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Abstract:

The study of the validity and probability of failure in solids and structures is
highly considered as one of the most incredibly-highlighted study fields in many
science and engineering applications, the design analysts must therefore seek to
investigate the points where the failing strains may be occurred, the probabilities of
which these strains can cause the existing cracks to propagate through the fractured
medium considered, and thereafter the solutions by which the analysts can adopt the
approachable techniques to reduce/arrest these propagating cracks.

In the present study a theoretical investigation upon simply-supported thin
plates having surface cracks within their structure is to be accomplished, and the
applied impact load to these thin plates tends to induce almost infinite strains nearby
the crack tip of the existing cracks. The distribution of these strains and the
probability distribution of failure due to these strains are to be of a particular
importance within the current research.

Within the current study a modified theoretical technique, which is derived from the
classical plate theory, whose concepts are illustrating the required plane-stress
conditions for fractured thin plates, taking into consideration the impact-load effects
in conjunction with the fracture-mechanics concepts, is to be followed and obeyed so
as to arrive at the required equations representing the nearby-tip strains within the thin
plates made from the pure aluminum 1100 type alloys. A further statistically-based
analysis must lead into the utilization of the joint probability distributions having two
random variables in order to construct the required probability distributions of the
failure which may be occurred due to the highly-localized nearby-tip strains.

Key words: Joint Probability Distributions, Multi-Canonical Probability Functions,
Nearby-Tip Strains, Thin Plates, Fracture and Failure Analyses.

Introduction:

The present research aims to deformation process [1]. Of a
study the solid body, whose structure is particular interest within the current
experiencing large deformations and work is to illustrate , using the
loss of contact between parts of the traditional constitutions of the classical
body itself, undergoing extreme plate theory [2], the strains induced
loading which leads to the elastic- within the thin plates used, and to
plastic deformation with or without the statistically  investigate the joint
occurrence of total fracture. As a probability distributions, the 2-random-
contributing fact, fracture may be variables-type  special  probability
evolved before, after, or in conjunction distributions, by which the induced
with  the occurrence of large strains may cause a total failure for the
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plates used. The current study is to be
accomplished to investigate the
nearby-tip strain distributions and
failing-strains probability distributions
for variable crack length values (10,
20, and 30mm) and also for two types
of plate aspect ratio (1 and 2) for the
pure-aluminum-1100-type thin plates.

D. S. Dugdale (1960) [3] has
investigated the yielding undergone at
the end of a surface or through
(internal) slit in a sheet by an external
load, and obtained a relation between
the extent of the plastic yielding and
the external load applied. To verify this
relation, panels containing internal and
edge slits were loaded in tension and
lengths of plastic zones were
measured. The elastic stress intensity
factors are normalized dynamically for
ductile materials into elastoplastic
stress intensity factors, in order to
distinguish how much stresses and
strains near the crack tip and speeds of
the propagating cracks for an elastic-
ideally plastic Tresca material which is
experiencing an external load.

Hamid Ahmadi and Mohammad
Ali_Lotfollahi-Yaghin  (2012) [4]
proposed that the stress concentration
factor (SCF) is one of the most
important parameters in the fatigue
reliability analysis of steel offshore
structures. This parameter exhibits
considerable scatter which calls for
greater emphasis in  accurately
computing the SCFs for predicting the
fatigue life of these structures. As far

as the authors are aware, no
comprehensive research has been
carried out on the probability

distribution of SCFs in tubular joints,
especially multi-planar ones, which
cover the majority of practical
applications. What has been used so far
as the probability distribution of SCFs
in the reliability analysis of offshore
structures is mainly based on
assumptions and limited observations,
especially in terms of distribution
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parameters. In the present paper,
results of performing finite element
(FE) analysis on 81 steel multi-planar
dual-kit-tubular (DKT) joints have
been used to propose a probability
distribution model for SCFs along the
weld toe of the central brace under
axial loads. Based on the multi-planar
DKT-joint FE models which are
verified against experimental results
and the predictions of Lloyd's Register
(LR) equations, a set of SCF sample
databases was constructed. 15 different
probability density functions (PDFs)
were fitted to the relative frequency
histograms of the SCF samples. The
maximum likelihood method was used
to determine the parameters of each
distribution. Standard goodness-of-fit
tests led to the conclusion that the
Inverse Gaussian distribution is the
best probability model for the
peripheral distribution of SCFs along
the weld toe and the Birnbaum—
Saunders distribution is the best one
for the maximum value of weld toe
SCF.

D. Yevick (2003) [5] has adapted
multicanonical evaluation sampling to
the evaluation of general probability
distribution functions such as those
appearing in communication system
modeling. This letter also demonstrates
that joint probability distributions can
be computed in an identical manner.
To illustrate, one may determine the
joint distribution function between the
first- and second-order polarization-
mode dispersion in an optical fiber.

Analytical Approach:
1. Nearby-Tip Strain Distribution
Evaluation:

The mathematical model of a
cracked thin plate is shown in Fig. (1),
the following underlying assumptions
are adequately convenient to be
utilized in order to arrive at the final
analytical expressions: the plate is thin
enough for plane stress to occur,
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isothermal conditions are assumed for
the linearly isotropic continuum, i.e.,
any temperature change during the
impact process is of no concern within
the present illustration, and the
impacted-plate alloy  type is
homogenous and of a linearly-elastic-
ideally-plastic behavior whose vyield
limit can be approximated, with fairly
good results, by Tresca's failure
criterion. Hence, proceeding from the
plane-stress-based equilibrium
equations for a solid medium, small-
strain-theory-based Kinematic
constraints, for-linearly-isotropic-
alloy-type Hooke's law, and from the

assumed  Airy's stress  function
relations [1]

AY
b x

E—Nc—
'/a‘., |” acr
< = N

a

Fig. (1) The Mathematical Model of
a Centrally-Cracked Plate

one can arrive at the following bi-
potential equation
V2(V2Q) = 0 ..o (1)
whose general solution, achieved by
Mushelishvilli [2], is given by
Q= %Re[z_cb(z) 6 ) )

where ®(z) and W(z) are arbitrarily-
introduced analytic functions, the
second derivative of Q with respect to
x and/or y may give

BEX) _ o+ VP
Oxx = W = Re| D — 2
920 (- z0+ P
Oyy = W = ( + > ) ..(3)
9% 7O + P
4 6x6y m 2
In order to arrive at the

displacements, we must invoke the
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peculiarities  of  linearly-isotropic
material characteristics (Hooke's law)
and the small-strain-theory-based
kinematic constraints to (neglecting
rigid-body terms emanated due to the
translation and/or rotation of the rigid
body) proceed into [1][6]

1 3—-v - -

=ER2((r)¢—z¢—‘P)
1 3—

Uy =Elm<(1+ )d>+zd>+‘{‘>
Westergaard [7] has figured out a
relation between the two analytic
functions ®(z) and W(z) by imposing
the boundary condition ,, = 0 along
y = 0, for cracks experiencing tension

tractions (mode | cracking), so as to
proceed into

Uy

70 o 5)
which may be substituted into eq. (3)

and into eq. (4) in order to arrive at the
following representation for
predominant mode-l stresses and
displacements

Oxx = Re® — yIm®

0yy = Re® + yIm® ........

Tyy = —yRe$

.(6)

1 _

Uy = =< Red —yIm®

260+ (D)

uy, = mlm(b — YRe®d
By firstly solving for stresses and
displacements in the vicinity of the
crack tip (which lies at x = a.., y =
0) without any presence of traction
stresses, and then imposing the traction
stresses at |x| < a.., y = 0in order to
simulate the crack, Sedov [8] has
pointed out a general solution for the
analytic function ®(z) concerning an
infinite plate whose crack is having a
length of 2a., (Fig. (1)), therefore, we

have

Ger Az(f)\/ acr

Studylng the behaV|or of stresses

and strains in the vicinity of the right-
hand crack tip, (z + a. = 2a,,
z—§& = a, — §), introducing the
traction a,,,, = 0 along |x| < a., + ¢
and superimposing the traction

P =

df -(8)
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0yy = oy along ac, < |x| < ag +
c by utilizing the superposition
principle (in accordance off Dugdale
model [3] for elastoplastically-
deformed thin plates), will yield the
following relation of the analytic
function

_ Kiep
CDI - vV ZTL'(Z - acr)

[ 0 z 1
n(acr+{i(a£y) )— |
M e +18() a, |
|2 - sin 4, (T2 |

| wt1éle) )

\2n(z —ag)
The introduction of notation

(z — a., =re'®) and the substitution
of eq. (9) into eq. (7) will yield the
following the required local elastic-
plastic displacement fields for mode |

Ux _Kiep [T (3—1/
wl 26 NFravE
vlep
0
cos
— cos 9)[ /2] e (10)

sin 9/2
ux
.-

ep
[ ag( 1 \? 1
2 acr+32( =
oy| |7l acr+ﬂ(L) -2 lé(dy) sin™t der
16 \ay. B acr,,@(i)z
16 \ay,
26

r (3—1}
2m \1+v

cose/z
cos 0) Lin 9/ ] oo (11) Whose
constants v, G, and oaycan be

determined by using the following
table for pure-aluminum-1100-alloy-
type properties

Pure Aluminum 1100 Properties [9]

Poisson's Ratio (v) 0.334
Young's Modulus (E) 69 Gpa
Shear Modulus (G) 26 Gpa
Yield Limit (oy) 8 Mpa

A further approach that must be
followed, by using the small-strain
analysis, in order to determine the
nearby-tip strain distribution, from
which the failing-strains probability
distributions  can  thereafter  Dbe
recognized in  the  upcoming
subsection. Now, one can therefore
anticipate the following expression for
the nearby-tip strain field

415

2. Failing-Strains Probability
Density Function Evaluation:

It is convenient from now on to
illustrate the behavior that the nearby-
tip strains (eq. 12) apt to cause the
existing cracks to propagate through
the plates considered, and this behavior
is thereby significantly appropriate to
illustrate the probability of the existing
cracks to propagate due to the induced
strains. In accordance to Fig. (2), the
region enclosed by —-10 KX «
10and 0 <Y « 20can be divided
into 1-mm-spacing gridpoints in which
the nearby-tip strains and the failure
probability distributions can be easily
determined. Having known the region
where the failing strains can act
through the medium considered, the
continuous-type multi-canonical joint
probability  density functions are
thereby to be processed since the
probability distribution is based on
unaccountably-infinite-type ~ random
variables [10]. The evaluation process
of the continuous-type multi-canonical
2-random-variables joint probability
density functions is therefore given by

[5]
( o(X) = rcos 9) _ iflo P(x)dx
0X) +06(Y) dx Jye 109 () +6(»)
(&: :rsing) :if"M
o) +o) dy J,_o 9@ +8(y)

which can further be proceeded into

..(13)
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Fig. (2) Transformation Process into
the Random Variables X and Y

Results and Discussion:

1. Nearby-Tip Strains
It has  been previously
demonstrated that the strains induced
in the vicinity of the crack tip can be
evaluated by using the eq. (12), now it
is significantly appropriate to illustrate
how intense these strains can be within
the structure of the thin plates. By
examining Fig. (3) to Fig. (14) the
amount of the X-axis and Y-axis

G (M2
aer + &(2)2 -2 fo 16 (Jy) sin™t
716 \oy s

A, (T
Ger + E(a—y

],
]

J_

nearby-tip strains would exhibit an
exponential decrease as the distance
from the crack tip decreases, and the
values of the maximum strains would
therefore be always at the point where
the crack tip lies at. It can also be
demonstrated that the both X-axis and
Y-axis nearby-tip strains  would
undergo 13.45% and 11.41% increase
as the existing crack length within the
thin plates increases from 10 mm to
20 mm and from 20 mm to 30 mm
respectively. Likewise, the amount of
the strains would exhibit
34.21% increase when the plate aspect
ratio increases from 1 to 2. The low-
aspect-ratio and short-crack-length thin
plates would then be more legitimate to
be utilized in the design purposes, in
the sense that they experience lower
nearby-tip strains than what is induced
in the high-aspect-ratio and long-crack-
length thin plates due to the impacting
load.
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100 £\ —y=12mm
52 1~ : : : —= \ e,
0 5 10 15 20 25 y=20mm
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Fig. (3) Nearby-Tip Strain Induced Towards the X-axis for Aspect Ratio =
2.000, and a, = 10mm.

416




Baghdad Science Journal Vol.12(2)2015

250
200 \ e x=0mm
150 —X=2Mmm

& (um/m)
100 x=4mm
\ —X=6mm
>0 \% x=8mm
0 _-& i | I
0 5 10 15 20 25 x=10mm

y (mm)

Fig. (4) Nearby-Tip Strain Induced Towards the Y-axis for Aspect Ratio =
2.000,and a, = 10mm.
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Fig. (5) Nearby-Tip Strain Induced Towards the X-axis for Aspect Ratio =
2.000,and a, = 20mm
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Fig. (6) Nearby-Tip Strain Induced Towards the Y-axis for Aspect Ratio =

2.000, and a, = 20mm.
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Fig. (7) Nearby-Tip Strain Induced Towards the X-axis for Aspect Ratio =
2.000, and a, = 30mm.
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Fig. (8) Nearby-Tip Strain Induced Towards the Y-axis for Aspect Ratio =
2.000, and a, = 30mm.
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Fig. (9) Nearby-Tip Strain Induced Towards the X-axis for Aspect Ratio =
1.000, and a, = 10mm.
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Fig. (10) Nearby-Tip Strain Induced Towards the Y-axis for Aspect Ratio =

1.000, and a, = 10mm.
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Fig. (11) Nearby-Tip Strain Induced Towards the X-axis for Aspect Ratio =

1.000, and a, = 20mm.
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Fig. (12) Nearby-Tip Strain Induced Towards the Y-axis for Aspect Ratio =

1.000, and a, = 20mm.
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Fig. (13) Nearby-Tip Strain Induced Towards the X-axis for Aspect Ratio =
1.000, and a, = 30mm.
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Fig. (14) Nearby-Tip Strain Induced Towards the Y-axis for Aspect Ratio =
1.000, and a, = 30mm.

2. Failing-Strains Probability
Distributions:

The probabilities by which the
nearby-tip strains can cause total
fracture for the cracked plates may be
determined if the equation (14) should
be obeyed. It has been shown
previously, by examining the
preceding subsection, that the lines on
which the maximum strains X and Y
are induced in thin plates are y =0
and x = 10, respectively. One must
therefore choose these lines under
investigation in  determining the
failing-strain probabilities in order to
thereby specify the points in which the
maximum probabilities can appear, and
also to investigate whatever point on
which the total fracture may be
evolved. Referring to Fig. (15) to Fig.
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(26), one can anticipate the facts that
the  failing  strain probability
distributions are independent of the
crack length value change and also
independent of the plate aspect ratio
change, although the values of the
maximum probabilities insignificantly
fluctuate between 38-42% percent
range, since these probabilities are of
the same behavior regardless of how
much the crack length and the aspect
ratio would be. A further analysis may
lead to the fact that the maximum
probabilities always appear in the point
in which the crack tip lies at, i.e.,
X =10 and Y = 0. One can therefore
conclude that the total fracture may
start immediately as the crack grows
starting from the right-hand crack tip

[4]
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Fig. (15) Failing-Strain Probability Distribution Along the X-axis for y = 0mm,
Aspect Ratio = 2.000, and a, = 10mm.
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Fig. (16) Failing-Strain Probability Distribution Along the Y-axis for x =
10mm, Aspect Ratio = 2.000, and a, = 10mm.
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Fig. (17) Failing-Strain Probability Distribution Along the X-axis for y = Omm,
Aspect Ratio = 2.000, and a, = 20mm
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Fig. (18) Failing-Strain Probability Distribution Along the Y-axis for x =
10mm, Aspect Ratio = 2.000, and a, = 20mm.
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Fig. (19) Failing-Strain Probability Distribution Along the X-axis for y = 0mm,
Aspect Ratio = 2.000, and a, = 30mm.
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Fig. (20) Failing-Strain Probability Distribution Along the Y-axis for x =
10mm, Aspect Ratio = 2.000, and a, = 30mm.
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Fig. (21) Failing-Strain Probability Distribution Along the X-axis for y = Omm,
Aspect Ratio = 1.000, and a, = 10mm.
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Fig. (22) Failing-Strain Probability Distribution Along the Y-axis for x =
10mm, Aspect Ratio = 1.000, and a, = 10mm.
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Fig. (23) Failing-Strain Probability Distribution Along the X-axis for y = O0mm,
Aspect Ratio = 1.000, and a, = 20mm.
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Fig. (24) Failing-Strain Probability Distribution Along the Y-axis for x =
10mm, Aspect Ratio = 1.000, and a, = 20mm.
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Fig. (25) Failing-Strain Probability Distribution Along the X-axis for y = 0mm,
Aspect Ratio = 1.000, and a, = 30mm.
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Fig. (26) Failing-Strain Probability Distribution Along the Y-axis for x =
10mm, Aspect Ratio = 1.000, and a, = 30mm.

planar tubular DKT-joints of steel
offshore structures. J.AOR,
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