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Abstract:

Based on analyzing the properties of Bernstein polynomials, the extended
orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved.
Another method for computing operational matrices of derivative and integration D,
and RZ_, respectively is presented. Also the result of the proposed method is
compared with true answers to show the convergence and advantages of the new
method.
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Introduction:

We already know  that polynomials, which have certain
orthogonal polynomials play a central advantages for the considered problem
role in the solution of least-squares in the case of smooth transformed
problems. The main characteristic of functions. Due to the increasing
this technique is to reduce the interest on Bernstein polynomials, the
problems related to those of solving a question arises of how to describe their
system of algebraic equations. The properties in terms of their coefficients
polynomials  determined in the when they are given in the Bernstein
Bernstein basis [1],enjoy considerable basis. Recently  Yousefi and
popularity in  many  different Behoozifar derived the operational
applications. For example in the matrices of Bernstein polynomials
solution  of integral  equations, [7].In this work we proposed a method
differential equations and to give the operational matrix of
approximation theory, see e.g.],[2].[3]. derivative D, and integration
On the other hand, recently the method RE_  respectively such that:

of operational matrix of integration
was proposed as an effective tool for
processing of singular integrals of Abel t

type using one -step procedure. and JB(x)dx =RE_, B(t)
Example, Legendre Wavelet was used 5

[4], [5].Further, Singh et al. [6] derived

the operational matrices of Bernstein

d
Db = ab(x) = Db B(X')
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where b(x) [bo7(x), b17(x), by7(x), b37(x), baz (x), bs7(x), be7(x), b77(x)]

And B;;,i =0,1,2,..7 are the basis
Bernstein polynomials.

The remainder of this paper is
organized as follows. In section2, we
describe the formulation of the
Bernstein polynomials (BP),
fundamental relations andwe give
approximate function for BP. In
section4, a class of orthonormal
polynomials for n=7 are given. In
section5 wecalculate the operational
matrix of derivative. In section6 we
briefly  describe calculating the
operational matrix of integration.
Finally, in section7 we demonstrate the
accuracy of the proposed numerical
scheme by numerical example.

Bernstein  polynomials
Fundamental Relations
From the binomial theorem we have
for any n:
1=(1-t)+"
n

- Z (T) (1— )it

i=1

The Bernstein basis polynomials of
degree n are defined on the interval [0,
1] as [8]:
Bin(x) = (?)xi(l —x)*, Fori =
0,1,2...n..(1)
The set of Bernstein basis polynomials
Bon(x), B17 (%), .., Bppn(x) formsas
basis of the wvector space of
polynomials of real coefficients and
degree no more than n.
For convenience, we set B;,(x) = 0 if
i<0ori>n.
By using the binomial expansion of
(1 —x)™, we have
(Til)xl(l _ x)n—L ='

RHCDH () @)
A function f € L?[0,1] may be written
as in the following expansion:
f(x) = lim,_, Xizo Cinbin --- (3)
Here ¢, =< f,b;, > where <.> is
the inner product over L?[0,1] .

(BP) and
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If the series is truncated atn = m, then
denote:

)% ) cimbim () = CTB() .. (4)
i=0
Where C = [com» C1m -+ » Cnm ]
B(x) = [bom, b1my s bym]" - (5)
H = L?[0,1] is a Hilbert space with
the inner product that is defined by

(f,g9) = folf(x)g(x)dx and .Let
Sn = span {Byn, Biy --- Bun} 1S @ finite
dimensional and closed subspace,
therefore S,, is a complete subset ofH,
so, f has the unique best
approximation out of S, such as
So € Sy, that  is;3sp €S, st Vse
Sallf = sol| < [If = sl|, this implies
that:

Vs € S,(f —Sp,5) =0 .. (6)
Therefore, exist the coefficients
Co, C1, -, Cp SUCH that

sox) = C"o() = f, ..(7)

Where CT = [cq, ¢y, ..., ¢, ]. By €q.s
(6)
(f —=CTO(x),Bin(x)) =0 i
=0,1,..n..(8)
For simplicity, we write:
CT(0(x),8(x)) = (f, 0(x)),
Where

(£,000) = f FGOOT () dx

= [CF 2 Bo) (F + Bundsoor f 2 Bund)] o 9)

We define the matrixD = (@(x), ?(x))
isan (n + 1) x (n + 1)which is called
the dual matrix of D, (x).

Let D = (0(x),0(x)) =

A [} Ta(O)T (x)dx ] AT =

AHAT .. (10)

Where H is a Hilbert matrix and we

can obtain the elements of D as:
1
Dit1,j41 = [y Bin(x¥) Bjn(x) dx =
(?)(’})

e+ ()’

Where i,j =0,1,...,n.
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Generation of the Orthonormal
Polynomials

Let us first define the inner product in
the functional space for two functions
f(x)and g(x) defined over the domain
D € R" by:

f.9

=f w(x)f(x)g(x)dD . (11)
D

Where w(x)the suitable chosen weight
function .The is induced norm of a
function using above inner product is,
therefore, given as

I1f12 = f w2 dD  ..(12)

To generate an orthogonal sequence,
we can start with the set:

i)} = {Bi7 (1)},

i=01,..7 ..(13)
Where B;;(x) are the linearly
independent Bernstein  polynomials

over the domain [0, 1].

To generate an orthogonal sequence
@;7 , we apply the well-known Gram-
Schmidtprocess, on{B;;}/_, , Which is
given as:

Bo7 = Boy .. (14)
®i7 = Bj; — Z Cij(z)j7 ,i=12,..7 ..(15)
j=1
Where
Cij =

(Bi7 ’ ¢j7)/(®j7, ®j7) (16)

By dividing each @;, by its norm, we

obtain a class of orthonormal
polynomials from Bernstein
polynomials,

Namelybo7, by7, bz7, b37, b7, bs7, be7,
b77 . .
And they are given by:

by, = V15 (1 —t)7

by, = 2V13[7t(1 —t)® —%(1 —1)7]

2611
by7 = = [21

% +—(1—t)7]

t2(1—1t)°> = 7t(1 -

848

132 63
by, = — [35t3(1 — ) — —t2(1

2
63
—t)°+—t(1—-1t)°
)+11( )
7 1—-1t)7
44( )]

66

4 _ 3 _ 3 _ \4
713501 - 0° =706~ 0)

by; =
14
+35t2(1 —t)° — ?t(l
7
—_\6 4 _ 7
£+ (1175t) ]
bs, = 12/5[21t5(1 — t)? —Tt4(1
— )3 +100t3(1 —t)*
75t2 1—t 5+25t 1
St A=) +—t(
- t)® —i(l
12

- t)7]
bg; = 12V/3[7t0(1 — t) — 63t5(1 — t)?

315
+ Tt4(1 - t)3

—140t3(1 — t)*

+ 45t2(1 — t)>
9t 1-t)°+ ! 1

—t)7]

49
b,;, = 8[t7 — 71:6(1 —t) +147t5(1

1225
—t)? — Tt4(1 —t)3
+ 245t3(1 — t)*

147
— th(l —t)°

1

+ 7t(1 —t)° — §(1

—t)7]
The explicit representation for the
orthonormal, in general product of a
factorable polynomial and non -
factorable  polynomial. For the
factorable, there exists a pattern of the
form (J2(n — i) + (1 — x)**
,i=20,1,..,n and the pattern in the
non-factorable part can be determined
by analyzing the binomial coefficients
present in Pascal’s triangle. In this way
we have determined this formula

in() = (Y2 -+ 1)1 -

O Bl (T
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The  Operational Matrix  of
Derivative for Orthonormal
Polynomials

In this section, orthonormal Bernstein
operational matrix of derivative will be
derived; before we derive we need the
following theorem.

Theorem: [9]

The first derivatives of nth degree
generalized Bernstein basis
polynomials can be written as a linear
combination of the generalized
Bernstein basis polynomials of degree
n

d .
B () = (= i+ DBy, ()
+ (2i — 1)B; (%)

= ({(+ DBip1n(x) ..(17)
Such that

From this formula, there is a relation
between Bernstein basis polynomials
matrix and their derivatives.

The matrix relationwhich obtained is
given by:

N

—7 7 0 0 0 0 0 O

-1 -5 6 0 0 0 0 O

0 -2 -3 5 0 0 0 0
~]lo o0 -3 -1 4 0 0 0
“lo 0 0 -4 1 3 0 O

0 0 0 0 -5 3 2 0

0o 0 0 0 0 -6 5 1

Lo o0 o o o o -7 74
B(x) =B(x)N ...(18)

B(x) = [397(95)' B17§x); B27(x),B37(x), B47§x)B57(-?C)’367(?C)B77(x')] '
B(x) = [307(90:317(95)'Bz7(x);B37(x)'B47(x)'Bs7(x)'B67(x)'377(x)]

Now, we introduce a new method for
deriving  operational matrix  of
derivative for orthonormal Bernstein
polynomials of degree seven. The idea
of the technique depends on the
following derivative property of the
basis vector @(x)

d¥ (x
di ) =D 0(x) ..(19)
Where ¥ (x)are the orthogonal

Bernstein polynomials of the degrees
even and @(x)be the

Bernstein
defined by:
P(x) =
[bo7, b17, b27, b37, baz, bs7, be7, b77]T
And

B(x)
= [ Bo7, B17, B27, B37, Ba7, Bs7, Be7, B77] T.. (20)

polynomials respectively

Where D is the 8 x 8 operational
matrix of derivative defined as follow

—27.110883 —3.872983 0 0 0 0 0 0
75.716577 —32.449961 —14.422205 0 0 0 0 0
—109.448618 132.191188 —12.318892 —-36.956676 0 0 0 0
129 —243.857143  148.285714 66 —75.428571 0 0 0
—134.933317 329.962985 —340.923955 24.945655 224.510897 —-124.728276 0 0
127.455875 -365.117957 495.129338 -201.246118 -293.244343 415.908644 —160.996894 0
—105.655099 332.306319 —522.584472 323.646065 239.023011 -613.145986 478.046023 —145.492268
l 63 -207 348 —252 -126 462 —468 252 J

Orthonormal Bernstein Operational
Matrix of Integration

The main objective of this section is
derived the orthonormal Bernstein

polynomials
t t

matrix of integration, to achieve this,
integrating the orthonormal base eight
function from

Oto t as given

l.e.

jB (x) dx = f[b07(x),b17(x), ba7(x), b37(x), b7 (X)), b57(x),b67(x),b77(x)]T

= E)FO(-X)’ I—'l(x)r FZO(-X)I I—'S(x)r F4,(X), I—'S(x)l F6 (.X), F7(x)]T

=RE . B(t) ..(21)
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Where I;(x), i = 0,1, ...,7 are defined

as follows:
n
Ii(x) ~ ZC}7 Bj7(x)
j=0
= [cy7, €47, ) €7 B(%),
0<t<1, ..(22)
- 0.117188  0.225464  0.199751
—0.007273  0.101563  0.200194
0.000956 —0.013346  0.085938
—0.000200  0.002786 —0.017938
0.000059 —0.000819  0.005273 —0.020670
—0.000023  0.000315 —0.002026
0.000010 —0.000146  0.000942 —0.003690
L—0.000005  0.000066 —0.000423

Solving variational problem

In this section, we solved the problems
of finding the minimum of the time-
varying functional by wusing the
operational matrix of derivative
Algorithm 1lvia BP

Consider the first order functional

extremal
1

1© = [16 00 + 23 £
0
+ t2(x)]dx  ...(23)
With two fixed boundary conditions
t(0)=2 ,it(1)
= -1 .. (24)
In this case, the exact solution is
t(x) = cie* = ce”t + 1, Where
c;=el—1/et +e7 1, cy =
1+el/et+e1...(25
Approximate the variable t(x) using
(OBP)
t(x) = cT b(x) .. (26)
Differentiated eq. (26), we get
t(x) = cTh(x)
= cT'Db b(x) .. (27)
Where ¢ = [cy, €1, €3, C3, C4, C5, Co,

7.6718 —3.7026 —2.0252 -1.0152
—0.1958

—3.7026  4.1837 1.0818

/—2.0252 1.0818  1.4294  0.7343
|—1.0152 ~0.1958 0.7343  1.0334
| —0.4522 —0.4977 —-0.0163 0.6595
—0.1699 —0.3851 —0.3990 —0.0163
—0.0486 —0.1857 —0.3851 —0.4977
—0.0081 —0.0486 —0.1699 —0.4522

0.181746
0.166224
0.173405
0.070313

0.007941

0.001657

For n =7, the explicit expressions

for REvia eight orthonormal
polynomials for egs. (21)

IS given as

0.160050  0.135339  0.104805 0.060520
0.149872  0.125658  0.097724 0.056271
0.131835  0.117904  0.088817 0.052245
0.144690  0.096875  0.084880 0.045218
0.054688  0.113444  0.061839 0.045724
-0.021009  0.039063  0.078670 0.026786
0.009764 —0.018155  0.023438 0.037588
-0.004385  0.008152 —0.010525 0.007813

b = [by7, b17, bz7, b3y, baz, bss,
b67' b77]
Substituting egs. (26) and (27) in eq.
(23) , yields

](t)1

= J[ch(x)bT(x)c+ ¢’ x b(x)

0
+cTb(x)bT(x) c] dx ...(28)
The quadratic programming problem in
eq. (28) can be simplified to
J®)=1/2c"Hc+ dT C..(29)
Subject to
F,c— by =0,
Where
fi = (50)-
(100000 0 0)’b1=
000000 -7 7

(21)
beT(x) dx
Graazz2)
H=2|[b(x)b"(x)
bf X X

+ b(x)bT (x)] dx

—0.4522 -0.1699 -0.0486 —0.0081
—-0.4977 -0.3851 -0.1857 —0.0486
—0.0163 -0.3990 -0.3851 —0.1699
0.6595 —0.0163 —0.4977 —0.4522
1.0334 0.7343 —0.1958 -—1.0152
0.7343 1.4294 1.0818
—0.1958 1.0818  4.1837
—1.0152 -2.0252 -3.7026 7.6718
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The optimal values of unknown c*

parameters c¢* can be obtained using = —H'¢

Lagrange multiplier +H RN (FH Y FD) Y (F,H ¢
technique as + by),

c*=[2 1.798622 1.621053 1.460581 1.311684 1.169471 1.029317 0.886460]

Table (1) shows comparison between
exact and approximate solution by
using the operational matrix of
derivative of BP of degree 8

Approximate the variable t(x) using
(OBP)

t(x) = cT b(x) .. (26)
Differentiated eq. (26), we get

x Exact solution BP |Exact - B;; | t(X) - CTb(x) - CT Db b(x) (27)
o |2 2 0 Wherec = [cy, €1, €3, €3, C4, C5, C g,
T —
0.1 1.863804265845607 1.863804265845607 0.000000000000000 C7] ,b — [b07’ b17, b27’ b37’ b47’
0.2 1.736253775770209 1.736253775770209 0.000000000000000 b57’ b67! b77]
0.3 1.616071961185921 1.616071961185921 0.000000000000000 SUbStItUtlngeqs (26) and (27) II’I eq
0.4 1.502056000789419 1.502056000789419 0.000000000000000 (23)’ yI6|dS
0.5 1.393064785622723 1.393064785622723 0.000000000000000 ] (t)
0.6 1.288007495877680 1.288007495877680 0.000000000000000 1
0.7 1.185832682072615 1.185832682072615 0.000000000000000 — f[CT b(X)bT(x) c + CT X b(x)
0.8 1.085517743229661 1.085517743229661 0.000000000000000
0.9 0.986058694681254 0.986058694681254 0.000000000000000 OT T
1 0.886460118134294 0.886460118134294 0.000000000000000 + c b(x)b (x) C] dx (28) A
The quadratic programming problem in
Algorithm 2via OBP eg. (28) can be simplified to
. . . J®)=1/2c"Hc+ dT C ...(29)
Consider the first order functional Subiect t
extremal ubject to
1 F1 Cc — b1 = O,
Y . Where
J(t) = j [£% (x) + 2 x t(x) = () -
T \ry) T
0
Vi5 —V/13 V11 -3 V7 —5 V3 -1
_ o+ tP()]dx .. (23) (o 0 0 0 0 ~145.49227 252)'
With two fixed boundary conditions
t(0)=2 ,i(1)=-1 ..(29)

1
blz(zl),dezfbe(x) dx

0

In this case, the exact solution is

t(x) = ce* = c,e”t + 1, Where - (—\/E VI3 V11 -3 V7 -5 -3 E)
C1281—1/61+€_1, cy = 4 14 4 4 4 4 4 4
1 1 -1 .
1+e'/er+e ... (29 H= 2f[b(x) BT (x) + b(x)bT (x)] dx
0
115.0769 —210.5378 178.5757 —162.6653 143.4573 —121.2436 93.9149 —54.2218
—210.5378 509.8182 —530.3447 449.7106 —400.6545 338.6148 —262.2899 151.4332
178.5757 —530.3447 7449231 —695.8882 567.2957 —489.4691 379.1411 —218.8972
—162.6653 449.7106 —695.8882 848.4675 —730.9833 548.7950 —446.8691 258
143.4573 —400.6545 567.2957 —730.9833 856 —659.2203  359.4108 —269.8666
—121.2436 338.6148 —489.4691 548.7950 —659.2203 837.7143 —503.4878 —26.8328
939149 —262.2899 379.1411 —446.8961 395.4108 —503.4878 1268 —1447.9945
—54.2218 151.4332 —218.8972 258 —269.6866 —26.8328 —1447.9945 2900
The optimal values of unknown c*
parameters c¢* can be obtained using = —-H1lc
inh -1 T -1pTN\—-1 -1
Lagrange multiplier +HET(FLH'F)H Y(F,H 1 ¢
technique as + b,),

*

c
= [0.897145 0.710459 0.566356 0.450951 0.355758 0.274292 0.198797 0.110808]
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Table (2) shows comparison between
exact and approximate solution by
using the operational matrix of
derivative of OBP of degree 8

x Exact solution OBP |Exact - b |
0 2 2.000000000000 0.000000000000
002 002

0. 1.863804265845 1.863804265845 0.000000000000

1 607 606 001

0. 1736253775770 1.736253775770 0.000000000000

2 209 209 000

0. 1.616071961185 1.616071961185 0.000000000000

3 921 920 001

0. 1.502056000789 1.502056000789 0.000000000000

4 419 417 002

0. 1.393064785622 1.393064785622 0.000000000000

5 723 723 000

0. 1288007495877 1.288007495877 0.000000000000

6 680 678 02

0. 1185832682072 1.185832682072 0.000000000000

7 615 615 000

0. 1.085517743229 1.085517743229 0.000000000000

8 661 658 03

0. 0.986058694681 0.986058694681 0.000000000000

9 254 250 004

1 0.886460118134 0.886460118134 0.000000000000
294 288 06

Conclusion:

In this paper the properties of the
combination for (OBP) and Bernstein
polynomials themselves defined on the
interval [0, 1] are analyzed. We
derived 8 %8 Bernstein polynomials
operational Matrices for derivative and
integration in details directly. The
orthonormal  Bernstein  operational
matrix is used to reduce the variational
problems to solve a system of linear
algebraic  equations. The above
example supports this claim.
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