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Abstract:

The electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was
described by the inter-particle radial distribution function f(ry2). It was evaluated for
Li-atom in the different excited states (1s* 2p), (1s* 3p) and (1s® 3d) using Hartree-

Fock approximation (HF). The inter particle expectation values <r1”2> for these shells

were also evaluated. The calculations were performed using Mathcad 14 program.

Key words: Radial electron-electron distribution function, Hartree Fock
approximation; inter-shell, non-spherically symmetric system.

Introduction:

The distribution function f(ry) of the attention for the general case of non-
interelectronic distance ry, provides an spherically symmetric system is not
interesting indicator for electrons restricted to symmetry-adapted wave
correlation in many-electron systems. functions [3]. The distribution function
The f(r1) for two-electron atoms was f(r12) for Li-atom has been examined in
first introduced by Coulson and some detail for the ground states and
Neilson [1], in their study of electron first excited state which represent the
correlation in the 'S He ground state. simplest excited state by K. H. Al-
For atoms with more than two Bayati [4] and for third excited state by
electrons, f(ri2) has a very convenient A. A. Alzubadi [5].

formulation [2] in terms of the (spin In the present research, the
free)  2-matrix. The  analytical analysis was extended to fourth excited
procedure for obtaining f(r1,) from 's state 3d in addition to 2p and 3p. The
2-electron wave functions containing uncorrelated description (HF) of each
no angular terms has been outlined in exited state was provided by the 2p, 3p
detail [1]. Extend the analysis to N- and 3d restricted HF or analytical self
electron atomic systems described by consistent field atomic wave functions
wave functions which may be, but are of Weiss [6], by partitioning the
not required to be, eigenfunctions of second-order density into its pairwise
the total spin and angular momentum components.

operators S2and LZ. In other words,
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Theory

For any N-electron atomic
system, the radial electron-electron
distribution function is defined in
terms of the spin-free second order
density matrix as [7]

u 12)
...()
where @ denotes the angle of rotation.
For the spherically symmetric case (s-
orbital) where the azimuthal (or
orbital) angular momentum quantum
number /=0, f(ry;) can be evaluated
from the following equation [1]

T, Tdr, +

I err

ro [T (2, 2) T, F, OF, 5in 6, d6, dg; doo

Mp+h

f 8 r.dr,
(r,)=87" 1, l'r f Il“(r r,) r,dr,

. (2

In the present analysis the 2p, 3p and
3d states are examples of non-
spherically symmetric system. The
expression for f(rlz) can be obtained

from [3]

fr,)=

... (3)

If (i, ) labels a pair of occupied ¢; and
@;j in the restricted HF description of
the system, then the change, due to
correlation in the (i , j) component of
the second-order density Tij(xm , xn)
which is derived from the HF wave-
functions by using the partitioning
technique [8] is given by:

F o) 1[¢.(ﬂcm)¢,(zn) } @)

“2]0,(z )0 (2,)

To study the physical properties for a
three-electron systems, we must find
the electron-pair density for each
individual electronic shell, so

F(Xm y X ) Zru (Xm ) n . (5)

i<j
I'= r spin less or
r =Hrij (¥ 2, )do,do, ,  the
function ¢ is the spatial part of the spin

orbital and it was constructed from a
basis set of Slater-type orbital, where

[6] o
Pl :Zcr‘mlr'n ... (6)
and n,I = (1s, 2p), (1s, 3p) or (1s, 3d).

The basis functions y are standard

normalized Slater-type orbitals (STO's)
and are given by

Tnim (7,0.6,8) =
()

where the radial part R is given by:
R,(F,&)=N-r"".e0  (g)

|:zn (r! é)YIm| (91 ¢)

and C, represents the constant
coefficient resulting from the self
constant field (SCF) method, n is the
principal quantum number, & is the

orbital exponent, and # is a
normalization constant given by
_(22) . 9)

[(2n)]*
finally I represents the integrals of the
most general type

| = J‘Yflml CHY) Y;;mz 6. 4) Ye3m3 (6,.9,) Yz;;m4 (6,,4,)sin6,d6,d¢dw

...(10)
I can be written as [5]

i+l

e TLLLL,
:_( )m2+m4 |: ,
/;2524 LL
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xC, l,0;m —m,m)C(¢,¢,¢;m—m,m’)

C(¢,¢,;000)C(¢,0,¢;000)x(—)™P"(cosb,)d,,,5,_

where

C(¢, ¢, ¢;m —m, m) is the Clebsch-
Gorden coefficient defined by [9], and
IS sometimes expressed in traditional

notation £y £, M Mm,| £, ¢, ¢m),
L, =2l +1, m=m, —m,,
m'=my —m,, O,y is the Kronecker

delta function and P,‘m" (cos @) is the

associated Legendre function.

Equ.(11) can be written in term of
Wigner 3j symbols by using the
following relation

0,0, 0m) = 0, 0
LalaMmMy)

(1) V20 +1\m, m, —m

... (12)

The important properties and the
values of Wigner 3j symbols were
given and tabulated in Refs. [10, 11] .
The inter-particle expectation values
(r5) can be determined from the

formula [4]
(ri}‘>=J' f(r)rjdr; ... (13)
0

where n was taken as —2<n<2. The

value of (') is of additional

importance since it gives directly the
electron-electron  repulsion  energy.
Besides the lower bound for the
electronic density at the nucleus can be

obtained in term of the moment ( r1_22>
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o(11)

. Finally the standard deviation AT is

a square root of the variance; which it
is especially useful for representing the
diffuseness of each radial density
distribution, because it has the unit of
r . It is defined by [5]

Ar={r3Y—(r? .. @4

Results and Discussion

The results for the radial
electron-electron distribution function
f(r12) between electrons unlike and like
spin in KL and KM shells for Li-atom
in the different excited states are
shown in the Fig. (1). A and B, and the
difference between them can be seen in
Fig. (2). At very small r;; which
represents the  K-shell, f(ri2)
distribution  function is influenced
mainly by the electron pair behavior so
we see a flat region and in the farther
region of ri, which represents the L-
shell, the principal maxima in each
curve in (1s* 3p) refer to the
probability behaviour, one for L-shell
and the other for M-shell, when the
outer electron has penetrated the 2p,
but in states (1s® 2p) and (1s 3d) the
difference in symmetry between 1s and
2p or 3d remains a flat region . For
comparison between the states we find
the maximum of f(r1) occurs at ri; ~
3.86 for 1s 2p, r12~9.029 for 1s 3d and
ri,=~11.73 for 1s 3p.
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Fig. (1). The electron-electron distri-
bution function f(ryp) for triplet
states of (Li) atom in the different
excited states (A) Isa 2pa , 1sa 3pa
and Isa 3da (B) 1sf2pa , 1sp3pa and
Isp3da.

L
10 12 14 16
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Fig. (2). The electron-electron distri-
bution function f(ri2) for triplet oo
and singlet Ba states of (Li) atom in
the different excited states 1s 2p, 1s
3p and 1s 3d

The spread or diffuseness of f(r2)
about the mean value <r1"2 > is measured

by the magnitude of Ary;,. Table (1)
shows that in every individual shell,
the (.5 ) increases when n goes from
1 to 2 and decreases when n>-1. The

distance between two electrons in
unlike spin is smaller than in like spin
and vise versa. The repulsion energy is

represented by (r;'). The (r;')
increases in the order 1s 3p > 1s 3d >

1s 2p but the repulsion energy between
two electrons in 1s 2p > 1s 3p > 1s 3d.

Table (1). The inter particle expectation values the standard deviation Ary, for
individual shells of (Li) atom in the different states. All values are in a. u.

State Shell (r,) (. (rs') (ry) Al
Isa2po. | 0.092635 | 0.261185 4.840215 | 28.289438 2.204938
1s? 2p
Isa2pf | 0.101362 | 0.264139 4.834787 | 28.267757 2.208390
Iso3po. | 0.026999 | 0.114670 12.209042 | 172.070208 4.800777
1s° 3p
Isa3pf | 0.029900 | 0.115634 12.207368 | 172.063770 4.800106
Isa3de | 0014910 | 0.111134 10.516445 | 126.469347 3.984192
1s? 3d
Isa3df | 0.014916 | 0.111135 10.516438 | 126.469344 3.984203
Conclusions:
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From the present calculation, some
important remarks can be deduced
about the radial electron-electron
distribution function f(ry,) for Li-atom
excited states 1s 2p, 1s 3p and 1s 3d.
When comparing the f(ry,) for Li-atom
in the different excited state we see at
small ry, a flat region in (1s 2p) and (1s
3d) but a small curved in (1s 3p)
because the outer electron has
penetrated the 2p. The maximum of
f(ry) for Is 2p >1s 3d >1s 3p and it’s
locations of these maxima decrease
respectively. Also the max.f(r12) for aa
> Ba in (1s 2p) and (1s 3p) states and
vice in state (1s 3d) but these locations
decreases when the  max.f(ry)
increases but this difference is slight.
We conclude that penetration into any
orbital by other orbitals, occurs only
between orbitals which are similar in
spherical symmetry. Finally the
distance between two electrons of
parallel spin is greater as a result of the
repulsion between them.
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