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Abstract:

Let R be a commutative ring with identity 1 and M be a unitary left R-module.
A submodule N of an R-module M is said to be pure relative to submodule T of M
(Simply T-pure) if for each ideal A of R, NN AM = AN+ T n (NN AM). In this
paper, the properties of the following concepts were studied: Pure essential
submodules relative to submodule T of M (Simply T-pure essential),Pure closed
submodules relative to submodule T of M (Simply T-pure closed) and relative pure
complement submodule relative to submodule T of M (Simply T-pure complement)
and T-purely extending. We prove that; Let M be a T-purely extending module and let
N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.

Key words: T-pure submodule, T-pure essential submodule and T-pure closed
submodule.

Introduction:

In this paper we assume thatR is closed submodule H in M which is T-
commutative ring with identity and all pure such that C is T-pure closed in H.
R-modules are unitary left R-module. In [4] an R-module M is called purely
A submodule N of an R-module M is extending module if every submodule
called pure submodule if for every is essential in pure submodule. We
finitely generated ideal TofR, NN introduce  the concept of T-
IM = IN [1]. A submodule K of an R- purelyextending module. We prove
module M is said to be P-essential if that; Let M be an R-module, then M is
for every pure submodule L of T-purely extending if and only if every
M,KNnL=0 impliesL.={0}  [2]. T-p-closed submodule of M is T-direct
Following [3], A submodule N of an summand of M.

R-module M is called pure relative to

submodule T of M (Simply T-pure) 1-Main results:

ifNNAM = AN + T n (NN AM) for The notion of purity for abelian group
each ideal A of R. It is clear that every was generalized to modules over
pure submodule is T-pure. arbitrary rings. In [2], the concept of P-
In this paper we introduce the concepts essential was studied. In this section,
of T-pure essential submodules, T-pure the notion of T-p-essential submodules
closed subomdules and relative T-pure was introduced.

complement submodules and we prove

that; Let A and C be submodules of an
R-module M,then there exist T-p-
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Definition 1.1. A submodule Kof an
R-module M is called pure essential
relative to submodule T of M (Simply
T-p-essential) if for every T-pure
submodule L with KN L < T implies
LST. M is called T-p-essential
extension of K.

It is clear that every P-essential
is T-p-essential for every submodule
but the converse may not be true in
general, the submoduleZ, as Z; -
module. Let K={0,2}L=2 Z, is (2Z,)-
pure, KNLE27Z,; thus L C2Z,.
Hence K is T-p-essential but not P-
essential.

The following result s
analogous to a similar concerning P-
essential submodule of a module.
Theorem 1.2. LetK S N € Mand let
T < M then:

1. If K is T-p- essential in M, then N is
T-p-essential in M.

2. IfN is T-pure in M and T € N and
K is T-p-essential in M, then K is T-p-
essential in N and N is T-p-essential in
M.

3. If M has T-pure finite intersection
property and if N is T-pure inM,
then K is T-p-essential in M if and only
if K is T-p-essential in N and N is T-p-
essential in M.

Proof: 1. we have to show that N is T-
p-essential in M. Let L be T-pure
submodule of M with NN L € T, since
KCN, thenKNLENNLC
T thus KNL S T. Since K is T-p-
essential in M then L < T. Hence N is
T-p-essential in M.

2. Let L be T-pure submodule of N
with KN L € T, since N is submodule
of M and K is T-p-essential in M,
therefore L < T,therefore L=LnN
NS TnN,thus L € T, hence K isT-p-
essential in N. Now we have to show
that N is T-P-essential in M. Let L be
T-pure submodule of M with NNL <
T,thus KNLENNLCTsoLCT.
Hence N is T-p-essential in M.
3.=ltisclear.
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& Suppose that K is T-p-essential in
N and N is T-p-essential in M, we have
to show that K is T-p-essential in M.
Let LbeT-pure submodule ofM
with KN L € T. By assumption NN L
is T-pure in M, thus N n L is T-pure in
Nby [remark 5] sinceK is T-p-
essential in N and KN(NNL)S T
thus NN L € T and also since N is T-
p-essential hence L € T. Thus K isT-
p-essential in M.

Corollary 1.3. Let M be an R-module
that has T-pure finite intersection
property .If H is T-pure in M, then
H N K isT-p-essential in M if and only
if H is T-p-essential in M and K is T-p-
essential in M for any submodule K of
M.

Proof: =The proof follows by
theorem (1.2).

<Let Lbe T-pure submodule of M
with KN (HN L) € T, by assumption
HNLis T—pure in M and since K is
T-p-essential in M, then HNL € T. So
again since H is T-p-essential in M
then L € T, therefore KNnHis T-p-
essential in M.

Remark 1.4. If A is T-p-essential in B
and A’ is T-p-essential inB’, then
A®A’ is not T-p-essential in BOB'
for example see example 4.6 in [2].

In [3], a submodule N of an R-
module M is said to be relative direct
summand to a submodule T of M
(Simply T-direct summand) if there
exist a submodule K of M with
M=N+Kand NNKC T. Itis clear
that every direct summand is T-direct
summand.

Remark 1.5. 1. Every T-direct
summand of an R-module M is T-pure
submodule.

2. Let M be an R-module and T € M.
If N is T-pure submodule of M and K
is any submodule of M, then NN K is
T-pure submodule in K.
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3. LetHE M,K < M, then HNKiis T-
p-essential in M if and only if H is T-
p-essential in M and Kis T-p-essential
inM, whereHCS T, K< T.

4. If K< M and H is T-pure in M, then
KN His T-pure in M.

In [2], a submodule N of an R-
module M is called a pure closed
submodule of M if M dose not contain
a proper p-essential extension of N. We
introduce the concept of relative pure
closed submodule to submodule.
Definition1.6. Let M be an R-module
and let T be submodule of M. A
submodule N of an R-module M is
called relative pure closed submodule
to submodule T of M (Simply T-p-
closed) of Mif M dose not contain a
proper T-p-essential extension of N.
Proposition  1.7. Any T-direct
summand of an R-module M is T-pure
closed.

Proof: LetM = A@B , where AandB
submodules ofM. IfAisT-p-essential in
K € M, then by [remark 1.5 (2)] KN B
isT — pureinK. But An(KnB) C
T,buuKNBC Tandso K=A.

Proposition 1.8. Let NS T € M, and
N is T-p-closed in M. If N € Kand K is

T-p-essential inM, then% is T-p-
. . M
essential in N

Proof: Let = be T-pure in Mwith £ n
N N N

Lcl thenKNLCT.
N N

But K is T-p-essential in M, thus
LEST and NS T and NCEL ,
hence % c E

Theorem 1.9. Let C be a T-p-essential
submodules of an R-module M with C
C T, then there exists T-p-closed
submodule H in M which is T-pure
such that C is T-pure closed in H.
Proof: let V= { K: K is T-pure
submodule of M such that C is T-p-
essential in K}. V#@,(since T is T-
pure submodule of M, T € T and C is
T-p-essential in M then Dby
theorem(1.2) C is T-p-essential in T).
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By Zorn's Lemma, V has a maximal
element say H. To show that H is T-p-
closed in M, let L be a submodule of M
such that H is T-p-essential in L. Since
C is T-p-essential in H and H is T-p-
essential in L, then by theorem(1.2) C
is T-p-essential in L and thus H=L.

Let NandKbe submodules of
anR — moduleMwithKpureinM, K is
called pure relative complement
ofNinMifK is maximal with the
property KN N = {0}[2]. We introduce
the concept of relative pure
complement relative to submodule
TofM (Simply T-p-complement).
Definition 1.10. Let NandK be two
submodules of anR-module M with
KisT-pure in M, Kis called relative T-p-
complement of NinMifK is maximal
withKNNC T.

Compare the following result with
proposition (4.14) in [2].

Proposition 1.11. Every submodule of
an R-module M has a relative T-p-
complement inM

Proof: Let N be a given submodule of
M and consider the set S= {KcEM, K is
T-pure in M with NNKCST}. It is clear
that S#@ by [2], and every chain of S
has an upper bound. By Zorn's Lemma,
S has maximal element which means N
has relative T-p-complement in M.

The following proposition gives the
relation between T-p-closed submodule

and relative T -p-complement
submodule.
Proposition 1.12. Let N be a

submodule of an R-module M and T <
F, for every T-pure submodule F of M.
If N is relative T-p-complement for
some K of M, then N is T-p-closed in
M.

Proof: Let L be T-pure submodule of
M with N is T-p-essential. We have
NONK €T, (NN K)yNLcTDnN
L,sinceL is T-pure in M, thenK N Lis
T-pure in L by remark (1.5) thus N N
(K NL S TN L=T ,hence L=N,
hence N is T-p-closed in M.
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In [4], an R-module is called
purely extending module, if every
submodule of M is essential in a pure
submodule of M. We introduce the
concept of relative purely extending
module to submodule T of M (simply
T-purely extending).

Definition 1.13. Let M be an R-
module, M is called T-purely
extending module if every submodule
is T-p-essential in T-pure submodule
of M.

The following theorem gives a
characterization of T-purely extending
module.

Theorem 1.14.Let M be an R-module,
then M is T-purely extending if and
only if every T-p-closed submodule of
M is T-direct summand of M and every
submodule is submodule of T.

Proof: Suppose M is an T-purely
extending and let K be a T-p-closed
submodule of M. Then there exists a T-
pure submodule B of M such that K is
T-p-essential in B. Conversely, let A
be T-p-essential submodule of M, by
theorem (1.9) there exists a T-p-closed
submodule H in M such that A is T-p-
essential in H. Since H is T-p-closed in
M, then by our assumption H is T-pure
in M and hence M is T-purely
extending.

Remark 1.15. Every purely extending
module M is T-purely extending.
Proof: Let A be a submodule of an R-
module M. Since M is purely
extending, then there exists a pure
submodule B of M such that A is
essential in B. Thus B is T-pure in M
and hence M is T-purely extending.
Proposition 1.16. If an R-module M is
T-purely extending and N is T-p-

closed submodule of M, then% is T-
purely extending.
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Proof: Let% be a submodule of% )

Since M is T-purely extending, then
there exists a T-pure submodule A of
M such that K is T-p-essential in A and
since N € K and N is T-p-closed in M
then by proposition (1.8)% iIs T-p-
essential in %. But A is T-pure in M, so
by remark (1'5)2 is T-pure in %

In [5], an R-module M has the
relative pure to submodule T of M
intersection property (Simply T-PIP) if
the intersection of any two  T-pure
submodule is T-pure submodule.

Now, we give a condition which a pure
submodule of T-purely extending
module is T-purely extending.
Corollary 1.17. The homomorphic
image of T-purely extending is T-
purely extending if every submodule is
T-p-closed.

Proposition 1.18. Let M be a T-purely
extending module and let N be a T-
pure submodule of M with NST. If M
has the T-PIP, then N is T-purely
extending.

Proof: Let A be a T-p-closed
submodule in N, then by theorem (1.9)
there exists a T-p-closed submodule B
in M such that A is T-p-essential in B.
Since N is T-p-essential in N, then
A=A N N is T-p-essential in B N N <
N, but A is T-p-closed in N, therefore
A=B N N. Since M is T-purely
extending and B is T-p-closed in M,
then by theorem (1.13) B is T-pure in
M. But N is T-pure in M and M has the
T-PIP, so A=BN N is T-pure in M and
hence A is T-pure in N. Thus N is T-
purely extending.
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