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Abstract:

In this paper the oscillation criterion was investigated for all solutions of the third-
order half linear neutral differential equations. Some necessary and sufficient

conditions are established for every solution of

(a®O[(® £pOx(z())"T) +q®O)x" () = 0,

t >t

to be oscillatory. Examples are given to illustrate our main results.
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solutions.

Introduction:

The study of oscillation theory for
solution of half linear neutral
differential equations has been recently
considered the attention of many
researches for the last several years,
see [1]-[8]. A few of them have been
investigated the case with variable
coefficients and delays, see [5], [7-9].

Consider the half linear neutral

differential equations.
(a®[® +p@®x(z(O)"T) +

q©Ox¥(a(0)) =0, t=¢ (1.1) } 0
(a®[®) —p@®)x(z(®)))"1) +

g’ (@) =0, t=t,  (Lii))

We define functions Z(t) = x(t) +

p(t)x(r(t)) (2.1)

z(t) = x(t) — p(t)x(r(t)) (2.ii)

In this paper we will assume that the
following conditions are satisfied
H1. a(t),p(t) €
C([tOI OO), R+ ), Q(t) €
C([ty,©),R), y >0 is the quotient
of odd positive integers.
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H2. z(t), o(t) are continuous functions
o(t) <t lim;,, t(t) = o0,

lim;_,, a(t) = oo.
1

H3. [ (75) ds = o0

Where a(t) is continuous positive
function. By a solution of eq.(1) we
mean a nontrivial function x(t) €
C([Ty,©),R), T, =t, for which
x(£) £ p()x(z(t)) € C*([Ty, »), R),
a(t)(z"(£))Y € C*([Ty, »),R), and
(1.1) is satisfied on some interval
([Ty, ©),R), where T, >t,, A non
trivial solution of eq.(1) is said to be
oscillatory if it has arbitrarily large
zeros, otherwise is saild to be
nonoscillatory that is eventually
positive solution or eventually negative
solution. The purpose of this paper is
to obtain necessary and sufficient
conditions for the oscillation of all
solutions of eq.(1).
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Some Basic Lemmas

The following lemmas will be
useful in the proof of the main results:
Lemma 1. [5]

Suppose that p,q € C[R*,RY],

qit) <t for t=ty limy,,q(t) =
oo and
: 1
ligninf fp(s)ds>; (3)
a(®)
Then the inequality y'(t) +

p(®)y(q(t)) <0  has no eventually
positive solutions, and the inequality
y'(@®) +p®y() =0 has no
eventually negative solutions.

Lemma 2. [4] Assume that p €
C([to,®); RT), T € C([to,); R), for
t = to,
I. suppose that O<p(t)<1 for
t=>ty, let x(t) be a continuous
nonoscillatory solution of a functional
inequality

x(t)[x(t) — p(t)x(r(t))] <0 in a
neighborhood of infinity.
Suppose that 7(t) <t for t > t,, then

x(t) is bounded. If moreover
0<pt)<é<1, t=>t, for some
positive constant &, then

lim;_ x(t) =0.
ii. suppose that 1 < p(t) for t > t,.
let x(t) be a continuous nonoscillatory
solution of a functional inequality
x(t)[x(t) — p(t)x(r(t))] >0 in a

neighborhood of infinity.
Suppose that 7(t) >t for t > t,, then
x(t) is bounded. If moreover 1 < § <
p(t), t >t,, for some positive
constant &, then lim,_,,, x(t) =0.
Lemma 3. Suppose that H1-H3 holds,
q(t) = 0 and let x(t) be an eventually
positive solution of (1.i) then there
are only the following two cases for
(2.1)

. z(t)>0, Z(t)>07'(t) >
0,[a®)(Z'"t)] <0, t =t = t,.

i. z()>0, Z'(t) <0, z''(t) >
0,[a®)(Z"(t)Y] <0, t =t = t,.
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Proof. Let x(t) > 0,x(z(t)) >
0,x(a(t)) >0, for t >ty then from
eq.(1.i) we get
[a®) (2] = —q(®O)x" (a(®)) <
0, t=>=ty hence
a(t)(z"(t))Y is non increasing , so
either
a(t)(z"(t))Y >0
or a(t)(Z"(t))Y <0,
therefore z''(t) >0 or
t >t; respectively.
Suppose that a(t)(z"(t))Y <0, then
there exists d < 0 such that
a@)'@) <d, t=t,>ty,
then

t=>t >ty
z'(t) <0,

1

v
z"'(t) < @

ar(t)
Integrating the last inequality from ¢,
to t and using H3 we get
1 g 1
Z'(t) —7'(ty) < dv T
ts aV(s)
This lead to lim;_, 2z'(t) = —
Then z'(t) <0 t = ts, for t; large
enough, this implies that z(t) <0
which is
contradiction a. So a(t)(z"(t))Y >0
hence z"(t) > 0. O
Lemma 4. Suppose that H1-H3 hold,
1<p() <p,t() >tq)<0, let
x(t) be an eventually positive solution
of eq.(1.ii) then there are only three
cases for (2.ii)
i. z(t)<o0, Z'(t) >0,7'(t) <
0,[al®)(Z't)] =0, t =t = t,..
ii. z(t)>0, 2'(t) >0, 2'(t) <
0,[a(®)(z"())"] = 0,t = t; > t,.
iii. z(t) <0, Z(t) <0, 2'(t) <
0,[a(®)(z"®)]' =20, t =t; = t,.
Proof. Let x(t) > 0,x(z(t)) >
0,x(a(t)) >0, for t >ty then from
eq.(1.1.ii) we get [a(t)(Z"(¢))"] =
0 hence a(t)(Z'(t))Y is non
decreasing then either a(t)(z"'(t))Y is
eventually positive or eventually
negative, it follows that either z"(t)
is eventually positive or eventually
negative, if z'(t) >0 which mean

ds
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that a(t)(z""(t))Y >0,for t>t, =
to SO there exists g > 0 such that
a®)(2"®)Y =p>0,t=>t, >t

that is
1

z''(t) = 'fy ,

a¥ (t)

Integrating the last inequality from t,
to t and using H3 we get
t

t>t,

ds

1 1
2O -7 2 [
t, ar(s)

then lim,_ z'(t) = o which implies

that lim;_, z(t) = o0 hence there

exist t; > t, such that x(t)z(t) > 0,

for t > t5 then by Lemma 2 it follows

that x(t) is bounded which is a

contradiction. Then a(t)(z"(t))Y <0

eventually which implies that z''(t) <
0. o

Main Results:

In this section, we give the main
results.
Theorem 1. Suppose that H1-H3 hold,
0<p()<11(t)<tq(t)=0, and

[a©[-pe@)ds== @
ty

Then every unbounded solution of
eq.(1.1.1) oscillates.

Proof.  Suppose the contrary that
eq.(1.1.i)  has eventually positive
solution x(t) then we have

[a(t)(Z"(t))Y]' <0, so by Lemma 3
there are only the following two cases
for (2.1)

I. z(t) > 0,7'(t) > 0,2"(t) >
0,(a®)(Z"(®)) <0, t =t =t,.

ii. z(t) > 0,Z'(t) < 0,2 (t) >
0,(a®)(Z"(®)Y)' <0, t =t = t,.
Case i. In this case a(t)(z"(t)) is
positive non increasing,

z(t) < x(t) + p(t)z(r(t)), then

x(o(t)) = z(a(t))

— p(a(®)z(1(a(1)))
> z(o(t))[1
—p(e@®)]
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x¥(o()) =2 z¥ (e ()1 -
P(U(t))]y’ t=2t; =2t (5)
Integrating eq(1.i) from t; to t we get

A @' ©) - alt) ()"
—- [ osnds

t1
t

g—fq@nwdﬂﬂl
—p(0())]"ds t
< —ZV(O'(t1)) .[Q(S) [1

ty
— p(a(s))]yds
Which as t— o
contradiction.
Case ii. Since x(t) is unbounded then
z(t) is unbounded which is a
contradiction in this case. O
Theorem 2. Suppose that H1-H3 hold,
0<p() <1,7(t) >tq(t) =0, and
there exist a continuous functions
a(t), B(t) such that a(t) >t L(t) >

leads to a

t
L e
gi_g})infff <@>y<f qw)(1
F(t) s v
1
Y
—p(a(w)))ydw> dvds

1
> —

(6)

e

F(t) = a(a(ﬁ(t))). Then every
bounded solution of eq.(1.1) oscillates.
Proof. Suppose that eq.(1.i) has
eventually positive solution x(t) then
we have [a(®)(Z"())Y]' <0, so
by Lemma 3 there are only the
following two cases for (2.1)

i. z(t) > 0,Z'(t) > 0,2"(¢t) >
0,(a(®)(Z"(®))Y)' <0, t =t = t,.

ii. z(t) >0,z'(t) < 0,2'(t) >
0,(a®)(Z"'M®))V) <0,t =ty = ty.
Case i. In this case lim;_ z(t) = o,
however x(t) and p(t) are bounded
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leads to z(t) is bounded which is a
contradiction.
Case ii. It follows from (2.a)

z(6) < x(t) + p(©O)z(z(t)), then

x(o(t)) =
z2(a(t)) — p(a(®)z(t(o(t) =
2(a()[1 —p(a(®)]
x¥(a(t)) = z¥(a(t))[1 -

p(a(®))]
Integrating eq.(1.i) from ¢t to a(t) we
get

—a(t)((g”(t))y

< - f q(s)xy(a(t))ds

‘ a(t)

1

([ axr asnasy

ar(t) t

Using (5) in the last inequality we get
a(t)

| a7 (es)a

ar(t) i
—p(a(s)))Yds]¥
a(t)
> Z(a(la(t))) [
a¥(t) t

1
— p(a(s)))Yds]¥
Integrating the last inequality from ¢ to

p(t) we get
B(®) (G(a(s))) a(s)
o= [ 25 [ qwa

Z”(t) >

Z”(t) >

q(s)(1

t a7(s) s
1
— p(e)) dvlVds
2 (0)
B(t) a(s)
<=2 (a(p@)) [ 1] awa
t al_’(s) s
1
—p(c()))dv]vds
B() a(s)
7@ +2¢©) [ 1] awa
t ar(s) s
1
— p(c)))Ydv]vds
<0,
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Where F(t) = o(a(B(t)))
by Lemma 1 and condition (6) the last

inequality cannot has eventually
positive  solution which is a
contradiction. i

Example 1. Consider the third-order
nonlinear differential equation

G Kx(t) + %x(t + n)) D

+ 1 (t 37r>
6% 2
=0, (E1)

In equation (E1) we find y=
La®) =1 =t+mo(t) =t—
3_7'1:
2
If we set a(t) =p() =t +§, and
using the condition (3 3) we get

)

s+ v+
—thmmf jf f dwdvds——
t__
>_
Then according to theorem 2 every
solution of equation (E1) is

oscillatory, for instance x(t) = sint is
such oscillatory solution.

Theorem 3. Suppose that H1-H3 hold,
1<p() <p,1() >tq() <0, and
there exists continuous functions
a(t), B(t) such that a(t) >t L(t) >
11m inf f f (a(v)

1k

H(t) = r‘l((g(a(ﬁ(t)))) <t.

1
t BE) ¥
lg(w)

1(J(W)))

dw] dvds

>_

lirtn inf f lg(s)|ds >0, (8)

t
f lg(s)I
5 P (7(0®)
Then every solution of eq (1.ii) is
oscillatory.

ds =

w’

t>T (9)
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Proof. Suppose that eq (1.ii) has
eventually positive solution x(t) then
we have [a(t)(Z"(t))"] =0, so by
Lemma 4 there are only the following
three cases for (2.b)
i. z(t) <0, Z'(t) >0,7'(t) <
0,[a®)(Z"'t)Y] = 0,t = t; = t,.
i. z(t)>0, z'(t) >0, 2(t) <
0,[a(®)(2"t)Y]' = 0,t =t; = t,.
. z(t) <0, Z'(t) <0, 2'(t) <
0,[a®)(Z"'t)Y] = 0,t = t; = t,.
Case i. From eq (2.ii) it follows that

—z(t)
x(r(t)) > e
—z(t7 (1))

p(T~H(1)

x(t) >

x(a(D))
—z(t"' (o (1))
p(t~1(a(6)))

Integrating eq (1.ii) from t to a(t)
and using (10) we get

—a()(z" (1))

(10)

2 (1 (o(5)))

> ds
f 9O o)
o)l

> _Zy(f-l(a(a(t))))f mds
z"(t) t

Z(r 1(cf(oc(t)))) lg(s)] 2
dslv

@ (6) jpy(f_l(f’(s))) °
Integrating the last inequality from ¢ to

B (t) we get
B©)
@< | e ) (16 («())

t a¥ (s)

lq(@)| 1
@ (o) Y

a(s)

gl
3 B(®)
-7z'(t) < z(‘r‘1 (U (a(ﬁ(t))))) f 11

¢t ar(s)

lq(@)| 1
@ (o) Y

a(s)

|
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z'(t)
T .
H dv]rd
i (t))t a%(s)[;f pY (" (o(v))) vlrds
>0

Where  H(t) = t7'(a(a(B(t))))
By lemma 1 and condition (7) the last
inequality cannot has eventually
negative solution which §
contradiction.
Case ii. From eq (2.ii)we get x(t) >
z(t), t=1t; =t

x(a(t)) > z(a(t)) (11)
Integrating eq (1.1.ii) from t to a(t)
and using (11) we get

—a(t)(z" ()"
a(t)

> —f q(s)z¥(o (s))ds

t
Z”(t)

a(t)
~1
<1 la©) (s dsl”
ar(t) t ,
— t a(t)
< ZH00) U |q(s)|ds]
ar (t) t
Integrating the last inequality from t;
to t
z'(t) —z'(t1)
EGONIE '
< - T f |q(v)|dvl ds
£y a7(st)
a(s) 14
<20t [ U |q(v)|dv] ds
£, ar(s)

as t — oo and in view of condition H3
and (8) the last inequality leads to a
contradiction.
Case iii. In this case a(t)(z"(t))Y < 0
and nondecreasing for t > t; hence it
is bounded.
Integrating eq (1.ii) from t; to t and
using (10) we get

a(t) (Zt”(t))y —a(t) (2" (t))Y

zV T “1(o(s
(&) |

>—f|q< 2l em)”
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> gV (r‘l(U(tl))) ,fpy (rlfll(zf)fl(s))) *

as t — oo and in the view of (9) the last
inequality leads to a contradiction
Example 2. Consider the third-order
nonlinear differential equation

(% |(x() -

2x(4t))”]3) — 8x (%) =
0, (E2)

One can see that

=, 7(t) = 4t+,0(t) =,
If we set a(t) =p(t) =2t

H(t) =~

We can see that all conditions (6) hold

as follows
t 2s

1 1
SVZlimff[vf dw]3dvds = o0 > —
L v ¢

? 2t

y=3,a() =

then

2v

t—>oo
s
8tlim ds =0 >0

&
jds=

t
so according
solution  of
oscillatory.

(0]

1
to theorem 2 every
equation  (E2) is
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