On Fully (m,n)-stable modules relative to an ideal A of

 $R^{n \times m}$

Muna J. M. Ali*

Received 3, April, 2014 Accepted 29, June, 2014

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licens</u>

Abstract:

Let R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n)-stable relative to ideal A of $R^{n\times m}$, if $\theta(N)\subseteq N+M^nA$ for each n-generated submodule of M^m and R-homomorphism $\theta\colon N\to M^m$. In this paper we give some characterization theorems and properties of fully (m,n)-stable modules relative to an ideal A of $R^{n\times m}$. which generalize the results of fully stable modules relative to an ideal A of R.

Key words: fully (m,n) -stable modules relative to an ideal A of $R^{n\times m}$,(m,n)-multiplication modules and (m,n)-quasi injective modules.

Introduction:

Throughout, R is a commutative ring with non-zero identity and all modules are unitary right R-module. We use the notation $R^{m\times n}$ for the set of all $m\times n$ matrices over R. For $G \in R^{m \times n}$, G^T will denote the transpose of G. In general, for an R-module N, we write $N^{m\times n}$ for the set of all formal m×n matrices whose entries are elements of N. Let M be a right R-module and N be a left Rmodule. For $x \in M^{l \times m}$, $s \in R^{m \times n}$ and , under the usual multiplication of matrices, xs (resp. sy) is a well defined element in $M^{l\times m}$ (resp. $N^{n\times k}$). If $X \in M^{1\times m}$, $S \in \mathbb{R}^{m\times n}$ and $Y \in N^{n \times k}$, define

$$\begin{split} \ell_{M^{l\times m}}\left(S\right) &= \{\; u \in \; M^{l\times m} \colon us = 0, \; \forall \; s \in \\ &\quad S \; \} \\ \gamma_{N^{n\times k}}\left(S\right) &= \{\; v \in \; N^{n\times k} \, \colon vs = 0, \; \forall \; s \in \\ &\quad S \; \} \\ \ell_{R^{m\times n}}\left(Y\right) &= \{\; s \in \; R^{m\times n} \colon sy = 0, \; \forall \; y \in \\ &\quad Y \; \} \\ \gamma_{R^{m\times n}}\left(X\right) &= \{\; s \in \; R^{m\times n} \, \colon xs = 0, \; \forall \; x \in \\ X \; \end{pmatrix} \end{split}$$

We will write $N^n = N^{l \times n}$, $N_n = N^{n \times l}$.Fully stable module relative to an ideal have been discussed in [1], an Rmodule M is called fully stable relative to an ideal, if $\theta(N) \subseteq N + MA$ for each submodule N of M and Rhomomorphism $\theta: N \to M$. It is an easy matter to see that M is fully stable relative to an ideal, if and only if $\theta(xR) \subset xR + MA$ for each x in M and R-homomorphism $\theta: xR \to M$. An Rmodule M for two fixed positive integers m and n is called fully (m,n) stable relative to an ideal A of R, if $\theta(N) \subset N + M^n A$ for each generated submodule N of M^m and Rhomomorphism $\theta: \mathbb{N} \to \mathbb{M}^m$ [2]. In this paper, for two fixed positive integers m and n, we introduce the concepts of fully (m,n) -stable modules relative to an ideal A of $R^{n \times m}$ (m,n)-Baer criterion relative to an ideal A of $R^{n \times m}$ and we prove that an Rmodule M is fully (m,n) -stable relative to an ideal A of $R^{n \times m}$ if and only if (m,n) -Baer criterion relative to an

^{*} University of Baghdad / College of Science for women/ Department of Mathematics

ideal holds for n-generated submodules of M^m.

1. Results:

Definition 1.1: An R-module M is called fully (m,n) -stable relative to an ideal A of $R^{n\times m}$, if $\theta(N) \subseteq N + M^n A$ for each n-generated submodule N of M^m and R-homomorphism $\theta: N \to M^m$. The ring R is fully (m,n) -stable relative to an ideal, if R is fully (m,n) -stable relative to an ideal as R-module.

It is clear that M is fully (1,1)-stable relative to ideal, if and only if M is fully stable relative to ideal.

It is an easy matter to see that an R-module M is fully (m,n)-stable relative to ideal, if and only if it is fully (m,q)-stable relative to ideal for all $1\!\le q\le n$, if and only if it is fully (p,n)-stable relative to ideal for all $1\!\le p\le m,$ if and only if it is fully (p,q)-stable relative to ideal for all $1\!\le p\le m$ and $1\!\le q\le n.$

In [2], an R-module M is called fully-stable, if $\theta(N) \subseteq N$ for each cyclic submodule N of M and R-homomorphism $\theta: N \to M$. An R-module M is called fully (m,n)-stable, if $\theta(N) \subseteq N$ for each n-generated submodule N of M^m and R-homomorphism $\theta: N \to M^m$ [3]. It is clear that every fully (m,n)-stable module M is a fully (m,n)-stable relative to each non-zero ideal A of R for this follows from the fact $\theta(N) \subseteq N + M^n A$.

An R-module M is fully (m,n)-stable relative to an ideal A of $R^{n\times m}$, if and only if for each $\theta: N(\sum_{i=1}^n \alpha_i R) \to M^m$ (where $\alpha_i \in M^m$) and each $w \in N$, there exists $t = (t_1, \ldots, t_n) \in R^n$ such that $\theta(w) = \sum_{i=1}^n \alpha_i t_i$

 $+ AM^{m} = (\alpha_{1}, \dots, \alpha_{n}) t^{T} + M^{mA}, if r =$ $(r_1,...,r_n) \in \mathbb{R}^n$, then $\theta((\alpha_1,...,\alpha_n))$ r^{T}) + $M^{m}A = (\alpha_{1}, \dots, \alpha_{n}) t^{T} + M^{m}A$. **Proposition 1.2:** An R-module M is fully (m,n)-stable relative to an ideal A of $R^{n\times m}$, if and only if any two melement subsets $\{\alpha_1, \ldots, \alpha_m\}$ and $\{$ $\beta_1,...,\beta_m$ of M^n , if $\beta j \notin \sum_{i=1}^n \alpha_i R +$ $M^{n}A$., for each j = 1,..., m implies $\gamma_{R_n} \; \{ \; \alpha_1 \, , \ldots \, , \; \alpha_m \, \} \not \subset \; \gamma_{R_n} \; \{ \; \beta_1 \, , \ldots , \beta m \;$ **Proof**: Assume that M is fully (m,n)stable module relative to an ideal A of R and there exist two m-element subsets { $\alpha_1, \ldots, \alpha_m$ } and { β_1, \ldots, β_m of M^n such that $\beta j \notin \sum_{i=1}^n \alpha_i R$ + $M^n A$, $\forall j = 1,...,m$ and $\gamma_{R_n} \{ \alpha_1,..., \alpha_n \}$ $\alpha_{_{m}} \} \! \subseteq \! \gamma_{R_{n}} \! \left\{ \begin{array}{l} \beta_{1}, \ldots, \beta_{m} \end{array} \right\} \! .$ Define -f : ${\textstyle\sum\limits_{i=1}^{n}}\alpha_{i}R \,\rightarrow\, M^{m} \ \ by \ \ f\left({\textstyle\sum\limits_{i=1}^{n}}\alpha_{i}r_{i}\right) = {\textstyle\sum\limits_{i=1}^{n}}\beta_{i}r_{i}$. Let $\alpha_i = (a_{1i}, a_{i2}, ..., a_{in})$. If $\sum_{i=1}^{n} \alpha_i r_i = 0$, then $\sum_{i=1}^{n} a_{ij} r_i = 0$, j = 1,...,m implies that $\alpha_i r^T = 0$ where $r = (r_1, ..., r_n)$ and hence $r^T \in \gamma_{R_n} \{ \alpha_1, \dots, \alpha_m \}$. By assumption β_i $r^T = 0$, j = 1,..., m so $\sum_{i=1}^{n} \beta_i r_i = 0.$ This show that f is well defined. It is an easy matter to see that f is R-homomorphism. Fully (m,n)stability relative to an ideal A of $R^{n \times m}$ implies that there exists t = $(t_1,...,t_n) \in R^n$ and $w \in M^nA$ such that $f\left(\sum_{i=1}^{n}\alpha_{i}r_{i}\right) = \sum_{k=1}^{n}\left(\sum_{i=1}^{n}\alpha_{i}r_{i}\right)t_{k} + w$ $= \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \alpha_{i} r_{i} \; t_{k} \; \right) + w \; \; \text{for each} \; \sum_{i=1}^{n} \alpha_{i} r_{i}$ $\in \sum_{i=1}^{n} \alpha_{i} R$. Let $r_{i} = (0, ..., 0, 1, 0, ..., 0)$

 $\in \mathbb{R}^n$ where 1 in the i th position and 0

otherwise. $\beta_i = f(\alpha_i) = \sum_{k=1}^{n} \alpha_i t_k + w$ which is contradiction. Conversely assume that there exists n-generated of \mathbf{M}^{m} submodule homomorphism $\theta: \sum_{i=1}^{n} \alpha_{i} R \rightarrow M^{m}$ such that $\theta(\sum_{i=1}^{n}\alpha_{i}R)\notin \sum_{i=1}^{n}\alpha_{i}R+M^{n}A$. Then there exists an element $\beta (= \sum_{i=1}^{n} \alpha_i r_i) \in$ $\sum_{i=1}^{n} \alpha_{i} R \text{ such that } \theta (\beta) \notin \sum_{i=1}^{n} \alpha_{i} R$ +AMⁿ. Take $\beta_i = \beta$, j = 1...,m, then we have m-element subset $\{\theta (\beta),...,$ θ (β)}, such that θ (β) $\notin \sum_{i=1}^{n} \alpha_{i}R$ + $M^{n}A, i = 1,...,m.$ Let $\eta = (t_{1},...,t_{n})^{T} \in$ γ_{R_n} { $\alpha_{_1},\dots$, $\alpha_{_m}$ }then $\alpha_{_j}$ η = 0, i.e $\sum\limits_{i=1}^{n}~a_{ij}~t_{i}$ = 0, $\forall\,j$ = 1,..., m , $\alpha_{_{j}}$ = $(a_{1j},a_{2j},...,a_{nj})$ and $\{\theta\ (\beta),...,\theta\ (\beta)\}\eta$ $=\sum_{k=1}^n \quad \theta(\beta)\,t_k=\sum_{k=1}^n \quad \theta\,\big(\sum_{i=1}^n\alpha_ir_i\,\big)t_k=\sum_{\iota=1}^n$ $(\,\theta\,(\,\sum_{}^{n}\alpha_{i}r_{i}\;t_{k})\,=\,0,\;\text{hence}\;\;\gamma_{R_{\,n}}\;\{\,\alpha_{1}\,,\dots\;,$ $\alpha_{_m} \} \! \subseteq \! \gamma_{R_n} \{ \theta (\beta), ..., \theta (\beta) \},$ thus $\gamma_{R_n} \; \{\, \alpha_{\scriptscriptstyle 1} \,, \ldots \,, \; \alpha_{\scriptscriptstyle m} \,\} \! \subseteq \; \gamma_{R_n} \; \{ \; \theta \, (\beta_{\scriptscriptstyle 1}), \ldots, \;$ θ (βm) which is a contradiction. Thus M is fully (m,n)-stable module relative to ideal.

Corollary 1.3: Let M be fully (m,n)-stable module relative to an ideal A of $R^{n\times m}$, then for any two melement subsets $\{\alpha_1,\ldots,\alpha_m\}$ and $\{\beta_1,\ldots,\beta_m\}$ of $M^n,\gamma_{R_n}\{\alpha_1,\ldots,\alpha_m\}$ $\{\alpha_1,\ldots,\alpha_m\}$ $\{\alpha_1,\ldots,\alpha_m\}$ implies $\{\alpha_1,\ldots,\alpha_m\}$ $\{\alpha_1$

Corollary 1.4: [1] Let M be a fully stable module relative to an ideal A of, then for each x,y in M, $y \notin (x)$, γ_R

 $\begin{aligned} &(x) = \, \gamma_{_R} \quad (y) \; \; implies \; \; (x) + AM = (y) \\ &+ \, AM. \end{aligned}$

A submodule N of an Rmodule M satisfies Baer criterion relative to an ideal A of R, if for every R-homomorphism $f: N \to M$, there exists an element $r \in R$ such that f(n) rn ∈ AM for each $n \in N$. An Rmodule M is said to satisfy Baer criterion relative to A, if submodule of M satisfies Baer criterion relative to A and it is proved that an R-module M satisfies Baer criterion relative to A for cyclic submodules, if and only if M is fully stable relative to A [1].

Definition 1.5: For a fixed positive integers n and m, we say that an R-module M satisfies (m,n)-Bear criterion relative to an ideal A of R, if for any n-generated submodule N of M^m and any R-homomorphism $\theta: N \to M^m$ there exists $t \in R$ such that $\theta(x) - xt \in M^m A$ for each x in N.

It is clear that if M satisfies (m,n) -Baer criterion relative to an ideal A then M

satisfies (p,q) -Baer criterion relative to

an ideal A, \forall $1 \le p \le m$ and $1 \le q \le n$. **Proposition 1.6**: Let A be an ideal of $R^{n \times m}$ and M be an R-module such that γ_R $(N \cap K) = \gamma_R$ $(N) + \gamma_R$ (K)

for each two n-generated submodule of $M^m.$ If M satisfies (m,1)-Bear criterion relative to A. Then M satisfies (m,n)-Bear criterion relative to A for each $n \ge 1$.

Proof : Let $L=x_1R+x_2R+\ldots+x_nR$ be n-generated submodule of M^m and $f:L\to M^m$ an R-homomorphism. We use induction on n. It is clear that M satisfies (m,n) -Bear criterion, if n=1. Suppose that M satisfies (m,n) -Bear criterion for all k-generated submodule of M^m , for $k \le n-1$. Write $N=x_1R$, $K=x_2R+\ldots+x_nR$, then for each $w_1 \in N$ and $w_2 \in K$, $f|_N(w_1)=w_1r$, $f|_K(w_2)=w_2s$ for some $r,s\in R$. It is clear

 $\begin{array}{l} r - s \in \gamma_R \ (N \cap K) = \gamma_R \ (N) + \gamma_R \\ (K). \ Suppose \ that \ r - s = u + v \ with \ u \in \\ \gamma_R \ (N), \ v \in \ \gamma_R \ (K) \ and \ let \ t = r - u = \\ s + v. \ Then \ for \ any \ w = w_1 + \ w_2 \in L \\ with \ w_1 \in N \ and \ w_2 \in K, \ f(w) - wt = \\ f(w_1) + f(w_2) - (w_1 + w_2)t = f(w_1) - w_1t \\ + f(w_2) - w_2t = f(w_1) - w_1(r - u) + f(w_2) \\ - w_2 \ (s + v) = f(w_1) - w_1r + w_1u + f(w_2) \\ - w_2s - w_2v = f(w_1) - w_1r + f(w_2) - w_2s \\ \in M^m A. \end{array}$

Proposition 1.7: Let M be an R-module and A be an ideal of R. Then M satisfies (m,n)-Baer criterion relative to an ideal A, if and only if ℓ_{M^n} γ_{R_n} $(\alpha_1 R, \dots, \alpha_n R) \subseteq \alpha_1 R + \dots + \alpha_n R + M^n A$ for any n-element subset $\{\alpha_1, \dots, \alpha_n\}$ of M^n .

Proof: First assume that (m,n)-Baer criterion relative to an ideal A holds for n-generated submodule of M^m, let $\alpha_{i} = (a_{i1}, a_{i2}, ..., a_{im}), \text{ for each } i = 1, ..., n$ and $\beta \! = \! \! \{\, \beta_1 \, , \ldots , \beta_n \, \} \! \in \ \ell_{M^n} \ \gamma_{R_n}$ ($\alpha_1 R$ $+\ldots +\alpha_{n}R$), $\alpha_{i}=(a_{1i},a_{2i},\ldots,a_{ni})$. Define $\theta: \alpha_1 R, \dots, \alpha_n R \rightarrow M^m$ by θ $\sum_{i=1}^{n} \alpha_i r_i = \sum_{i=1}^{n} \beta_i r_i$. If $\sum_{i=1}^{n} \alpha_i r_i = 0$, then $\sum_{i=1}^{n} a_{ij} r_i = 0, j = 1,...,m, \text{ this implies}$ that $\alpha_{_i} r^T\!\!=0$ where $r=(r_1,\ldots,\!r_n)$ and hence $\boldsymbol{r}^T \in \ \boldsymbol{\gamma}_{R_n} \ (\alpha_{\scriptscriptstyle 1} R \,, \ldots \,, \alpha_{\scriptscriptstyle n} R \,).$ By assumption β_i $\mathbf{r}^T = 0$, $\forall i = 1,...,n$ so $\sum\limits_{i=1}^{n}\beta_{i}r_{i}=0$. This show that f is well defined. It is an easy matter to see that θ is R-homomorphism. By assumption there exists $t \in R$ such that $\theta\left(\sum_{i=1}^{n} \alpha_{i} r_{i}\right)$ - $(\sum_{i=1}^{n} \alpha_{i} r_{i})t \in M^{n}A$ for each $\sum_{i=1}^{n} \alpha_{i} r_{i} \in$ $\sum_{i=1}^{n}\alpha_{i}R\text{ . Let }r_{i}=(0,\text{ ...,}0,1,0,\text{ ...,}0)\in$ Rⁿ where 1 in the ith position and 0 otherwise. $\beta_i - \alpha_i t = \theta (\alpha_i) - \alpha_i t \in$

 AM^n thus $\beta_i \in \sum_{i=1}^n \alpha_i R + AM^n$ which is contradiction. This implies that ℓ_{M^n} $\gamma_{R_n} (\alpha_1 R + ... + \alpha_n R) \subseteq \alpha_1 R + ... +$ $\alpha_n R + M^n A$. Conversely, assume that $\ell_{\scriptscriptstyle M^n} \ \gamma_{\scriptscriptstyle R_n} \ (\alpha_{\scriptscriptstyle 1} R + \ldots + \alpha_{\scriptscriptstyle n} R \,) \subseteq \alpha_{\scriptscriptstyle 1} R$ +... + $\alpha_n R$ + MⁿA, for each { α_1 , ..., Mⁿ. Then for each Rhomomorphism $f: \alpha_1 R + ... + \alpha_n R \rightarrow$ \boldsymbol{M}^{m} and $\boldsymbol{s}=(s_{1},\;...,\!s_{n})\in\;\gamma_{R_{n}}\;(\,\alpha_{1}R+...$ $+\alpha_{n}R$) , $\sum_{i=1}^{n}$ ($\sum_{i=1}^{n}\alpha_{i}r_{i}$) s_{k} = 0 for each $\sum\limits_{i=1}^{n}\alpha_{i}r_{i}\in\sum\limits_{i=1}^{n}\alpha_{i}R$, hence $\sum\limits_{i=1}^{n}~f\left(\sum\limits_{i=1}^{n}\alpha_{i}r_{i}\right)$ $s_k = \sum_{i=1}^n f(\sum_{i=1}^n \alpha_i r_i s_k) = 0$, thus f($\textstyle\sum\limits_{i=1}^{n}\alpha_{i}r_{i}\,)\,\in\,\ell_{M^{n}}\ \gamma_{R_{n}}\ (\,\alpha_{l}R\,+\ldots\,+\alpha_{n}R\,)$ $= \alpha_1 R + ... + \alpha_n R + M^n A, \text{ then } f$ $\sum_{i=1}^{n} \alpha_{i} r_{i} = f(\alpha_{i} r^{T}) = f(\alpha_{i}) r^{T} \in \alpha_{1} R + \dots$ $+\alpha_{n}R + M^{n}A$, for some $r \in R$. Then M satisfies (m,n) -Baer criterion.

Corollary 1.8: An R-module M is fully (m,n)-stable relative to an ideal A of $R^{n\times m}$, if and only if ℓ_{M^n} γ_{R_n} $(\alpha_1 R + \dots + \alpha_n R) \subseteq \alpha_1 R + \dots + \alpha_n R + M^n A$ for any n-element subset $\{\alpha_1, \dots, \alpha_n\}$ of M^n .

We can summarize the above results in the following theorem.

Theorem 1.9: The following statements are equivalent for an R-module M and an ideal A of R.

1. M is fully (m,n)-stable relative to A

2. For any two m-element subsets $\{\alpha_1, \ldots, \alpha_m\}$ and $\{\beta_1, \ldots, \beta_m\}$ of M^n , if $\beta j \notin \sum_{i=1}^n \alpha_i R + M^n A$., for each $j = 1, \ldots, m$ implies $\gamma_{R_n} \{\alpha_1, \ldots, \alpha_m\} \not\subset \gamma_{R_n} \{\beta_1, \ldots, \beta_m\}$.

3.(m,n)-Baer criterion relative to A for n-generated submodules of M^m.

4. ℓ_{M^n} γ_{R_n} $(\alpha_1 R + ... + \alpha_n R) \subseteq \alpha_1 R$ +... $+\alpha_n R + M^n A$ for any n-element subset $\{\alpha_1, ..., \alpha_n\}$ of M^n .

Corollary 1.10: [1] The following statements are equivalent for an R-module M and an ideal A of R.

- 1. M is fully-stable relative to A
- 2. For each x, y in M , y \notin (x), γ_R (x)

= γ_R (y) implies (x) + MA = (y) + MA...

- 3. M satisfies Baer criterion to A for for each cyclic submodule.
- 4. For each x in M, $l_M (\gamma_R (x)) \subseteq (x) + AM$.

Recall that an R-module M is (m,n)-multiplication module if each n-generated submodule of M^m is of the form M_nI for some ideal I of $R^{n\times m}$ [3].

Proposition 1.11 : Let M be an (m,n)-multiplication R-module. Then M is fully (m,n)-stable module if and only if M is fully (m,n)-stable relative to each non-zero ideal of $R^{n\times m}$.

Proof: \Rightarrow It is clear

 \Leftarrow Let N be any n-generated submodule of M^m and $f: N \to M^m$ be any R-homomorphism. If N = (0), then it is clear that M is fully (m,n)-stable relative to ideal. Let $N \neq (0)$, and since M is an (m,n)-multiplication module, then $N = M_n I$, for some non-zero ideal I of $R^{n \times m}$. By hypothesis $f(N) \subseteq N + IM_n = N + N = N$. Hence, M is fully (m,n)-stable module.

Corollary 1.12: [1] Let M be multiplication R-module. Then M is fully stable module if and only if M is fully stable relative to each non-zero ideal of R.

Recall that an R-module M is (m,n)-quasi-injective in each R-homomorphism from an n-generated

submodule of M^m to M extends to one from M^m to M [4].

The following theorem follows from Theorem(2.14) in [5] and Proposition(1.11).

Theorem 1.13: Let M be an (m,n)-multiplication R-module. Then M is (m,n)-quasi injective if and only if M is fully (m,n)-stable relative to each non-zero ideal of $R^{n\times m}$.

Now we introduce the concept of (m,n)-quasi injective module relative to an ideal A of $R^{n\times m}$

Definition 1.14: An R-module M is called (m,n)-quasi injective relative to an ideal A of $R^{n\times m}$ if for every R-homomorphism $g: N \to M^m$ where N is n-generated submodule of M^m and R-homomorphis $f: N \to M$ there exists R-homomorphim $h: M^m \to M$ such that $fg(x) - h(x) \in M^n A$ for each x in N.

Proposition 1.15: If M is a fully (m,n)-stable R-module relative to an ideal A of $R^{n\times m}$, then M is (m,n)-quasi injective relative to A.

Proof:

Let $N = \alpha_1 R + ... + \alpha_n R$ be n-generated submodule of M^m where α_i , ..., $\alpha_i \in M^m$ and $f : N \to M^m$ be any R-homomrphism. Since M is a fully (m,n)-stable module relative to A, then $f(\alpha_1 R + ... + \alpha_n R) \subseteq \alpha_1 R + ... + \alpha_n R + M^n A$, thus there exist $s = (s_1, ..., s_n) \in R^m$ and $w \in M^n A$. Let $r_i = (0, ..., 1$. 0, ..., 0) such that $f(\sum_{i=1}^n \alpha_i) = (\sum_{i=1}^n \alpha_i) + m$ by $g(\alpha_i) = \alpha_i s^T$, it is clear that g is a well defined R-homomorphism. Now $f(\sum_{i=1}^n \alpha_i) - g(\sum_{i=1}^n \alpha_i) = (\sum_{i=1}^n \alpha_i) + m$

each
$$y \in \alpha_1 R + ... + \alpha_n R$$
, $y = \sum_{i=1}^n \alpha_i t_i$
for some $t = (t_1, ..., t_n) \in R$, $f(y) - g(y)$
 $= f(\sum_{i=1}^n \alpha_i t_i) - g(\sum_{i=1}^n \alpha_i t_i) = f((\sum_{i=1}^n \alpha_i) - g(\sum_{i=1}^n \alpha_i)) - g(\sum_{i=1}^n \alpha_i) - g(\sum_{i=$

 $\sum_{i=1}^{n} \alpha_i$))t \in M^mA. Therefore M is

(m,n) – quasi injective module.

The following theorem follows from Theorem(1.13) and Proposition (1.115).

Theorem 1.16: If M is (m,n)-quasi injective R-module then M is (m,n)-quasi injective relative to an ideal A of $R^{n\times m}$.

References:

- 1-Anaam M.S, On fully stable modules relative to ideal, MSc. Thesis, College of Science, Mustansiriya University 2008.
- 2-M. J Mohammedali, On fully (m,n)-stabel relative to ideal A of R, Al-Mustansiryah J. Sci. Vol.23, No.6 2012
- 3- Z. M. Zhu, J. L. Chen, X. X. Zhang, On (m,n)-quasi injective modules, Acta Math. Univ. Comenianae, Vol. LXXIV, 1, 25-36,2005.
- 4- M. S. Abbas, M. J. Mohammedali, A note on fully (m,n)-stable modules, International Electronic Journal of Algebra, vol. 6, 65-73, 2009.
- 5- M. S. Abbas, On fully stable modules, Ph.D. Thesis, College of Science, University of Baghdad 1991.

حول المقاسات تامة الاستقرارية من النمط - (\mathbf{m},\mathbf{n}) بالنسبة الى مثالي \mathbf{A} في $\mathbf{R}^{n\times m}$

منی جاسم محمد علي

جامعة بغداد/ كلية العلوم للبنات/قسم الرياضيات

الخلاصة:

لتكن R حتقة ابدالية ذات عنصر محايد M مقاساً أيسراً أحادياً على R و A مثالي في الحلقة $R^{n\times m}$. كتعميم لمفهوم المقاسات تامة الاستقرارية من النمط - (m,n) عرفنا المقاسات تامة الاستقرارية من النمط - (m,n) بالنسبة الى مثالي. نقول ان المقاس M تام الاستقرارية من النمط (m,n) بالنسبة الى H اذا كان H الى H حيث H مقاس جزني متولد من النمط H الى H حيث H مقاس خزني متولد من النمط H المقاسات تامة الاستقرارية من النمط H بالنسبة الى مثالى باصناف اخرى مثل المقاسات الجدائية من النمط H ، المقاسات شبه المغامرة من النمط H . H

الكلمات المفتاحية: المقاسات تامة الاستقرارية من النمط (m,n) بالنسبة الى مثالى A في $R^{n\times m}$ و المقاسات الجدائية من النمط (m,n).