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Abstract:
In this paper we present the theoretical foundation of forward error analysis of
numerical algorithms under;

e Approximations in "built-in" functions.

e Rounding errors in arithmetic floating-point operations.

e Perturbations of data.
The error analysis is based on linearization method. The fundamental tools of the
forward error analysis are system of linear absolute and relative a prior and a
posteriori error equations and associated condition numbers constituting optimal of
possible cumulative round — off errors. The condition numbers enable simple general,
quantitative bounds definitions of numerical stability. The theoretical results have
been applied a Gaussian elimination, and have proved to be very effective means of
both a priori and a posteriori error analysis.

Key words: built in function, Rounding errors, perturbations data, boundary value
problem.

Introduction:

Evaluation algorithms are defined by negative weights and n is an accuracy,
finite sequences F= ( F, ..,E,) of input constant.

operations, evaluations of ‘built-in’

functions, and arithmetic operation for Remark

determing sequences. Many of these theoretical properties do
Let U= (U,, ....U,) of input data, not hold in the presence of rounding
Intermediate and final results [1- 4]. errors. Where:

U =F@),=t=0..,n....... (1) Cond (A) = ||A]|||A71]| condition
Under perturbations, an evaluation number. [4],

algorithm vyields approximations V, of Cond ||A]|| = denote the spectral norm
U, that can be written in the form of A (The norm of a matrix is in some
Vi=A+e)F(V),t=o0,..,n sense a measure of the magnitude of
N ) the matrix).

e; Called the local error are the relative Al = MAX;|2;(A AT)|Y/? The
errors of data input. spectral norm. (The notation A; (4 AT)
We shall assume that the local errors denotes an eigenvalue of AAT note that
are  bounded by |e;] <y, for for any real matrix A the matrix AAT is
t=0,....n, where y, are suitable non symmetric and nonnegative definite.
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1. Error Propagation:

Starting points are representations and
elements of the errors in elementary
arithmetic operations, +, -, *, /, and
"puilt-in" function occurring in the
floating — point arithmetic of
computers. Condition numbers are
defined for the simplest algorithms,
consisting of the input of one or two
operands followed by an arithmetic
operation or function.

Estimates for the remainder terms of
Taylor's formula are established. By
neglecting remainder terms in the
general error equations, Propagation of
error is the effect of errors on the
uncertainty of a function based on
them. When the variables are the
values of experimental measurements
they have uncertainties due to
measurement limitations which
propagate to the combination of
variables in the function.

The algorithm (A) determines uniquely
mapping A in R™*1 . The solution of
the linear absolute error equations are
obtained by means of the solution
operators L= (A'W)~1, and of the
relative error equation by L= jw™?
(A'W)~1Jw. this is in correspondence
with the use of so-called relative or
logarithmic derivatives [5].

2. Error estimates for numerical
algorithms:

Round — off errors arise because it is
impossible to represent all real
numbers exactly on a machine with
finite memory (which is what all
practical digital computers are)

Given two numbers a, b, and arbitrary
approximations a’,b’, of ab the
following absolute and relative a priori
and a posteriori errors are defined:

Absolute Relative

Apriori Aa=a'-a Pa=(a-a)/a,a#0
A posteriori Aa'=a-|pa'=(a-2a')/a,a
a’ #0

P(aob) = (a'ob’ -

A (aob) =2’ ob’ - aob, aob),
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O =+, -, * [ of sums, differences,
products, and quotients  under
perturbations of the operands a, b. It is
well known that:

A(atb)=Aa=£Ab,
A(ab)=(bAa)+(aAb)+(AaAb)
A (a/b) =1/ (b+ A b) (Aa— (a/b) Ab)

P (axb)=(alc) P, £ (b/c) Py,
P(ab):Pa +Pb+ (Papb)

P (a/b) = (F,—Pp) [ (1+Pp)

Where ¢ = a = b. The numerical
computation of aob first requires input
or computing of operands a, b carried
out approximately.

3. Forward Elimination:
The following investigation deals with
the error analysis of Gaussian

elimination for the solution of regular

linear systems.

I-AX =y @ Yk Qiexg =y; 1= 1
(1)n. with real coefficients a;, and
right-hand sides y; first the common
forward elimination is analyzed
which reduces the given system
with one or several right —hand
sides to a triangular linear system it
is well known that the determinant
of A can also computed in this way.

Thus let A;= (a},) be a rectangular nx
(n+h) matrix such that

2-al, =ay i=1(Q)n.

For the solution of the above linear
system (1) set h=1 and

3 alyyy =y i=1A)n,

For the error analysis of computing the

determinant put, h = 0 such that A,;= =

A by forward elimination a sequence

of matrices

Apr = (ag*h) is

determined according to

(Al
4- mit _(ait/tau)i afljl

t
mye Ajp

= tay —

(i=t+1,...n, & k=t+1,...n+h) for t=1,...
n-1. Due to data perturbations,
rounding errors, or a preceding
computation of the coefficients and
right hand sides this algorithm is
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performed numerically with

approximations aj, of aj. The

floating-point arithmetic of computer
computes, instead of the exact afy?,

the approximations [6].

5- my = F1 (a;'/at), az** = F1
(ae- F1 (i ag))-

The linear absolute a priori error

approximations sk, st of aj;f,my

satisfy the linear error equations:

sit = (1/ad) s — (mye/ag)s

+ mye ey,

6- Si = Six — My S — Qg SIE —
M Ay el + age erik

By ey, efir erix are meant the relative

rounding errors of the floating-point

division/ multiplication/ and
subtraction in the computation of

a;t** according to (5).

By these equations the linear error

approximation  sf, are  uniquely

determined as functions of the absolute
data errors.

Sik = Fix =dag (1=1 (1) n k =

l,..., nth) and the relative rounding

errors et/ik, etik Cik

4. Back substitution:

Forward elimination reduces the given

linear system 1. To the triangular

system [7].

1- Ux = zXp UuX, ="Zi(i=
i(Dn.)

With the coefficients
2. Uy = aly (k>i), Zi = al .,y (iK

=1 (1) n). simultaneously, the
lower triangular matrix L=
(Lix)-

3. Lix = my (k<i), Ly = sj (1< k),
and thus the triangular
factorization A=Lu of A is
obtained. The solutions X; of the
linear system are then determined
successively by:

4. X = (—XpEh 1 U /Uy
(i=n,....1). For each index I
choose a suitable permutation
Ji+1,...Jn + 1 of the natural
numbers i + 1,..., n + 1, In

computing the solution x; in the
floating-point arithmetic of a
computer, becomes

5. Z7™' = —F1 (Ujjn+1 Xjn+1)s

6. Z7%=F1(Z7*"* — F1(Ujji Xj)
(k=n,...,i+1)

7. X, =F1@Z** /U; (G = n,..,1).
The linear error approximation S
in (6) is a first order
approximation of the absolute
error Ax =X-X of the computed
solution X, that is, the first order
approximation S of the absolute
error of the computed solution
vector X permits the
representation [8].

8. S=U1FF=F°+F? using the
error terms.

9. F) = — XL Shc X

10. F{ = BRoi1 Zf ey +
Yk=iUik Xk ejx  and the local
rounding error ey,

11. e =ejejx = e (i<k), = 1,...n
of  arithmetic  floating-point
operations in (5).

12. Ax = s + O (n)2 Accordingly, the
residual of the linear system Ax=y
has the form[8,9].

13. AX —y=AAx =As + O ()2 By
(6) and triangular factorization A
= Lu, the linear residual
approximation t = As has the
representation.

14.t =As = LF. Thus st can be
decomposed into.

15.S=S° + S1,8° = U~1F° St =

UlFLt=t2+t4,t" = LFO,t! =
LFL,
The terms S°, t° represent the error
and residual contributions of all
data error and all rounding errors
of the floating-point arithmetic in
forward elimination, and S%, ¢! the
error and residual contributions of
rounding error occurring in back
substitution.

5. Condition Numbers [9].

It is presupposed in the following that
the absolute data errors da;, 4y;
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of the coefficients a; and the
right-hand sides y; of the linear
system are bounded by:

1- [dayl < ay np, [4y;] <
Binp(i,k = 1(1)n). Where np is
a data accuracy and a, B; are
non-relative weights. Analogously
IS assumed that the relative
rounding errors of the arithmetic
floating-point operations of the
numerical solution of the linear

system are bounded by, (the
following inequalities is the
theoretical background for the

condition numbers).

le™ tirl < € i MR
le”cik] < €"¢ix v
2- |e"pl < e i nr

le" | < €% nr

For more information see MAT LAB
COND. Wherengis the relative
accuracy of the floating-point
rounding function and
Etikr - +» i ArE suitable
nonnegative weights. Further let

3- n=max(np,ng) > 0.
The linearization method [10].

guarantees that the linear error and
residual approximations s,t are
first order approximations of the
absolute error Ax = x-x and the

residual Ay —y in the form.

4- Ax=S+0 (n?), 4y —y =t + O
(n?). Provided that n? sufficiently
small. The linear error and residual
approximations may be
decomposed with respect to data
rounding errors by.

5- S = SD+ SR t=tP +tR, where
tP,SP tR SR are given above the
error and residual approximations
SP,tP are linear forms in the data
errors AA, AY, for all data errors
of the error distribution these
linear forms are  bounded
component-wise by:

193

6- |SP| < o np, |tP| <1 np (i3=1
(1) n). Using the following data
condition numbers ¢” of the
solution x; and residual condition
numbers P with respect to data

]
perturbations.
-D|_b

n

D _

=2, 7l
j=1

j

7- TjD = Yho1 @i 1 Xl + B (1.9=1
(1) n). For each i,j there is a data
perturbation in the distribution
such that the bounds o/ np,
r}’ np are attained this sense the
estimates are optimal.

a

Numerical and

applications:

The error analysis of numerically

solving two linear equations in two

unknowns,

l-ax thy =f, cx +tdy =g

The relative data and rounding
condition numbers of computing the
solutions x,y by Cramer’s rule and
Gaussian elimination are
determined. The important results:
for non-singular linear system
Gramer’'s rule is always well-
conditioned or back- ward stable.

2-pR/pR < 2.5,pF/pD < 2.5
(stability ~ constants).  Gaussian
elimination is back ward stable, and

R
- p¥/pR S 275,55 <=2,

example

y

provided that the system is properly
pivoted such that |bc| < |ad|. The
algorithms are analyzed further with
respect to the behavior of the residuals
of the computed solutions. It is shown
that  Gaussian  elimination s,
additionally well-conditioned in this
sense.

Where Gramer’s rule is not. It is
proved that the relative condition
numbers, the stability constants (2),
(3), and the above pivotal strategies are
invariant under scaling of the linear
system.



Baghdad Science Journal

Vol.13(1)2016

As an example.l. [11]. let us consider a
discretization of the boundary value
problem —(px" )+ gx = f. The
coefficients of the linear system then
become b5 = p(ti+s); a; =
h?q(t), yi= R*f(t),i = 1(21) N,
where t; = jh,j = 0(0.5) N+1, and h
= 1/ (N+1). For N = 20 and a binary
floating-point arithmetic with mantissa
of 23 bits, numerical results were

calculated  without data errors.
Furthermore, error percentages
p; = 100 |Ax;|/(6fn) and residual

percentages R; = 100 [t;|/( 7/'n) were
computed. Selected results are
presented in Table below. The last row
exhibits the maximum value that
occurred in the respective columns,
taking into account all indices i =0,
1,..., N+1.

Tablel. Relative data and rounding condition numbers, error and residual
percentages for Gaussian and two-sided elimination [12].

Gaussian elimination

Two-sided elimination

[ el-D eiR Pi Ri eiR Pi Ri
0 2.20 35.4 13 18 16.8 8 2
2 2.26 441 11 10 23.4 9 0
8 2.03 42.6 12 13 243 11 4
12 2.01 3838 11 3 42.2 10 6
18 2.22 305 11 8 25.1 10 6
21 2.29 16.8 5 18 16.8 9 2
max 2.29 45.4 13 18 25.4 15 14
A Theoretical Result [13]. . minwu (x) K2 44K, K5+,
Using techniques of  maximum < -+
x € [0,1] 2K3

principle it is easy to prove the
following theorems

Theorem: if for the classical u(x)
solution of

1 d du

- — r;] + kju — kyu? + kyu® = 0;

r € (O,1);limr_)0r3—1: =0,u(l) =
0, holds u(x) € C%(0,1) N

C[0,1],So
KZ+4K{K3—K.
max u(x) < (K2 +4K K3—K; and
x €[0,1] — 2K3 ’

consequently the solution are
bounded [14].
The Numerical Results
In our physical problems the constants
K, and K; are characterized by the
following: K, ~ 107*, K3 ~ 7.107%,
Using the numerical algorithm
developed we obtain the following
results:

7e so/ulior?
7Egv—— APESI7E A g gy
—— A LLTARS C/NITGES S G7,

azarIges Ngrz Lwiee.
< ,4

Fig.(1)Bifurcation diagram of the problem instead of Ri read Ki
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The nonlinear equation
F™(a,™ ki, ky ks) = Owas  solved
by the tangent parabolic method. The
bifurcation on Fig.l.was constructed

for the values of m = 8 and 10 the
results didn't differ essentially from
each other.

Ex.3,[13] Solve the following square 10x10 matrix by Jacobi method

12.000
4.0000
7.0000
3.0000
4.0000
5.0000
1.0000
1.0000
7.0000
3.0000

0.0
3.0000
0.0
2.0000
1.0000
2.0000
2.0000
0.0
2.0000
0.0

1.0000
1.0000
7.0000
4.0000
0.0

0.0

2.0000
4.0000
4.0000
1.0000

0.0
1.0000
4.0000
3.0000
3.0000
1.0000
0.0
0.0
1.0000
0.0

3.0000
2.0000

0.0

1.0000
5.0000

0.0
0.0
0.0

4.0000

0.0

Discussion:

In order to study approximation
feasibility in the iterations methods
(see references), it is clear from the
above that the example under
discussion is diverted by applying
indirect methods and have given
diverted results different from the
correct approximate results. This is
clear from the oscillated graph as the
results are diverted and are opposite to
the results of the direct methods noting
that the iterations methods are
approximate if the sequence of
solutions increase in their accuracy and
approach a fixed limit, otherwise it is
considered diverted. It is possible to
apply another idea on the solution and
even develop it by increasing the
number of decimal places and by
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4.0000 1.0000 4.0000 3.0000 1.0000
2.0000 7.0000 0.0 7.0000 4.0000
5.0000 3.0000 1.0000 2.0000 2.0000
1.0000 5.0000 2.0000 0.0 1.0000
1.0000 12.0000 0.0 1.0000 0.0

6.0000 1.0000 1.0000 0.0 4.0000
1.0000 4.0000 1.0000 0.0 3.0000
1.0000 7.0000 2.0000 4.0000 1.0000
2.0000 3.0000 0.0 1.0000 0.0

2.0000 1.0000 3.0000 2.0000 4.0000 _/

starting with the direct method to solve
the system of linear equations, then
following it by the iterations method as
the numerical value we have achieved
by applying the direct method which is
the initial value for the iterations
method following it. The opposite is
not true and in this way we can obtain
a more accurate solution by less effort.
The iterations methods have been
tested and the (JACOPLOT) program
has been executed on many examples.

The basic programs have been
executed on the personal computer
(NEC system). The following is a
sample of the outputs together with a
printed graph which shows failure of
the iterations method to solve this
system as the results are oscillated as
shown in the graphs (see enclosures).
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Fig. (2) Jacobi plot for error whit respect of iteration
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