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Abstract:

In this work, we first construct Hermite wavelets on the interval [0,1) with
it’s product, Operational matrix of integration 28M x 2¥M is derived, and used it for
solving nonlinear Variational problems with reduced it to a system of algebric
equations and aid of direct method. Finally, some examples are given to illustrate the
efficiency and performance of presented method.
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Introduction:

Wavelets theory is relatively
new in mathematical researches [1],
wavelets constitute a family of
functions constructed from dilation and
traslation of a single function called the
mother wavelet [2]. When the dilation
parameter a and the translation
parameter b vary continuously we have
the following family of constituous
wavelets:

1
hap () = lalzh | =] ab €

R, a#0 ... (1

An efficien algorthithm based
on Chebyshev wavelets as simplest
wavelets approach for numerical
solution of many problems such that
integrel equations, Variational
problems, and diffrentional equations
is given in [3-5].

Other wavelets families like
Legendre wavelets [6], Sine and
Cosine wavelets [7], Harr wavelets [8],
are used to solve integral equation first
and second kind and are used in
solving many kinds problems.

Properties of the Hermite

Wavelets:-

Hermite wavelets, h,,,(t) =
h(k,n,m,t) involve four arguments,
n=12..2% k is assumed any
positive integer, m is the degree of the
Hermite polynomials and t independent
variable in [0,1].

hnzn(t) =
{ZEH;(zk“t —am+1)  te[S L
0 0.w
... (2

where

. 1
m=0,1,2,...,M-1 n=
0,1,2,..,2k%

in eq(3) the coefficients are used for
Orthonormality. Her H,,(t) are the
Hermite Polynomials of degree m
which respect to the weight function or
density function e~t* and if m=n we
can normalize the Hermite polynomial
S0 as to obtain an orthonormals set.
Satisfy the following recurrence
formulas
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Hypy1(t) = 2tH,, (t) — 2mHp 1 (1)
.. (4
Hp (¢) = 2mHp, 1 (t)
Starting with Hy, = 1, H; = 2t
o Orthgonality  of
polynomials

Hermite

5, e Hn (D Hy (D) dt =

0 m#n
{melx/ﬁ m=n ()
So that the Hermite polynomials are
mutually orthogonal with respect to the
weight function or density function
e~** and if m=n we can normalize the
Hermite polynomial so as to obtain an
orthonormals set.
o Function approxemation:

Afunction f(t) defined over [0,1)

may be expanded as

A function f(t) defined over [0,1)

as:
f(© = Znz1 Zm=0Comhnm(®)  ...(6)
where Crm =
(f(t)'hn,m(t)) =

[ Wa(Dhym (Df (D).

in which (.,.) denoted the inner
product in L3, [0,1].

If the infinite series in equation(6)
is truncated, then it can be written as:
f(t) = fzk,M_l =
2%’(11)2%;% Comhnm(t) = CTh(E)

(7

where F and h(t) are 2FM x1
matrices given by:
F =

s
hio(t) = \/—; )
haa () = 22 (8t - 2) Lo <
VI 0 |
hy2(0) = 5= (647 — 32t +2) J
t< .. (9)
\/_
hyo(t) = \/—; ]
V2 1
hoa(8) = 5= (8t — 6) ~<

hy o () = % (64t2 — 96t + 34)

t<1 ...(10)

By integrating the above six
functions from 0 to t and using eq(6),
we obtain:

[y hao(®)dt = (3) hyo() +
(3) hua(® + () hao(®

[ haa(©dt = (= 2) hyo(0) +
(3) ha2(®)

(fot ills,z(t)dt = (=D hyo® +
—2) h2,0(0)

Iy hao(®dt = () hyo(t) +
(3) hoa (0

(fot) haa(©)dt = (= =) hyo(6) +
S by (6)

[ haa (Ot = (=) hao(6)

In general Operational matrix
of integration of Hermite wavelets
becoms:

[fl,O’fl,l' ""fl,M—l'fZ,O' ""fZ,M—l' ""ka,O’ ""ka,M—l]

h(t) =

T
[P0, ha1(8), ooy hy =1 (), o (), ooy By =1 (6), ey g o (), v, e g (8]

C =

T
[Clo, Cll' ey Cl(M—l)' Czo, ey CZ(M—I)' vy Czk—l, vy Czk—lM_l]

(8)

Operation Matrix of Integration:

In this section we will know
the operational matrix P of integration.
the six basis functions when M=3, k=1
are given by:
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Q : S
p=|.. : ] since
0 : Q
1L 100 0]
2 2
-1 0 X 0 0
_1 M 2
Q=x| =2 0 0 0 0
24 . . . .
_.1 . . . . ::l
e 0 0 0 . 3]
-1 0 0 0 0"
0 0 0 0 0
-1
1l 2 0 0 0 0
 S%x| 3 . .
O™ 5 9 0 .. 0
L (m+1)
[0 0 0 O O]
0 0 0 0 0|
andO=[l0 0 0 0 ]
lo 00 0 oJ

Operation matrix of product and
there properties:

Product  Operational — matrix,
which is important for solving our
problem and many other problems
such that Volterra integral equation |,
Fredholm integral equation and Integro
defferential eqs [5-8] .

Let A(t)AT(t)C =T h(t) ... (11)
where € is 2k(M) x 2F(M)
product  Operational matrix  for
k=1,2,... n=1.2,..., 2k
m=0,1,2,...(M-1)
2
Where hi,Ohi,j = hi,j\/;
i=12,..,n
j=01,..,m
1 /2
hiihi1 = 5\/; (hi,o + hi,z)
hi,jhl,f = 0 lf i * l
hijhyr = hy; if J=f
Thus we get
h(t)RT (£)
h1,0h1,0 h1,0h1,1 hl,Ohl,Z h1,0h2,0 h1,0h2,1 h1,0h2,2
h1,1h1,0 h1,1h1,1 h1,1h1,2 h1,1h2,0 h1,1h2,1 h1,1h2,2
h1,2h1,0 i'll,Z'hl,% h1,2h1,2 h1,2h2,0 {11,2‘}12,} h1,2h2,2
haohio haohis haohia o haghag hahys haghas
h2,1h1,o h2,1h1,1 h2,1h1,2 h2,1h2,o h2,1h2,1 h2,1h2,2
hZ,Zhl,O hZ,Zhl,l hZ,Zhl,Z hz,zhz,o hZ,ZhZ,l hz,zhz,z

427

Expanding each product by wavelet
basis we have matrix D

D=

[0 hiq hiz o . 0 0 o1
1

|h1,1 (o +hiz) hyg 0 0 0 I
2|h1}2 by hio 0 0 0 I
e o 0 o heoha g
l 0 0 0 = hgy S(hgot+hp) h2,1J
o0 0 " hyy  hyy ha

By using the vector C, the C is

CZ\/E C1 ..O C:i:
T|I0 G,
Cio

: Cia Cip

2 1
—|Ci1 5 (Cio +Ci2) Cig
Ciz Cia Cio

and integrating matrix D from 0 to 1
we obtained new matrix denoted by
matrix R

where
1
R = [ h(t)h" (t)dt
(12)
if we take k=0, M=3 we obtain Ry
- -1 -
1 0 —
12
o L0 000
LA 00 0
— 0 1
R 112
" 10 =
12
000 o0 X
000 L
— 0 1
12 .

Problem Statement:
In large number of problems a
rising in analysis, mechanics and
geometry it is necessary to determine
the maximal and minimal of acertain
functional. Such problems are called
Variational problems .
Consider the
Variational problem

JIx(®)] =
[TF @ x(0), %), .., x"(t)dt
(13)

following

with x(0) =ay, x(0) =

agy e, x10) = a,_4
x(1), x(1), .., x™ (D)
unspecified.
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This problem with moving
boundary conditions, and find the
extremum of eq(13), above problem is
reduced by using our method in to a set
of algebric equations by following
procetuer.
xn(t) = CThn,m(t)

x" 1) = CTPhym (t)+x™1(0)

%(E) = CTP Ry (£) + 220 4

n—1
xn—Z(O)tn—Z

—— + -+ x(0)
Numerical examples:
Example(1)
JIx(®)] = [ %#2(t) + tx(e)dt
(14)
with boundary conditions:
x(0) =

0, x(1) unspecified
(15)

We solve this problem by

using Hermite wavelets. First we
assume

x(t) = CThy () ... (16)
t=d"h, () ...(17)

Substituting (16),(17) in (14) and we
used matrix R then eq(14) becomes
J =CTRC +d"RC
According to transversality condition,
we have:
oF

—| =0-%1)=-05
0%xl=q

using
x(1) = CThy (1) = —0.5

=

By (16)

Let

J+ A(CThym(1) +0.5)

9" _ Ty _

7= 2RC+R"d =0
CThym(1) +0.5=0

aJ
==
(18)
For M=3 and k=1, we obtain:
d

=[0.3133 03133 0
Thus

0.9400 0.3133 0]7

428

C =[-0.15666427

—0.15666427 0

—0.46999280

—0.15666427 0]7
The exact solution x(t) = —0.5t And
x(t) = —0.25t% . Table 1 shows the
numerical results for this example with
k=1, M=3 with error =10° are
compared  with  exact solution
graphically in figl.

Table 1:some numerical results for
example 1

X Exact solution AbsouteError

lexact — hypp|

Approximat

solution hy, ,, (x)

0 0.00000000 0.00000000 0.00000000

0.1 | -0.00250000 -0.00250000 0.00000000

0.2 | -0.01000000 -0.01000000 0.00000000

0.3 | -0.02250000 -0.02250000 0.00000000

0.4 | -0.04000000 -0.04000000 0.00000000

0.5 | -0.06250000 -0.06250000 0.00000000

0.6 | -0.09000000 -0.09000000 0.00000000

0.7 | -0.12250000 -0.12250000 0.00000000

0.8 | -0.16000000 -0.16000000 0.00000000

0.9 | -0.20250000 -0.20250000 0.00000000

1 -0.25000000 -0.25000000 0.00000000

M.S.E =107%
L.S.E=10"%

T T T
exact
+  Hermite wav

-0.05
-0.11
-0.15

-0.21

-0.25

c c r c c r c c r
0 01 02 03 04 05 06 07 08 09 1

Fig(1) error =10
with exact solution

are compared

Example(2):

Jlx@®l =[] xzz(t) + (4 — 4t)x(t)dt
... (19
Subject to
x(0)=0, x(0)=0, x(1), x(1)
unspecified ... (20)

For solving this problem by using the
Hermite wavelets, let:

X() = CThy () ...(21)
From Euler Lagrang equation we have:
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7] do

65 dta_; ey (4 —4t) -

(Ol = 0> ¥ =0, 5
Xlt=1

(1) =0 (22)

¥(t) = CTPhy , (t) + %(0)

(23)

#(1) = CT [ hym(2)dT + %(0)
Let

Jy ham(@dz = Q =

[ 05 00 05 0 0]
0 0 0 0 0 of

|-0.0417 0 0 ~0.0417 0 O]

| 05 0 0 05 0 ol

|l 0 o0 o0 o 0 o

l_00417 0 o ~00417 0 ol

#(0) = —C*Q = CTFh(t)

(24)

Then

F=

-05 0 0 -05 0 0

0 0 0 0 0 0
0.0417 0 0 0.0417 0 0
-05 0 0 -05 0 0

0 0 0 0 0 0
0.0417 0 0 0.0417 0 0
Also

x(t) = CT(P + F)Phy, (£)
(25)

Let

(4-4t)=d"

Similarly example(1) is written J
For M=3 and k=1 we obtain

d = [3 \/_ VI VT 0] ,

VZ Oz V2
C' —
[3.75994242 —

1.25331413 0 1.25331413 —
1.25331413 0]

Approximate solution will be achieved
x(t) = —§+ (g) t3 —t? which is the
exact solution.

Table (2), the values of x(t) using the
Hermite wavelets, Chebyshev wavelets
and Sine-Cosine , are compared with
exact solution. The Hermite wavelets
with error =10 graphically in fig(2).

and
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Table 2:some numerical results for

example 2
S(I)r:r; Chebysh Exact Approximat AbsouteErro
X ev solution solution |lexact
wavele I h
ts wavelets o (X) — Al
- 0.000000
0 0.0253 0.0020 00 0.00000000 0.00000000
0.12 - y
-0.0161 0.014360 -0.01436068 0.00000000
5 0.0155 68
0.25 0.0119 -0.0523 0.053%734 -0.05273438 0.00000000
0.37 - y
-0.1066 0.108764 -0.10876465 0.00000000
5 0.1069 65
0.5 0.2513 -0.1765 0.17373083 -0.17708333 0.00000000
0.62 - .
-0.2537 0.253295 -0.25329590 0.00000000
5 0.2494 20
0.75 - -
-0.3335 0.333984 -0.33398438 0.00000000
0 0.4119 28
0.87 - -
-0.4158 0.416707 -0.41670736 0.00000000
5 0.4116 36
1 0.4946 -0.5001 0.5%(())000 -0.50000000 0.00000000
M.S.E =10~
L.S.E=107%

T
exact
+  hermite wawelets

. r r r r r r r r r
0 01 02 03 04 05 06 07 08 09 1

Fig(2) The Hermite wavelets with
error =10°®

Conclusion:

In  this work, nonlinear
Variational problems have solved by
using Hermite wavelets in direct
method. Comparison of the
approximate solutions and the exact
solution shows that the proposed
method is very efficient tool.
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