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Abstract: 
            The electron correlation  for inter-shells (1s 2p), (1s 3p) and (1s 3d) was 

described by the inter-particle radial distribution function   f(r12). It was evaluated for 

Li-atom in the different  excited states (1s
2
 2p), (1s

2
 3p) and (1s

2
 3d) using Hartree-

Fock approximation (HF). The inter particle expectation values nr12  for these shells 

were also evaluated. The calculations were performed using Mathcad 14 program. 
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Introduction:        
The distribution function f(r12) of the 

interelectronic distance r12 provides an 

interesting indicator for electrons 

correlation in many-electron systems. 

The f(r12) for two-electron atoms was 

first introduced by Coulson and 

Neilson [1], in their study of electron 

correlation in the 
1
S He ground state. 

For atoms with more than two 

electrons, f(r12) has a very convenient 

formulation [2] in terms of the (spin 

free) 2-matrix. The analytical 

procedure for obtaining f(r12) from 
1
s 

2-electron wave functions containing 

no angular terms has been outlined in 

detail [1]. Extend the analysis to N-

electron atomic systems described by 

wave functions which may be, but are 

not required to be, eigenfunctions of 

the total spin and angular momentum 

operators 
2S


and 2L


. In other words, 

attention for the general case of non-

spherically symmetric system is not 

restricted to symmetry-adapted wave 
functions [3]. The distribution function 

f(r12) for Li-atom has been examined in 

some detail for the ground states and 

first excited state which represent the 

simplest excited state by K. H. Al-

Bayati [4] and for third excited state by 

A. A. Alzubadi [5]. 

          In the present research, the 

analysis was extended to fourth excited 

state 3d in addition to 2p and 3p. The 

uncorrelated description (HF) of each 

exited state was provided by the 2p, 3p 

and 3d restricted HF or analytical self 

consistent field atomic wave functions 

of Weiss [6], by partitioning the 

second-order density into its pairwise 

components.  
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Theory 

For any N-electron atomic 

system, the radial electron-electron 

distribution function is defined in 

terms of the spin-free second order 

density matrix as [7] 

 

  dddrdrdrrrrf
ijij 1112121211212

sin),()(
                                      
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where  denotes the angle of rotation. 

For the spherically symmetric case (s-

orbital) where the azimuthal (or 

orbital) angular momentum quantum 

number 0 ,  f(r12) can be evaluated 

from the following equation [1] 
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In the present analysis the 2p, 3p and 

3d  states are  examples of non-

spherically symmetric system. The 

expression for  12rf  can be obtained 

from [3] 
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If (i , j) labels a pair of occupied φi and 

φj in the restricted HF description of 

the system, then the change, due to 

correlation in the (i , j) component of 

the second-order density Γij(χm , χn) 

which is derived from the HF wave-

functions by using the partitioning 

technique [8] is given by: 
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To study the physical properties for a 

three-electron systems, we must find 

the electron-pair density for each 

individual electronic shell, so 
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 = Γ spin less or

  nmnmij dd  ,  , the 

function φ is the spatial part of the spin 

orbital and it was constructed from a 

basis set of Slater-type orbital, where 

[6] 
i
nl
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i
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and n,l = (1s, 2p), (1s, 3p) or (1s, 3d). 

The basis functions   are standard 

normalized Slater-type orbitals (STO's) 

and are given by 
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where  the radial part R is given by: 
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and Cn  represents the constant 

coefficient resulting from the self 

constant field (SCF) method, n is the 

principal quantum number,   is the 

orbital exponent, and N  is a 

normalization constant given by 
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finally I  represents the integrals of the 

most general type 

 

 dddYYYYI mmmm 11122221111 sin),(),(),(),(
44332211



 

…(10) 
I can be written as [5] 
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where 

);( 2121 mmmC   is the Clebsch-

Gorden coefficient defined by [9], and 

is sometimes expressed in traditional 

notation  mmm  212121 , 

12  ii lL , 21 mmm  , 

43 mmm  , xy is the Kronecker 

delta function and )(cosP lm

l   is the 

associated Legendre function. 
Equ.(11) can be written in term of 

Wigner 3j symbols by using the 

following relation 
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The important properties and the 

values of Wigner 3j symbols were 

given and tabulated in Refs. [10, 11] . 

The inter-particle expectation values 

 nr12  can be determined from the 

formula [4] 


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where n was taken as 22  n . The 

value of 1

12

r  is of additional 

importance since it gives directly the 

electron-electron repulsion energy. 

Besides the lower bound for the 

electronic density at the nucleus can be 

obtained in term of the moment  2
12r

. Finally the standard deviation r  is 

a square root of the variance; which it 

is especially useful for representing the 

diffuseness of each radial density 

distribution, because it has the unit of 

r


. It is defined by [5] 
 

22  rrr      …  (14) 

 

Results and Discussion  
            The results for the radial 

electron-electron distribution function 

f(r12) between electrons unlike and like 

spin in KL and KM shells for Li-atom 

in the different excited states are 

shown in the Fig. (1). A and B, and the 

difference between them can be seen in 

Fig. (2). At very small r12 which 

represents the K-shell,  f(r12) 

distribution function is influenced 

mainly by the electron pair behavior so 

we see a flat region and in the farther 

region of r12 which represents the L-

shell, the principal maxima in each 

curve in (1s
2
 3p) refer to the 

probability behaviour, one for L-shell 

and the other for M-shell, when the 

outer electron has penetrated the 2p, 

but in states  (1s
2
 2p) and (1s

2
 3d)  the 

difference in symmetry between 1s and 

2p or 3d  remains a flat region . For 

comparison between the states we find 

the maximum of f(r12) occurs at r12 ≈ 

3.86 for 1s 2p, r12 ≈9.029 for 1s 3d and 

r12 ≈11.73  for 1s 3p. 
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Fig. (1). The electron-electron distri-

bution function f(r12) for triplet 

states of (Li) atom in the different 

excited states (A) 1sα 2pα , 1sα 3pα 

and 1sα 3dα (B) 1sβ2pα , 1sβ3pα and 

1sβ3dα.  

 

 

 
Fig. (2). The electron-electron distri-

bution function f(r12) for triplet αα 

and singlet βα states of (Li) atom in 

the different excited states 1s 2p, 1s 

3p and 1s 3d 

 
The spread or  diffuseness of  f(r12) 

about the mean value nr12
 is measured 

by the magnitude of Δr12. Table (1) 

shows that in every individual shell, 

the  nr12 increases when n goes from 

1 to 2 and decreases when 1n . The 

distance between two electrons in 

unlike spin is smaller than in like spin 

and vise versa. The repulsion energy is 

represented by 1

12

r . The 1

12

r  

increases in the order 1s 3p ˃ 1s 3d ˃ 

1s 2p but the repulsion energy between 

two electrons in 1s 2p ˃ 1s 3p ˃ 1s 3d. 

 
Table (1). The inter particle expectation values the standard deviation Δr12  for 

individual shells  of (Li) atom in the different states. All values are in a. u. 

 

Conclusions: 

Δr12 
2
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1
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1

12

r  
2

12

r  Shell State 

2.204938 28.289438 4.840215 0.261185 0.092635 1sα2pα 

1s
2
 2p 

2.208390 28.267757 4.834787 0.264139 0.101362 1sα2pβ 

4.800777 172.070208 12.209042 0.114670 0.026999 1sα3pα 

1s
2
 3p 

4.800106 172.063770 12.207368 0.115634 0.029900 1sα3pβ 

3.984192 126.469347 10.516445 0.111134 0.014910 1sα3dα 

1s
2
 3d 

3.984203 126.469344 10.516438 0.111135 0.014916 1sα3dβ 

          5sα 5pα 
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       From the present calculation, some 

important remarks can be deduced 

about the radial electron-electron 

distribution function f(r12) for Li-atom 

excited states 1s 2p, 1s 3p and 1s 3d. 

When comparing the f(r12) for Li-atom 

in the different excited state we see at 

small r12 a flat region in (1s 2p) and (1s 

3d) but a small curved in (1s 3p) 

because the outer electron has 

penetrated the 2p. The maximum of 

f(r12) for 1s 2p ˃1s 3d ˃1s 3p           

locations of these maxima decrease 

respectively. Also the max.f(r12) for αα 

˃ βα    (1s 2p) and (1s 3p) states and 

vice in state (1s 3d) but these locations 

decreases when the max.f(r12) 

increases but this difference is slight. 

We conclude that penetration into any 

orbital by other orbitals, occurs only 

between orbitals which are similar in 

spherical symmetry. Finally the 

distance between two electrons of 

parallel spin is greater as a result of the 

repulsion between them. 
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ًيي لذرة الليثيىم في حساب دالت تىسيع الكثافت القطزيت والقين الوتىقعت  بيي الكتزو

   1s 2p , 1s 3p , 1s 3dالحالاث الوتهيجت   

 
 *ًعيوت جيجاى هذكىر         **علي عبذ اللطيف كزين         *خليل هادي أحوذ البياتي

 

 قسى انفيشياء -كهيح انعهىو نهثُاخ -جايعح تغذاد *

 قسى انفيشياء         -كهيح انعهىو -جايعح تغذاد **

 

 الخلاصت:
تقييى  يًكٍ اٌ تىصف يٍ خلال   (1s 3d)و  (1s 3p)و(1s 2p)    انعلاقح الإنكتزوَيح نلأغهفح انثيُيح         

1s) نذرج انهيثيىو في انحالاخ انًتهيجح   f(r12) دانح انتىسيع انقطزي انثيُي
2
 2p) 1)وs

2
 3p)  1) وs

2
 3d)  

nr12. ونكم غلاف تيُي تى حساب انقيى انًتىقعح نهًسافح انثيُيح (HF) فىك -تاستخذاو دانح يىجح هارتزي
  .

     .       Mathcad 14جًيع انُتائج تى حساتها تاستخذاو تزَايج 

 
الأغهفح انثيُيح، َظاو عذو فىك، -هارتزي دانح تىسيع انكثافح انقطزيح نلأنكتزوٌ، تقزية الكلواث الوفتاحيت:

 انكزوي.انتًاثم 

 

 
 


