],
the one-dimensional Volterra i=01,..,n-1,

Such that x;=a+ih,i=0,1,..n

:linear integral equation using b _
where h = — S0 the problem here is

the composite modified

trapezoidal rule :- to find the solution of equation (6) at
each x;,i=0,1,..n. Then by
The composite modified trapezoidal of settingx = x; in equation (6) one can
first order for finding get:-
b b u(x;)
] f(x)dx is j f(x)dx = f(x;)
a a Xj
) + [ KOy ud, |
= —[f(a) _01
2 =0,1,..,n (7)
Lo Next we approximate the integral
appeared in the right hand side of the
+ ZZ f(Xi) above integral equation by the
j=1 composite modified trapezoidal rule to

obtain u, = f,

HIOG) u; =f; + Tk(xi; Xo)Up
where n is the number of subintervals -1
of the interval [a, b] and h = ? In +thk(xi, X))
this section this_rule is used to s_olve h =t
the one-dimensional Volterra linear +Tk(xivxi)ui

equations of the second kind given by : therefore
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U 31 /x3\°
u; =fi + Mhiz K(Xi,xj)uj =x(1+ 15 + §<1—5> )
=1
0h Clearly .
+TK(Xi,Xi)ui (8) n (X_)l
15
To illustrate these methods, the up(x) = Z il
following examples are considered:- =0 ,
u(x) = lim u,(x) = xe1s
. n—oo
Example (1):- _ is the exact solution
COnSIdEI’ the One‘d|men5|0nal VOIterra Now th'S examp|e is So|ved
linear integral equation of the second numerically via the  composite
kind is:- L modified Trapezoidal rule. To do this,
_ First the interval [0, 2] is divided into 9
= - dy 0 <x<2 . ’
ut) =x+ 5,[0 xyu(y)dy 0 <x < subintervals such that
If it is solved by successive X; = A 41-0,1,..,9. Here up =
approximation method taking the zero™ €0) °0
approximation andk(x,y) = xy, then the equation(2)
becomes:-
Ug =X i—1
Then _ 2 1,
1 X 2 1 3 Uj —Xi+Einx]-uj +Exi uj,
= — = — 1=
u; x+5x]y dy X+15X
0 5 i=12,...,9 (9
X . .
=x(1+— By evaluating the above equation at
X 15 eachi=1,2,....... ,9. one can get the
1 1 following values
U, =x+—Xj(y2+—y5)dy ]
5 15
0
- 1 x3 N 1,
=x+gx(z455x)

Uo=0 u;=2224663554 u,=0.4473848062
u3=0.6807463739 Uu4=0.9330084342 us=1.2202144860
Us=1.5663078835 u,=2.0074989850 Us=2.6002794255
Ug=3.4362093627
Second if we divide the interval [0,2] = 1
in 18 subintervals , such that xi:%,i = Uj = X +EZ Xj Xj Uj +%Xi2ui B
0,1,2,..,18 then the equation (6 =1
becomes q ©) =1,2,..,18(10)

By evaluating the above equation at
eachi=1,2,....... ,18. one can

get the following values

uo=0 u;=0.1111263548 u,=0.2224052300
U3=0.3342034914  u,=0.4471361532 us=0.5620744555
Ug=0.6801612311 u;=0.8028363544 us=0.9318755296
Up=1.0694464177 u10=1.2181872268 u11=1.3813145441
U12=1.5627695728 u13=1.7674153566 U14=2.0013024661
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U15=2.2720276405 U16=2.5892200122
U1s=3.4159117144

Third the interval [0, 2] is divided into
36 and 72 sub intervals, such that

1

Xi =5 ,i=0,1,2,..,36 and
X; = i ,i=0,1,2,..,72 respectively

U17=2.9652042709

and some of these results are tabulated
down with the comparison with the
exact solution:-

Table (1) represents the exact and the numerical solutions of example (1) at

specific points for different values of n

X Exact Solution Numerical Solution
Trap.N=9 Trap.N=18 Least square N=9

0.222222222 0.2223848585 0.2224663554 0.2224052300 0.22233400
0.444444444 0.4470533010 0.4473848062 0.4471361532 0.44703057
0.666666667 0.6799663130 0.6807463739 0.6801612311 0.67997299
0.888888889 0.9314983085 0.9330084342 0.9318755296 0.93153676
1.111111111 1.2175126789 1.2202144860 1.2181872268 1.21758688
1.333333333 1.5615934837 1.5663078835 1.5627695728 1.56171134
1.555555556 1.9992459998 2.0074989850 2.0013024661 1.99941861
1777777778 2.5855576010 2.6002794255 2.5892200122 2.58580467

2 3.4092097306 3.4362093627 3.4159117144 3.40956069

Now the equation of the best line is
found through the point for table (1)
when n=9 by using Least square

method.
9

9
f(a,b) = Z yZ + 9b? + a2 Z X2,
i=1 i=1
9
- ZaZ XiVi
i=1
9
—_ ZbZ Xi
i=1

9
+ 2ab Z yi  (11)
i=1

= 27.81001 + 9b? + 27.80505a>
— 55.61507a
— 26.109903b
+ 26.1080356ab
In order to find a and b we

of of
equate > and o tozero

of
5, = 55.61011a + 26.1080356b
— 55.61507 = 0 (12)

of
— = 18b + 26.1080356a

ob
— 26.109903
=0 (13)

From eq. (13) we have
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26.109903
b="—""—""+—

18
26.1080356

18
b = 1.450550514 — 1.45044622a (14)
Substitute the value of b in eq. (12) we
have
55.61011a — 37.86830683a

— 55.61507

+ 37.87102447 =0
17.74180317a — 17.74404553 =0

a=1.0001263

Substitute the value of a in eq. (14) we
have b= -0.00007889.
Then the point is (1.0001263, -
0.00007889) and the equation of the

a

beast line y =ax+b is y =
1.0001263x — 0.00007889

Fig (1)represent the equation
ux) =x+ %f;(xyu(y)dy in three

different methods

Table (2) represents the differences between exact and the numerical solutionsfor

examplel
Exact Solution Numerical Solution Numerical Exact&trap. Exact &L east Trap.&L eastseq
Trap.N=9 Solution Least Seq. difference seq. difference difference
0.22238480 0.222466355 0.22256156 0.000082 0.00005080 0.00013236
0.44705300 0.447384806 0.44721647 0.000332 0.00002243 0.00035423
0.67996600 0.68229191 0.68011568 0.0007804 0.00000699 0.00077338
0.93149800 0.933049867 0.93163280 0.001510 0.00003876 0.00147168
1.21751200 1.220268673 1.21762988 0.002702 0.00007488 0.00262760
1.56159300 1.575270659 1.56169051 0.004715 0.00011834 0.00459654
1.99924500 2.008454507 1.99931662 0.008254 0.00017361 0.00808037
2.58555700 2.601517097 2.58559392 0.014722 0.00024767 0.01447476
3.40920900 3.48408712 3.40919719 0.027000 0.00035169 0.02664867
Example (2):- Using  successive  approximation

Consider the one-dimensional Volterra
linear integral equation of the second
kind:-

4

u(x) =x— £X7/2

X
+J (x

0
-y)*? u(y)dy 0
<x<2

1634

method for solving this example taking
the zeroth approximation u, = x
Then

X

4
U =x—gex2 4 f(x—y)g/zydy

0
Using  integral by to

7
solveu, (x) = X—:—SX /2 —

2 3.x , 2 (X 5
Sy(x—y)2)§ + 2 [ (x — y)zdy

parts
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= X—ix7/2 —i(x— o
TS 35 V)0

cxm e 2 —x =

7 35 357 70

uO = u1 ==X
u(x) = x isthe exact solution

Now this example is solved
numerically via the  composite

modified Trapezoidal rule. To do this,
First, the interval [0, 2]is divided into 9
subintervals such that

2i .
xi=—, 1=0,1,...,9. Hereuy, =

9
f(0) = 0 and k(x,y) = (x — y)3/2.
Then equation (6) becomes:-
uo=0

u3=0.6639218150
Us=1.3249767838
Uy=1.9808975240

Second, if the interval [0, 2] is divided
into 18 subintervals, such that
i

Xi=3 i=0,1,..,18.
the equation (6) becomes:-
u; = X; _ix.7/2
1= 1 35 1 .
1 i-1
+ §Z(Xi
j=1
3
- X]) /Zu]- ) el

=1,2,..,18,..(16)

Uo:0
u3=0.3330961478
Us=0.6660153189
Ug=0.9987729386
U1,=1.3313221472
U15=1.6635727341
U18=1.9876275257

Third, if the interval [0, 2] is divided
into 36 and 72 subintervals, such that

L i=1,2..36 and the
18

= i=1,..72
36

X; =

X; =

u;=0.2216310035
us=0.8846406461
U7=1.5443897270

u;=0.1110588543
us=0.4440861641
u,=0.7769538948
U10=1.1096493733
U13=1.4421113071
U16=1.7742339905

U =X —X.7/2
1 1 35 1
2 i—1 s .
+§Z(Xi —Xj)zu]' , 1
=1
=1,2,..,9 (15)

By evaluating the above equation of
eachi =1,2,..,9 one can get the
following values:-

u2=0.4429149690
us=1.1050205259
ug=1.7630994682

By evaluating the above equation
eachi = 1,2, ...,18. One can get the
following values.

u,=0.2220880359
us=0.5550591943
us=0.8878736889
u11=1.2205002125
U14=1.5528632159
u17=8848403004

Respectively and some of these results
are tabulated down with the
comparison with the exact solutions:-

Table (3) represents the exact and the numerical solutions of example (3) at

specific points for different values of n

X | ExactSolution |

Numerical Solution |
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Trap.N=9 Trap.N=18 Least square N=9

0.222222222 0.2222222222 0.2216310035 0.2220880359 0.22222222
0.444444444 0.4444444444 0.4429149690 0.4440861641 0.44444444
0.666666667 0.6666666667 0.6639218150 0.6660153189 0.66666667
0.888888889 0.8888888889 0.8846406461 0.8878736889 0.88888889
1111111111 11111111111 1.1050205259 1.1096493733 1.11111111
1.333333333 1.3333333333 1.3249767838 1.3313221472 1.33333333
1.555555556 1.5555555556 1.5443897270 1.5528632159 1.55555556
1777777778 17777777778 1.7630994682 1.7742339905 1.77777778

2 2.0000000000 1.9808975240 1.9876275257 2.00000000

In the same way in example (1) the
equation of the best line is found by
least square method and the values of a
and b are 1 and O respectively , and the
equationis y=ax+b is y=x

25

y /
——Exact value /7

—trapd

least square 1

0
0 2 4 6 8 10

Fig (2):represent the equationu(x) =
3

X— %X% + f(;((x —y)zu(y)dyin three

different method

Table (4) represents the differences between exact and the numerical solutionsfor

example(2)
Exact Solution Numerical Solution Numerical Exgct&trap. Exact_ &L east Trap.&Leastseq
Trap.N=9 Solution Least Seq. difference seq. difference difference
0.2222222 0.2216310 0.22239899 0.0005912 0 0.000591219
0.4444444 0.4429150 0.44460806 0.0015295 0 0.001529475
0.6666667 0.6639218 0.66681714 0.0027449 0 0.002744852
0.8888889 0.8846406 0.88902621 0.0042482 0 0.004248243
11111111 1.1050205 1.11123528 0.0060906 0 0.006090585
1.3333333 1.3249768 1.33344435 0.0083565 0 0.008356549
1.5555556 1.5443897 1.55565343 0.0111658 0 0.011165829
17777778 1.7630995 1.77786250 0.0146783 0 0.01467831
2 1.9808975 2.00007157 0.0191025 0.000E+00 0.019102476
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