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Abstract: 
The study of the validity and probability of failure in solids and structures is 

highly considered as one of the most incredibly-highlighted study fields in many 

science and engineering applications, the design analysts must therefore seek to 

investigate the points where the failing strains may be occurred, the probabilities of 

which these strains can cause the existing cracks to propagate through the fractured 

medium considered, and thereafter the solutions by which the analysts can adopt the 

approachable techniques to reduce/arrest these propagating cracks. 

In the present study a theoretical investigation upon simply-supported thin 

plates having surface cracks within their structure is to be accomplished, and the 

applied impact load to these thin plates tends to induce almost infinite strains nearby 

the crack tip of the existing cracks. The distribution of these strains and the 

probability distribution of failure due to these strains are to be of a particular 

importance within the current research. 

Within the current study a modified theoretical technique, which is derived from the 

classical plate theory, whose concepts are illustrating the required plane-stress 

conditions for fractured thin plates, taking into consideration the impact-load effects 

in conjunction with the fracture-mechanics concepts, is to be followed and obeyed so 

as to arrive at the required equations representing the nearby-tip strains within the thin 

plates made from the pure aluminum 1100 type alloys. A further statistically-based 

analysis must lead into the utilization of the joint probability distributions having two 

random variables in order to construct the required probability distributions of the 

failure which may be occurred due to the highly-localized nearby-tip strains. 

Key words: Joint Probability Distributions, Multi-Canonical Probability Functions, 

Nearby-Tip Strains, Thin Plates, Fracture and Failure Analyses. 

Introduction: 

The present research aims to 

study the solid body, whose structure is 

experiencing large deformations and 

loss of contact between parts of the 

body itself, undergoing extreme 

loading which leads to the elastic-

plastic deformation with or without the 

occurrence of total fracture. As a 

contributing fact, fracture may be 

evolved before, after, or in conjunction 

with the occurrence of large 

deformation process [1]. Of a 

particular interest within the current 

work is to illustrate , using the 

traditional constitutions of the classical 

plate theory [2], the strains induced 

within the thin plates used, and to 

statistically investigate the joint 

probability distributions, the 2-random-

variables-type special probability 

distributions, by which the induced 

strains may cause a total failure for the 
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plates used. The current study is to be 

accomplished to investigate the 

nearby-tip strain distributions and 

failing-strains probability distributions 

for variable crack length values (10, 

20, and 30mm) and also for two types 

of plate aspect ratio (1 and 2) for the 

pure-aluminum-1100-type thin plates. 

D. S. Dugdale (1960) [3] has 

investigated the yielding undergone at 

the end of a surface or through 

(internal) slit in a sheet by an external 

load, and obtained a relation between 

the extent of the plastic yielding and 

the external load applied. To verify this 

relation, panels containing internal and 

edge slits were loaded in tension and 

lengths of plastic zones were 

measured. The elastic stress intensity 

factors are normalized dynamically for 

ductile materials into elastoplastic 

stress intensity factors, in order to 

distinguish how much stresses and 

strains near the crack tip and speeds of 

the propagating cracks for an elastic-

ideally plastic Tresca material which is 

experiencing an external load. 

Hamid Ahmadi and Mohammad 

Ali Lotfollahi-Yaghin (2012) [4] 

proposed that the stress concentration 

factor (SCF) is one of the most 

important parameters in the fatigue 

reliability analysis of steel offshore 

structures. This parameter exhibits 

considerable scatter which calls for 

greater emphasis in accurately 

computing the SCFs for predicting the 

fatigue life of these structures. As far 

as the authors are aware, no 

comprehensive research has been 

carried out on the probability 

distribution of SCFs in tubular joints, 

especially multi-planar ones, which 

cover the majority of practical 

applications. What has been used so far 

as the probability distribution of SCFs 

in the reliability analysis of offshore 

structures is mainly based on 

assumptions and limited observations, 

especially in terms of distribution 

parameters. In the present paper, 

results of performing finite element 

(FE) analysis on 81 steel multi-planar 

dual-kit-tubular (DKT) joints have 

been used to propose a probability 

distribution model for SCFs along the 

weld toe of the central brace under 

axial loads. Based on the multi-planar 

DKT-joint FE models which are 

verified against experimental results 

and the predictions of Lloyd's Register 

(LR) equations, a set of SCF sample 

databases was constructed. 15 different 

probability density functions (PDFs) 

were fitted to the relative frequency 

histograms of the SCF samples. The 

maximum likelihood method was used 

to determine the parameters of each 

distribution. Standard goodness-of-fit 

tests led to the conclusion that the 

Inverse Gaussian distribution is the 

best probability model for the 

peripheral distribution of SCFs along 

the weld toe and the Birnbaum–

Saunders distribution is the best one 

for the maximum value of weld toe 

SCF. 

D. Yevick (2003) [5] has adapted 

multicanonical evaluation sampling to 

the evaluation of general probability 

distribution functions such as those 

appearing in communication system 

modeling. This letter also demonstrates 

that joint probability distributions can 

be computed in an identical manner. 

To illustrate, one may determine the 

joint distribution function between the 

first- and second-order polarization-

mode dispersion in an optical fiber. 

 

Analytical Approach: 
1. Nearby-Tip Strain Distribution 

Evaluation: 

The mathematical model of a 

cracked thin plate is shown in Fig. (1), 

the following underlying assumptions 

are adequately convenient to be 

utilized in order to arrive at the final 

analytical expressions: the plate is thin 

enough for plane stress to occur, 

http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0141118711000885
http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0141118711000885
http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0141118711000885
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isothermal conditions are assumed for 

the linearly isotropic continuum, i.e., 

any temperature change during the 

impact process is of no concern within 

the present illustration, and the 

impacted-plate alloy type is 

homogenous and of a linearly-elastic-

ideally-plastic behavior whose yield 

limit can be approximated, with fairly 

good results, by Tresca's failure 

criterion. Hence, proceeding from the 

plane-stress-based equilibrium 

equations for a solid medium, small-

strain-theory-based kinematic 

constraints, for-linearly-isotropic-

alloy-type Hooke's law, and from the 

assumed Airy's stress function 

relations [1] 

 
Fig. (1) The Mathematical Model of 

a Centrally-Cracked Plate  

 

one can arrive at the following bi-

potential equation 
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In order to arrive at the 

displacements, we must invoke the 

peculiarities of linearly-isotropic 

material characteristics (Hooke's law) 

and the small-strain-theory-based 

kinematic constraints to (neglecting 

rigid-body terms emanated due to the 

translation and/or rotation of the rigid 

body) proceed into [1][6] 
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Westergaard [7] has figured out a 

relation between the two analytic 

functions  ( ) and  ( ) by imposing 

the boundary condition       along 

   , for cracks experiencing tension 

tractions (mode I cracking), so as to 

proceed into 
 ̿     ̿    ( ) 

which may be substituted into eq. (3) 

and into eq. (4) in order to arrive at the 

following representation for 

predominant mode-I stresses and 

displacements 
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By firstly solving for stresses and 

displacements in the vicinity of the 

crack tip (which lies at      ,   
 ) without any presence of traction 

stresses, and then imposing the traction 

stresses at | |     ,     in order to 

simulate the crack, Sedov [8] has 

pointed out a general solution for the 

analytic function  ( ) concerning an 

infinite plate whose crack is having a 

length of 2    (Fig. (1)), therefore, we 

have 
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Studying the behavior of stresses 

and strains in the vicinity of the right-

hand crack tip, (          , 
         ), introducing the 

traction       along | |        
and superimposing the traction 
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       along     | |      

  by utilizing the superposition 

principle (in accordance off Dugdale 

model [3] for elastoplastically-

deformed thin plates), will yield the 

following relation of the analytic 

function 
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The introduction of notation 

(        
  ) and the substitution 

of eq. (9) into eq. (7) will yield the 

following the required local elastic-

plastic displacement fields for mode I 

[

  

  
]

  

 
     

  
√
 

  
(
   

   

     ) [
     ⁄

     ⁄
]    (  ) 

[

  

  
]

  

 

  

[
 
 
 

√ (    
   
  
(
 

  
)
 

)  
√    

   
  (

 
  
)
 

 
     (

   

    
   
  (

 
  
)
 )

]
 
 
 

  
√
 

  
(
   

   
 

    ) [
     ⁄

     ⁄
]      (  )        Whose 

constants  ,  , and    can be 

determined by using the following 

table for pure-aluminum-1100-alloy-

type properties 

Pure Aluminum 1100 Properties [9] 

Poisson's Ratio ( )       

Young's Modulus ( )        

Shear Modulus ( )        

Yield Limit (  )       

A further approach that must be 

followed, by using the small-strain 

analysis, in order to determine the 

nearby-tip strain distribution, from 

which the failing-strains probability 

distributions can thereafter be 

recognized in the upcoming 

subsection. Now, one can therefore 

anticipate the following expression for 

the nearby-tip strain field 
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2. Failing-Strains Probability 

Density Function Evaluation: 
It is convenient from now on to 

illustrate the behavior that the nearby-

tip strains (eq. 12) apt to cause the 

existing cracks to propagate through 

the plates considered, and this behavior 

is thereby significantly appropriate to 

illustrate the probability of the existing 

cracks to propagate due to the induced 

strains. In accordance to Fig. (2), the 

region enclosed by        
   and        can be divided 

into 1-mm-spacing gridpoints in which 

the nearby-tip strains and the failure 

probability distributions can be easily 

determined. Having known the region 

where the failing strains can act 

through the medium considered, the 

continuous-type multi-canonical joint 

probability density functions are 

thereby to be processed since the 

probability distribution is based on 

unaccountably-infinite-type random 

variables [10]. The evaluation process 

of the continuous-type multi-canonical 

2-random-variables joint probability 

density functions is therefore given by 

[5]  
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Fig. (2) Transformation Process into 

the Random Variables   and   

 

Results and Discussion: 
1. Nearby-Tip Strains 

It has been previously 

demonstrated that the strains induced 

in the vicinity of the crack tip can be 

evaluated by using the eq. (12), now it 

is significantly appropriate to illustrate 

how intense these strains can be within 

the structure of the thin plates. By 

examining Fig. (3) to Fig. (14) the 

amount of the  -axis and  -axis 

nearby-tip strains would exhibit an 

exponential decrease as the distance 

from the crack tip decreases, and the 

values of the maximum strains would 

therefore be always at the point where 

the crack tip lies at. It can also be 

demonstrated that the both  -axis and 

 -axis nearby-tip strains would 

undergo        and        increase 

as the existing crack length within the 

thin plates increases from    mm to 

   mm and from    mm to    mm 

respectively. Likewise, the amount of 

the strains would exhibit 

3      increase when the plate aspect 

ratio increases from   to  . The low-

aspect-ratio and short-crack-length thin 

plates would then be more legitimate to 

be utilized in the design purposes, in 

the sense that they experience lower 

nearby-tip strains than what is induced 

in the high-aspect-ratio and long-crack-

length thin plates due to the impacting 

load. 

 

 
 

Fig. (3) Nearby-Tip Strain Induced Towards the X-axis for              
     , and        .  
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Fig. (4) Nearby-Tip Strain Induced Towards the Y-axis for              
     , and        . 

 
 

Fig. (5) Nearby-Tip Strain Induced Towards the X-axis for              
     , and         

 
 

Fig. (6) Nearby-Tip Strain Induced Towards the Y-axis for              
     , and        .  
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Fig. (7) Nearby-Tip Strain Induced Towards the X-axis for              
     , and        .  

 
 

Fig. (8) Nearby-Tip Strain Induced Towards the Y-axis for              
     , and        . 

 
 

Fig. (9) Nearby-Tip Strain Induced Towards the X-axis for              
     , and        .  
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Fig. (10) Nearby-Tip Strain Induced Towards the Y-axis for              
     , and        .  

 
 

Fig. (11) Nearby-Tip Strain Induced Towards the X-axis for              
     , and        .  

 
 

Fig. (12) Nearby-Tip Strain Induced Towards the Y-axis for              
     , and        .  
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Fig. (13) Nearby-Tip Strain Induced Towards the X-axis for              

     , and        .  

 
Fig. (14) Nearby-Tip Strain Induced Towards the Y-axis for              

     , and        . 

 

2. Failing-Strains Probability 

Distributions: 
The probabilities by which the 

nearby-tip strains can cause total 

fracture for the cracked plates may be 

determined if the equation (14) should 

be obeyed. It has been shown 

previously, by examining the 

preceding subsection, that the lines on 

which the maximum strains   and   

are induced in thin plates are     

and     , respectively. One must 

therefore choose these lines under 

investigation in determining the 

failing-strain probabilities in order to 

thereby specify the points in which the 

maximum probabilities can appear, and 

also to investigate whatever point on 

which the total fracture may be 

evolved. Referring to Fig. (15) to Fig. 

(26), one can anticipate the facts that 

the failing strain probability 

distributions are independent of the 

crack length value change and also 

independent of the plate aspect ratio 

change, although the values of the 

maximum probabilities insignificantly 

fluctuate between 38-42% percent 

range, since these probabilities are of 

the same behavior regardless of how 

much the crack length and the aspect 

ratio would be. A further analysis may 

lead to the fact that the maximum 

probabilities always appear in the point 

in which the crack tip lies at, i.e., 

     and    . One can therefore 

conclude that the total fracture may 

start immediately as the crack grows 

starting from the right-hand crack tip 

[4]. 
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Fig. (15) Failing-Strain Probability Distribution Along the  X-axis for      , 

                  , and        .  

 
Fig. (16) Failing-Strain Probability Distribution Along the  Y-axis for   

    ,                   , and        . 

 
Fig. (17) Failing-Strain Probability Distribution Along the  X-axis for      , 

                  , and         

 
Fig. (18) Failing-Strain Probability Distribution Along the  Y-axis for   

    ,                   , and        .  
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Fig. (19) Failing-Strain Probability Distribution Along the  X-axis for      , 

                  , and        .  

 
Fig. (20) Failing-Strain Probability Distribution Along the  Y-axis for   

    ,                   , and        . 

 
Fig. (21) Failing-Strain Probability Distribution Along the  X-axis for      , 

                  , and        .  

 
Fig. (22) Failing-Strain Probability Distribution Along the  Y-axis for   

    ,                   , and        .  

 
Fig. (23) Failing-Strain Probability Distribution Along the  X-axis for      , 

                  , and        .  
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Fig. (24) Failing-Strain Probability Distribution Along the  Y-axis for   

    ,                   , and        .  

 
Fig. (25) Failing-Strain Probability Distribution Along the  X-axis for      , 

                  , and        .  

 
Fig. (26) Failing-Strain Probability Distribution Along the  Y-axis for   

    ,                   , and        . 
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للصفائح واحتمالية حوث الفشل فيها  دراسة الانفعالات القريبة من حافة الشق

الرقيقة المعرضة لحمل صدمي وبمساعدة توزيعات الاحتمالية متعددة الاحداثيات 

 المنقولة وذات متغيرين عشوائيين

 
 *مثنى عبد الحسين علي   رشا عبد الحسين علي

 

 كلية التربية الرياضية الجادرية  –جامعة بغداد 

 قسم الهندسة الميكانيكية –كلية الهندسة  –جامعة بغداد *

 

 الخلاصة:
تعتبر احتمالية حصول الفشل في المقاطع والهياكل الهندسية الصلبة من احد مجالات الدراسة العلمية والهندسية 

المهمة في العديد من تطبيقاتها, ولهذا يعمد خبراء التصميم لايجاد النقاط التي تسبب فيها الانفعالات في فشل 

نفعالات التي تسبب في انتشار الشقوق الموجودة في العينات العينات المستخدمة وايجاد احتمالية وجود الا

 المستخدمة وايضا ايجاد الحلول التي يعتكد الخبراء التصميميين عليها للحد من انتشار هذه الشقوق.

سيتم التحري التحليلي في الدراسة الحالية عن الصفائح الرقيقة المثبتة تثبيتا بسيطا والتي تحوي علي شقوق 

تركيبها, وسيسبب الحمل الصدمي المسلط على هذه الصفائح في خلق انفعالات قد تكون لا متناهية  سطحية ضمن

في الكبر بالقرب من حافة الشق للشقوق الموجودة. وستكون توزيعات هذه الانفعالات واحتمالية افشالها للعينات 

 المستخدمة ضمن المواضيع الاساسية التي يتطرق لها البحث الحالي.

استعمال طريقة محدثة للوصول الى المعادلات النهائية والتي تمثل الانفعالات القريبة من حافة الشق لعينات سيتم 

وذلك بالاستعانة بمفاهيم الصفائح الرقيقة التقليدية مع الاخذ بنظر الاعتبار تأثيرات  1144الالمنيوم النقي من نوع 

كي. وسيتم ايضا اجراء دراسة احصائية بأستعمال التوزيعات الحمل الصدمي بالاضافة الى مفاهيم الكسر الميكاني

الاحصائية متعددة الاحداثيات المنقولة لغرض استخدام متغيرين عشوائيين تم نقلهما لاحداثيات اكثر تلائما مع 

توزيع الانفعالات لغرض التحري عن التوزيعات الاحصائية المطلوبة لايجاد الفشل الحاصل في العينات 

 ة بوجود الانفعالات المسلطة تسيطا نقطيا بالقرب من حافة الشق للشقوق الموجودة. المستخدم
 

لتوزيعات الاحتمالية المشتركة, الدوال الاحتمالية متعددة القوانين, الانفعالات قرب حافة  الكلمات المفتاحية:

 الشق, الصفائح الرقيقة, تحليلات الكسر والفشل


