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Abstract:

In this paper we will study some of the properties of an operator by looking at
the associated S-act of this operator, and conversely. We look at some operators, like
one to one operators, onto operators. On the other hand, we look at some act theoretic
concepts, like faithful acts, finitely generated acts, singular acts, separated acts,
torsion free acts and noetherian acts. We try to determine what properties of T make
the associated S-act has any of these properties.
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Introduction:

The S-acts have been introduced and
studied, for example, in[1,2]. In this
paper we study S-act of linear operator.
Let V be a normed space over a field F,
T be a bounded operator on V, and let

S={e*:x € R} be the semigroup.
Define
u:SxV-V by ule*v)=el(v),

this function makes V a left S-act,
denote byV, and we call it the
associated S-act of T. we will explain
this definition by some examples, and
give some basic facts about the
associated 1 We introduce the form of
every element in Vr, see proposition (2).
and study if two operator T and S are
similar then V. is isomorphic to Vs, see
proposition (6). We show that for any
operator T then the S-act V; is faithful
act, separated act, and torsion free act.
We prove if T isonto and Vg is finitely
generated, then V is finite dimensional,
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see proposition (9). We prove for any
operator T and Vi is singular S-act then
V is generated by one element, see
proposition (12). We show if V is a
finite dimensional normed space and T
is similar to any operator J from R to R
then Vr is Noetherian S-act if and only if
S is Noetherian.

Main results:

In this section we introduce the

construction of associated S-act to each
bounded operator T on a normed space
V. We illustrate the construction by
some examples and we prove some basic
facts about the act V1. We start by the
following:
Definition 1. Let V be a normed space
over a field F, let T be a bounded linear
operator acting on the elements of V on
the left.
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Let S be a semigroup such that S = {e*: x

€R}
Define u: S x V —V by p (5, v) =

e’ (v),v EV.

Note e' is defined since T s

bounded. [3]

We note that p is well defined since
every vector is act over a field ([1]
,p.46).

It is easy to check that p makes V a left
S-act. We shall denote this act by Vr,
and we call it the associated S-act of T.
In this proposition we introduce the
form of each element of V:

Proposition 2. If K={Vj,jeA} isa
basis for V, then each element of Vt can
be written in the form

. noori .
pn (T). V
The symbol »;c,  means the sum is

taken over a finite subset of A.
Proof: We define p:Sxv—* V
by W (€% v) =e' (V)

Then i (e*. v) = eT(v) = 2 Z W),
=0t
Letwe Vr then w= Z lT—: (V).
i=0""

T? T3
Thus w = (I+T+ ;+§+~-)(v),
since K={Vj,] €A} isabasis for V
2 3
this give W = (I+T+ 4+l
21 ' 3l
"')(ZjeAaj ;) =I(ZjEAajvj)+
TZ
T (Zjenaivy) + 5 (Zjenajvy) + -

0o i
Zi:o 7 (Zjen )
i

[ee]
. T .
But the series E - converges in B
i=0""°

(H), then
. i

w = llmn_,oozizoﬂ (Zje/\ aj Uj)

= limye pn(T).V By [4]

Examples 3.

1. Let {v;:j €A} be a basis for a
normed space V. Let O be the zero
operator, recall 0° =1. If w eV,
then by proposition (2) we get
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w=elT(v) = e°(v) then w =
I(Zje,\aj Uj), then w =Zje,\aj,
since e° =1 ([3], p.26)

. Let I : V — V be the identity operator
on V, {v;:j € a} be a basis for a
normed space V and let w €V
then by proposition (2) we get
w=el(v)=el(w) =
Le(Zjent;vy) =

w 1
I-Zn=o;(2je/\ a; Uj) =
Z,ﬁo%(zja a;jv;) , since e'=1.¢e
([3], p-26)

n 1
i=0j

n

=0 E,then

w= limn_,oo an, (ZjE/\ aj U])

Let {v;:j € A} be a basis for a normed
space V, and T be a a nilpotent
operator on V (ie. T"=
Oand T" 1 # 0 for some positive
integer n)

Let w € Vi then by proposition (2), we

have

_ T — LT i
w—e(v)—(1+T-2I-2!+ + =+
...)v:(1+T_|_T_+...+
2!

Tn—l

m) (Zjena;vy)

= Pr1(DZjenaj vj) = Ppa(D).v
Lemma 4. Let T be a nilpotent operator
on V, then V; is S- act if and only if Vi
is R-module, where R be the ring of
polynomials in one variable with
coefficients in F.
Proof: Suppose Vi is S- act we want to
prove V1 is R-module.
Let w €V, then w = p,,_1(T).v,
then V; is R- module. [5]
Conversely, assume Vi
then V; is S-act. ([2], p.13)
Remark 5. If M is a right R-module,
then M is (R, .)-act. ([2], p.13)
Note the converse is not true, to explain
this we give example,
letS = {e*:x € R} then S is left S-act
which denoted S, ,to prove this

lirnn—wo Z (ZjE/\ aj U]) ) put an

1

is R-module
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define w:SxS—-S by

M (eXl, exZ) — ex1+x2 7 X1, X =

R,V X1.X5-X5 X4

Then s;. (sps3) = eX1(eX2eXd) =
eXl(eX2+X3) — ex1+x2+x3 —

(eX1+x2) X3 = (s;5,).55 , then
Sisactover S.ButS; is not module
with (+, .), since (S, +,.) is not Ring
because it doesn’t satisfy a binary
operation with (+) ,this give S; is act but
not module.

Proposition 6. Let T and S be two
operators on V. If S is similar to T then
V; is isomorphic to V.

Proof: Assume that T and S are similar,
and then there exist an invertible
operator h on V. Such that hTh™! =
S ([6],p.156), then (hSh™! =

T).h thisgive hS=Th

sinceh S =T h, then

h S"=hSS™ 1= T hS" 1=ThSS"~2=TTh
SN=2=T2hSN~2=T2hSS"~3=T2ThS" 3=
T3hSP=3=T3hSS"~*=T3ThS"* =

T*hS"* = ... = T"h, Then hes =
eTh ......(1)
Define h': V; - Vi by

(esm)h' = eT (h(V)) ... (2)
To prove h' is isomorphism we must
prove:
h' is well defined, let e5(v,) = e5(vy)
then h(es(vy)) = h(e*(vy)) (since h is
well defined). Then by equation (1), we
get

eT(h(vy)) = h(es(vy)) =
h(es(vy)) = eT(h(vy)), therefore

eT(h(V1)) = eT(h(Vz)) - (3),
then by equations 2, 3 we get

(es(vl))h’ = (es(vz))h’, thenh’ is
well defined

To prove h' is one to one, let
(eS(v))h' = (e5(vz))h ', then by
equation (2) we get eT(h(vy)) =

eT(h(v;)), then by equation (1) we get
h(eS(v;)) = h(eS(v,)) but h is an
invertable thenh~th (e5(vy)) =
h™h (eS(v,)), this gives (eS(vy)) =
(e5(v,)) therefore h' is one to one.
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To prove h'is onto, let eT(v) € Vg
then h™'(v)ev, for v eV and
eS(h™*(v)) € Vg, then by equation (2)
we get (eS(h™(v))h' = eT(h(h™%(v))
= eT(v) then h’ isonto.

We illustrate in the following
proposition the relation between the
faithful S-act and the linear operator T.
Now we need to give the definition of a
faithful S-act.

Recall that A a faithful left S-act if
for all s, teS theequility sa=
ta forall a€ A, implies s = t. ([1],
p.46)

Proposition 7. For any bounded
operator T then V; is a faithful S-act.
Proof: we want to show that V;is a
faithful  S-act. Let eXl.eT(v) =
eX?.eT(v)

Since eT is linear transformation, this
gives eXl.eT(v) = eX2.eT(v) , thus
eT(e*l.v) = eT(e*2.v) .Since eT is one
to one, then eXl.v = e*? .v, therefore
(eX! —eX2)v =0 ,thisgive eXl =
eX2  then Vg is a faithful S-act.

In ([1], p.63), asubset U # @ of a
right S-act Ag is said to be a set of
generating elements or a generating set
of A, if every element a € A, can be
presented as a= u.s for some
u € U,s € S.In other words, U is a set
of generating elements for A if < U >
=UuS = Ag,u € UwhereuS =
fus/s € S }. we say that a right S-act A
is finitely generated if As=<U >
for some U,|U| < o .

Remark 8. IfV is a finite dimensional
normed space, then Vi is finitely
generated S-act.

The following proposition gives
when the converse of remark (8) is true
Proposition 9. If T is onto and Vi is
finitely generated, then V is finite
dimensional.

Proof: we use the contradiction. Assume
V is not finite dimensional. Let k =
k(T)= {weV:Tw=0}. It is clear
that K is as invariant subspace of V
(sinceK € VandVw € K, T(w) =



Baghdad Science Journal

Vol.13(2)2016

0 but 0 € subspace K then T(K) <
K) and by the first isomorphism theorem

of S-act hen TV = % . ([1],P.53),since

T is onto then TV=V, therefore V = v,

K
By assuming that V is not finite
dimensional then either K infinite
dimensional or K finite dimensional. K
is an invariant subspace of V then we
can consider Kr.
If K is finite dimensional then K is
finite generated by remark (10), the
subact K, is generated by the set
{eT (w;) : j e} where {w; : j A} is a
basis for K. But w; € K given that
Twj = 0, since the restriction of T on K
is the zero operator 0. Thus K; = Kp,
therefore K; can not be finitely
generated (see example 1 from (3),this
contradicition with suppose K is finite
dimensional.
Then we must K is infinite dimensional,
the subact K; is generated by the set
{eT (w;) : j e} where {w; : jeA} is a
basis for K. But w; € K given that
Twj = 0, since the restriction of T on K
is the zero operator 0. Thus K; = K,
therefore K; can not be finitely
generated (see example 1 from (3),but
Ky is a subact of V- and Vg is finitely
generated.  This  mean infinitely
generated contain in finitely generated.
This contradiction shows that V is finite
dimensional.
[7] show that an S-act A separated if for
each a # b in A there exists s# e such
that sa # sb.
Proposition 10. For any bounded
operator T then Vi is separated S-act.
Proof: Let a # b in V; to prove that
Vr is separated we have to show that
there exist s in S, s#e such that
sa + sb.
Assume sa = sb, ¢ #s €S ,a,beVy this
give eX.eT(vy) = eX.el(vy) vy,v, €
V,x € R, Since eT is operator then eT is
linear  transformation, this  gives
eX.eT(v)) = eX.eT(vy,) — eT(eXvy)
=eT(e*.v,), bu eT is one to one,then
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e*.vy = eX.v, —(v; —vy)e* =0,but
e* #0 then v, = v, this gives either
eT(vy) zeT(vy) or eT(vy) = eT(vy)
but if eT(vy) #eT(v,) this gives
v, # Vv, this contradction with assume
v, =v,, theneT(vy) =eT(v,) this
means a=b which is a contradction,
then Vy is separated S-act.

In the following proposition we give
the converse of the proposition (10)
Proposition 11. If V; is separated then
T is one to one.
Proof: Assume V; is separated, we
want to prove T is one to one, let
vy #vy,we must prove T(vq) #
T (v, ),since v; # v, then either
eT(vy) # eT(vy) or eT(vy) = eT(v,) if
eT(v,) = eT(v,) this contradction with
Vv, # Vo, then
eT(vy) # eT(v,), but Vy is separated S-
act then 3 e #s €S such that eX.eT(v,) #

e*.eT(v,),Since el is operator then eT is

linear transformation, this gives
eX.eT(v)) = eX.eT(v,) —
eT(e*.vy) # eT(e*.vy), this mean
T?2 T3
A+T+ S+ T+ (e v)(1+
T2 T3 %
T + ;+§+---)(e V), We get
2
e*.vy + T(e*.vy) + % (e*.vy) +
3
% (e*.vy) + --#eX.v, + T(e*.vy) +

T—Z(ex v )+T—3(eX vy) + -

TR TR

eX.vi#e*.v,, T(e*.vy) # T(e*.v,), but
T is operator, hence e*.T(v;) #
e*.T(v,),but e* # 0then T(v,) #

T A (e* vy) = T (e
(vy),an > (e*.vy) # 5 (e*.vy)

= (T(e*.vy)) # —(T(e*.v2)), 50
T(e*.vq) # T(e*.v;), by using the same
way we get T(vy) # T(v,), ,then we
prove T is one to one.

In the following proposition we
introduce another conditions to get V is
cyclic which is every cyclic is finite
dimensional.

Recall that M, be an S-system and H
a subset of S .then H is called reductive
on M, if and only if for each
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a,b eM;,ah = bhfor all he H implies
a=b,an singular relation i, 0n M,by

the set
{(a,b)eM x M \ ah =
bh for some heH for some reductive subset HofS}

. [8]
Proposition 12. If V; is singular S-act
then V is generated by one element.

Proof: since Vyis singular S-act then
Py {(e"(vy), eT(vy))eVy x Vp \ eX.eT(vy) =
e*.eT(v,) for some e*eH for some reductive subset Hof S}

Then eX.eT(vy) = eX.eT(vy)... (1),
hence eT(e*.v;) =eT(e*.v,), since eTis
one to one, therefore e*.v; = e*.v,,
then

eX.vy + (—1)e*.v,_0... (2), but H is
reductive subset of S, then by (1). We
find eT(v,) = eT(v,), but eTis one to
one, then v;= v,, we replies v;=v, on
(2),then e*.v; + (—1)e*.v,_0, then V is
generated by one element, this give V is
finite dimension.

Recall that an act Ag is called torsion
free if for any x, y € Ag,and for any
right cancellable element ce S, the
equality xc = yc this implies x=y. [1]
Proposition 13. For any bounded
operator T then V. is torsion free S-act.
Proof: Assume eX.eT(vy) =
e*.eT(v,) ,V eX is cancellable element in
S, this gives eT(e*.v;) =eT(e*.v,),
since eT is one to one, this gives (e*.v,)
=(e*.v,), thus  v;= v,, then either
el(vy) =el(vp)or  e'(vy) #e'(vy),
if eT(v)) #eT(v,), we get a
contradiction with v,= v, then e (v,) =
el (v,),thus V; is torsion free.

In the following proposition we
introduce sufficient and necessary
conditions on V in order that V,is a
Noetherian S-act, we need some
definitions to clear this proposition.

Recall that a monid S is right
Noetherian if and only if it satisfies the
asending chain condition for right ideals,
this mean for every a sending chain
K, €K, CSK;<..€K, <K, C...
Of its right ideals, there exists n eN such
that K,,=Kp+1=.... [1]
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In [9] show that an act Agis called
Noetherian if it satisfies the asending
chain condition for right sub acts, this
mean for every asending chain
K, €K, €CK;S..€K,SK,;; ...
Of its right sub acts, there exists n eN
such that K,=K,,,1=...

Theorem 14. If S is Noetherian and A
is finitely generated S-act then A is
Noetherain S-act. [9]

Proposition 15. Let V is a finite
dimensional normed space and T is
similar to any operator J from R to R
then Vr is Noetherian S-act if and only if
S is Noetherian.

Proof: Since V is finite dimensional
then Vy is finitely generated S-act by
remark (8), therefore Vy is Noetherian S-
act, by theorem (14).

LetK, €K, S K;C<..cK, S
K,+1 €...be any ascending sequence
ideals of S, then it is a sequence of
subacts of Sgdenoted S;, where J any
operator from R to R, since T is similar
to J, then by Proposition (6), Vi is
isomorphic to Sy, thus Syis Noetherian
S- act, therefore this sequence is finite,
then S is Noetherian.
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