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Abstract:
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In this paper, we have been used the Hermite interpolation method to solve second
order regular boundary value problems for singular ordinary differential equations.
The suggest method applied after divided the domain into many subdomains then
used Hermite interpolation on each subdomain, the solution of the equation is equal to
summation of the solution in each subdomain. Finally, we gave many examples to
illustrate the suggested method and its efficiency.
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Introduction:

Singular boundary value problems
(SBVP's) for ordinary differential
equations (ODE) arise very frequently
in several areas of science and
engineering.  For  example, in
analysis of heat conduction through
a solid with heat generation,
Thomas—Fermi  model in atomic
physics, electro hydrodynamics and
the theory of thermal explosions.
These arise in Physiology as well in
the study of various tumor growth
problems, in the study of the
distribution of heat sources in the
human head[1-3]. Singular boundary
value problems are always very
important, there exists many method
for solving. For example, modified
Homotopy perturbation method [4],
differential transform method [5],
cubic trigonometric B-spline
method[6], Adomian decomposition
method [7], shooting method [8],
variation method[9].
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Hermite interpolation method which
was mooted by charts Hermite is often
used in interpolation of the data points
when the derivative of the function f(x)
in the given points are available this
technique has superiority on the other
types of interpolation polynomial [10].
In this paper we will use Hermite
interpolation method for solving
singular boundary value problems of
ODE after divided the interval [0,1]
into many subdomains equal distance.
Numerical examples show that present
method is efficiency.
1. Hermite Interpolation [11]
Weierstrass approximation theorem
guarantees that one can always find a
polynomial that is arbitrarily close to a
given function on some finite interval.
This means that the approximation
error is bounded and can be reduced by
the choice of the adequate polynomial.
Unfortunately this theorem is not a
constructive one, i.e.,, it does not
present a way how to obtain such a
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polynomial, i.e., the interpolation
problem can also be formulated in
another way, viz. as the answer to
the following question : How to find a
good representative of a function that
is not knew explicitly, but only at some
points of the domain of interest. In this
paper we will consider Hermite
interpolation where the interpolation
polynomial also matches the first
derivatives fM(x) at x = x;. This
interpolation technique is important
since it has the property that gives
high order of accuracy.

Theorem 1:[11] Suppose that f(x)e
C'a,b], and that x, xy, ..., x, € [a, b]
are distinct, then the unique
polynomial of degree (at most) 2n + 1
denoted by H,,,,; , and such that :

Hgn+1(xj) = (%), Hans1 (%) =
f(xj)) J€Zyyisgivenby:
Hynyq (%) = 111:0[1 - 2L'k(xk)(x -
)| LGOI f (i) + Xioo(x —

xi) [Lie (O f'(x) ...(1)

n

X — X;
Lk(X) - nxk — X;
l

i=0
i%)

The error bound for Hermite
interpolation is provided by the
expression:

E=(x — x,)%(x —x1)% ... (x —

x,)2f @D (x)/(2n + 1)!,where
f(x)e C?"*2[a, b].

2. Singular Boundary Value
Problem

The general form of the 2"™¢order
two point boundary value problems
(TPBVP) is:

y' +p@y +Q)y=0,a<x<
b..(2)
With  the boundary  conditions
(BC):y(a) = A and y(b) = B, where A,
BeR

There are two types of a point
x, € [0,1].0Ordinary point and Singular
point.A function y(x) is analytic at x, if
it has a power series expansion at
x,that converges to y(x) on an open
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interval containing x,. A point x,is an
ordinary point of the ODE (2), if the
functions P(x)and Q(x) are analytic at
x,. Otherwise x,is a singular point of
the ODE. On the other hand if P(x)
or Q(x) are not analytic at x,then x,is
said to be a singular point [12-
13].There is at present, numerical
method for solving problems with
regular singular points using Hermite
interpolation method with interval [0
1].
3. Description of the Method

In this section ,we apply the Hermite
interpolation method H,,,,, and Taylor
series to solve regular differential
equations. A general form of the 2"¢
order SBVP's is:

XMy =f(xy,y), 0<x
<1...3)
Subject to the boundary condition
(BC):

In the case Dirichlet BC: y(0)= A, y(1)
=B, where A, BeR

In the case Neumann BC: y'(0)= A,
y'(1) = B, where A, Be R

In the case Cauchy or mixed BC: y(0)=
A,y'(1)=B, where A, BeR

Or y'(0)=A, y(1) =B, where A, B €
R

where f is a general nonlinear function
. Now, to solve the problem by the
suggested method we will doing the
following steps:

Step one: Evaluate Taylor series of
y(x) about x = 0:

y(x) = ?Ozo aixi =a, + ax +
Y, aixt ... (4) )
, 0
Where  y(0)=a,,y'(0)= a, yz—(,)
@
= az,...,y i'(O) = q; ,i:3,4,...

Evaluate Téylor series of y(x) about x
=1/3: .

y(x) =XiZobi(x —1/3)" = by +
by(x — 1/3) + XfL, bi(x —
1/3)"...(5)

Where y(1/3)= b, ,y'(1/3)= b, L2

2!
@
=by.. I = b =34,
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Evaluate Taylor series of y(x) about x
=2/3: .

y() =Xiteci(x —2/3) = ¢, +
c1(x—2/3) + XL ci(x —

2/3)t...(6)

Where y(2/3)= c,y'(2/3)=c, T2
0) '

= cz,...,w =c¢; ,i=34,...

il
And evaluate Taylor series of y(X)
about x = 1: '
y() = Niodi(x — 1) = d, +
di(x = 1) + T, di(x = DL..(7)
\ 1

Where  y(1)=d,,y'(1)=d, yz—(')

@
=dy,.. =P =d; i=34,...
Step two: Insert the series form (4)
with derivatives into equation (3) and
put x = 0, then -equate the
coefficients of powers of x to obtain
a, .Then derive equation(3) with
respect to x,to get new form of
equation say(8) as following:
x™y"(x) + my (x)x™ ! =
ar(xyy,) (8)
— ...

Then insert the series form (4) with
derivatives into equation (8) and put
x=0 equate the coefficients of power of
X to obtain a5 .lterate this process
many times to obtain a, then as and so
on.

Step three: Make up x=1/3 into
equation (4) to obtain y(1/3)=b, ,to
find b, derive the equation(4)and
requite x=1/3,and insert the series (5)
into equation (3) and put x=1/3,then
equate the coefficients of power of (x-
1/3) to obtain b, .to find bs insert the
series (5) into equation (8) and put
x=1/3 and equate the coefficient of
power of (x-1/3). lterate this process
many times to obtain b, then bs and so
on.

Step four: Make up x=2/3 into
equation (5) to obtain y(2/3)=c, ,to
find ¢, derive the equation(5)and
requite x=2/3,and insert the series (6)
into equation (3) and put x=2/3,then
equate the coefficients of power of (x-
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2/3) to obtain c, .to find c3 insert the
series (6) into equation (8) and put
x=2/3 and equate the coefficient of
power of (x-2/3). lterate this process
many times to obtain c, then cs and so
on.
Step five: Insert the series form (7)
with derivatives into equation (3) and
put x = 1, then equate the
coefficients of powers of( x-1) to
obtain d, ,to find d; insert the
series(7) with derivatives into equation
(8) and put x=1 and equate the
coefficient of power of (x-1) . Iterate
this process many times to obtain d,
then ds and so on.
Step six: The notation implies that the
coefficients depend only on the
indicated unknowns a,, a;, d,and d;
where c¢;, b; Vi > 1 dependes on the
indicated unknowns a,, a,
When the substitute (BC) we get two
unknown  coefficients and then
substitute for coefficients ( a;, b;, ¢;, d;)
that we have obtained the previous
steps in  Hermite interpolation
polynomial H,,,,, equation(1).
Step seven: To find the unknown
coefficients by reduction  order
equation and use H,,,; as a
replacement of y(x) and substitute the
boundary conditions , we have only
two unknown coefficients from
a,, a;,d,and d; and two equation,
we can find this for any n by solving
this system of algebraic equations. So
insert the value of the unknown
coefficients into equation (1),Thus
equation (1) represent the solution of
the problem.
4. Error Estimation for SBVP's
Every known of BVPs software
package reports an estimate of either
the relative error or the maximum
relative defect. The weights used to
scale either the error or the maximum
defect differ among BVPs software.
Therefore, the BVPs allows users to
select the weights they wish to use.
The default weights depend on whether
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an estimate of the error or maximum
defect is being used. If the error is
being uses estimated, in this paper we
modify this package to consist SBVPs,
defined as :

E=ll ¥(X)- Hans1 (lleo / (1 + ||
H2n+1 (X) ”oo ) ; 0=x<1

where y(x) is exact solution and H,,,, 1
(x) is suggested solution of SBVPs .

If the exact solution does not find
then the component error of SBVPs is
E=|| Hyn41"(x) — fx, Hznyr (X),
Hyne1'(¥)) oo / (1 + [If(X, Hznaq (X),
Hyn41'(¥) ) [o0)

The relative estimate of both the
error and the maximum defect are
slightly modified from the one used in
SBVP SOLVER] 14] .

5. Numerical Examples:

In this section ,we used Hermite
interpolation and Taylar series to solve
singular boundary value problems
(SPVBs).After the domain [0 ,1] is
divided into two points with points 0,1

where  you found  polynomial
solution H,(x) and presented the
results the Variational iteration

method and the exact solution, and the
domain [0 ,1] is divided into four
points with points 0,1 where you found
polynomial solution H;(X),also the
domain[0 ,1] is divided into night
points with points 0,1 where you found
polynomial solution H,;(x).Then
examples calculated maximum error in
each case n=4,6,11 with figure
polynomials to find a good solution.
Examplel. Consider the following
SBVP:

Y 42y + (2 -y =—x*+
2x2 -7, 0<x<1
with mixed BC:y'(0) = 0, y(1) = 1.
The exact solution is : y(x) =1-x2 [15]
Using Taylor polynomials ,we have
y(0)=1 ,y(1/3)= 0.8888888888888889,
y(2/3)=, 0.5555555555555555
y'(1/3)= -0.6666666666666667,
y'(2/3)=-1.333333333333333, y'(1)=-
2

Now, we solve this equation using
these data

H,(x)= 0.148237723 10~ 14x7-
3.268496584 107 13x° +
4.227729278 10 13x5-

2.664535259 10713 x*+

7.860379014 10~ 1*x3- 1.0x%+ 1.0
Geng [15] solved this example by
(VIM) and give the following series
solution:

P (x) = 00999997 - x2+ 1.2347
1077 x*+ 1.46988 10~8x5+
0.0000165329x8-

0.0000201421x19+7.95888 10~ 6x12-
1.03072 10~ 6x1*

The numerical results are given in
following Table 1 gives H,(x) and
result VIM also exact solution. Table 2
gives the maximum error for number
pointn=4,6,11. Figure 1 gave the
accuracy of the suggested method.

Table 1: Numerical results for n=4
of example 1

Hermite

Xi

Exact Solution
y(x)

interpolation
H;(x)

VIM p(x)

1

1

0.999997000000000

0.1

0.990000000000000

0.990000000000000

0.989997000012525

0.2

0.960000000000000

0.960000000000000

0.959997000238787

0.3

0.910000000000000

0.910000000000001

0.909997001980789

0.4

0.840000000000000

0.840000000000001

0.839997012074748

0.5

0.750000000000000

0.750000000000002

0.749997054738341

0.6

0.640000000000000

0.640000000000003

0.639997189102191

0.7

0.510000000000000

0.510000000000004

0.509997518669322

0.8

0.360000000000000

0.360000000000005

0.359998167043863

0.9

0.190000000000000

0.190000000000007

0.189999194602654

0

8.43769498715119e-

15

4.57128800035456¢-
07

Table 2: The result maximum error

when n=4,6,110f example 1

Hermite Hermite Hermite
Er | . . . . . .
ror interpolatio | interpolatio | interpolatio

n H,(x) n Hy; (x) n Hy; ()
M. | 4.21884749 | 2.31020758 | 3.03624319
E | 357560e-15 | 079126e-12 | 630824e-07
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Fig.1: Comparison between the exact
and suggested solution when n= 4,
6,11

Example2. Consider the following
SBVP: y 42y —4y=-2 ,
0<x<1

with mixed BC:y'(0) = 0, y(1) = 5.5.

The exact solution is : y(x) =0.5 +
5sinh(2x)

—= [15]

x sinh(2)

Using Taylor polynomials, we have
y(0)= 3.257205700320381 ,y(1/3)=
3.466030095098947, y(2/3)=
4.1499242047031

y'(1/3)= 1.280759726616932, y'(2/3)=
2.915149400050196, y'(1)=
5.373147016441

Now, we solve this equation using
these data

H,(x)= 0.009130738291121613x7 +
0.01920841575611729x5+
0.01361484275073988x>+
0.3613904331003707x*+
0.001445668149072448x3+
1.838004201632197x2+
3.257205700320381

Geng [15] solved this example by
(VIM) and give the following series
solution:

p (x) =
0.367628x7+
0.0350121x9+0.00194512x5+
0.0000707316x1°

The numerical results are given in and
Table 3 gives H,(x), results VIM exact
solution. Table 4 gives the maximum
error for number point n = 4, 6, 11.
Figure 2 gives the accuracy of the
suggested method.

3.25721 + 1.83814x2%+

830

Table 3: Numerical results for n=4

of example 2

Exact Solution

X y()

Hermite
interpolation
H; (%)

VIM p(x)

3.27562381647618

3.27562348331808

3.27562819783156

3.33132158129189

3.33132136138556

3.33132605056115

3.42564142056487

3.42564145791085

3.42564603865789

3.56086353732463

3.56086354389276

3.56086836853219

3.74027136831943

3.74027129054089

3.74027648126133

3.96824614512855

3.96824615761122

3.96825161157128

4.25039346768551

4.25039351936955

4.25039935164274

4.59370586068823

4.59370563007463

4.59371217247398

5.00676642428200

5.00676603087337

5.00677296919957

1 5.50000000000000

5.50000000000000

5.50000595160000

Table 4: The result maximum error

when n=4,6,110f example 2

Erro Hermite Hermite Hermite
r interpolation interpolation interpolation
H;(x) Hj (%) Hy (%)
M.E 6.0524403950195 | 3.2687191368661 | 1.9597881395255
) 8e-08 6e-06 3e-05
Hamite interpolent
55
axact
+ HT
& HI
sr HIt ]
454 .
- /
4 //
35 V___-—f'i"ff“
T
?1.1 Il.‘! 0:3 0:4 0:5 [ 1:] Il.‘? Il.‘ll 0.‘9

Fig.2: Comparison between the exact

and
n=4,6,11

suggested

solution

when

Example 3. consider the following
SBVP: (1I-x?) y"+xy+y=0 , O

<x<1
With Neumann BC: y'(0) =0, y'(2) =
-y(1) [11]
Using Taylor polynomials, we have
y(0)= 1.85779174711865 ,y(1/3)=
2.076407841859629, y(2/3)=
2.02488427571492,y(1)=
1.65096790760441614054343517637,
y'(1/3)= 0.2793960039864789,
y'(2/3)= -0.6144298559221, vy'(1)= -
1.650967907604

Now, we solve this equation using
these data
H;(x) =-

0.001499602844631908737937919795
5132x7+ 0.008758728078627768x° -
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0.027426733964148297673091292381

287x°+ 0.07514319897959248x%-
0.332863322735647670924663543701
17x3 -

0.928936107025947421789169311523
44x° + x + 1.857791747118655

The numerical results are given in
and Table 5 gives H,(x), results VIM
exact solution. Table 6gives the
maximum error for number point n =
4,6,11. Figure 3 gives the accuracy
of the suggested method.

Table 5: Numerical results for n=4
of example 3

Xi P; Hermite interpolation H, (x)
0 1.857784296228232 1.85779174711866
0.1 1.948169418187120 1.94817677138695
0.2 2.018075735440336 2.01808339018278
0.3 2.065740050052486 2.06574825787000
0.4 2.089526555233489 2.08953495227793
05 2.087906467474147 2.08791430899834
0.6 2.059442143114885 2.05944879456718
0.7 2.002774819034724 2.00278016273118
0.8 1.916615117147540 1.91661963799949
0.9 1.799735452392664 1.79973987068057
1 1.650963483906875 1.65096790760442

Table 6:the results maximum error

when n=4 of example 3

. Error [H7" - f(x,
Xi H7" f(x, H7(x), H7'(x))
H7(x), H7'(x))|

8.04669405023439¢-

0 -1.85787221405916 -1.85779174711866 05
2.34784787940256¢-

0.1 -2.04909591215124 -2.04911939063003 05
1.73410413539798¢-

0.2 -2.22522747898047 -2.22522921308460 06
8.57889522176691¢-

0.3 -2.38870665496927 -2.38869807607405 06
7.23136737157404¢-

0.4 -2.54149371208515 -2.54149298894841 s
4.30384087213298¢-

0.5 -2.68514503382407 -2.68514933766494 06
1.01880497460627¢-

0.6 -2.82088869519379 -2.82088767638881 06
5.66316099970265¢-

0.7 -2.94970004269726 -2.94969437953626 06
2.93421649200099¢-

0.8 -3.07237727431599 -3.07238020853248 06
7.91047562120895¢-

0.9 -3.18961701949341 -3.18962492996904 06
8.04669405023439¢-

Max. Error 1.85779174711866 05

Where n=4,6,10, then max. error:
||H7 ()~ f(x, H; (%), H;())]| /(1
+ ||f(x, H, (x),Hé(x))”oo
= 2.815703e — 05

|H11"(x) — f(x, Hyy (%), Hi1' ()l
/(1 + If(x, Hy1 (), Hi1' () )l oo

= 0.000767

|Hz,"'(x) — (%, Hzq (%), Ha1' (GOl o/
(1 + If(x, Hzy (%), Ha1' () )l oo=
0.003949

Homite inferpolont
21 : “"'\-\-..,_\_\_\_‘ :
2050 //- o o Hiuf
\ H21
1 # n
135} / \
&
18} B
A 185 \
18]

1751

1T+

148

Fig. 3: Comparison the suggested
solution when n=4,6,11

Conclusion:

In this paper Hermite interpolation
method was used to solving singular
boundary value problem. The result
shown that the divided the domain into
a number point follow the same steps
as the previous is a very powerful and
efficient in finding accurate solution
for a large class of regular singular
point.
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