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Abstract: 
In this paper we will study some of the properties of an operator by looking at 

the associated S-act of this operator, and conversely. We look at some operators, like 

one to one operators, onto operators. On the other hand, we look at some act theoretic 

concepts, like faithful acts, finitely generated acts, singular acts, separated acts, 

torsion free acts and noetherian acts.  We try to determine what properties of T make 

the associated S-act has any of these properties. 
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Introduction: 
The S-acts have been introduced and 

studied, for example, in,   -. In this 

paper we study S-act of linear operator. 

Let V be a normed space over a field F, 

T be a bounded operator on V, and let 

  *       + be the semigroup. 

Define 

         by   (    )    ( ), 
this function makes V a left S-act, 

denote by    and we call it the 

associated S-act of T. we will explain 

this definition by some examples, and 

give some basic facts about the 

associated     We introduce the form of 

every element      , see proposition (2). 

and study if two operator T and S are 

similar then     is  isomorphic to   , see 

proposition (6). We show that for any 

operator T then the S-act     is faithful 

act, separated act, and torsion free act. 

We prove if T is onto and       is finitely 

generated, then V is finite dimensional, 

see proposition (9). We prove for any 

operator T and    is singular S-act then 

V is generated by one element, see 

proposition (12). We show if V is a 

finite dimensional normed space and T 

is similar to any operator J from R to R 

then    is Noetherian S-act if and only if 

S is Noetherian. 

 

Main results: 
     In this section we introduce the 

construction of associated S-act to each 

bounded operator T on a normed space 

V. We   illustrate   the construction   by 

some examples and we prove some basic 

facts about the act VT. We start by the 

following: 

Definition 1.  Let V be a normed space 

over a field F, let T be a bounded linear 

operator acting on the elements of V on 

the left. 
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Let S be a semigroup such that S = {e
x
: x 

  R} 

     Define µ: S × V  V by µ (e
x
, v) = 

e
T
 (v), v    V. 

Note e
T
 is defined since T is 

bounded. , - 
We note that µ is well defined since 

every vector is act over a field ([1] 

,p.46). 

It is easy to check that µ makes V a left 

S-act. We shall denote this act by VT, 

and we call it the associated S-act of T. 

 In this proposition we introduce the 

form of each element of VT: 

Proposition 2. If   K = {V j , j    }  is a 

basis for V, then each element of  VT can 

be written in the form   

      ∑
  

   

 

   
   ∑      

   
 =    

   
    

pn (T). V 

The symbol  ∑    means the sum is 

taken over a finite subset of   . 

Proof:  We define     µ: S×V V     

by µ (e
x
. v) = e

T
 (V)            

 Then µ (  . v) =   (v) = ∑
  

   

 

   
 (v), 

Let w   VT    then     w = ∑
  

   

 

   
 (v). 

Thus     .     
  

  
 

  

  
  / ( ), 

since K = { V j , j   ˄}  is abasis  for V 

this give W  .     
  

  
 

  

  
 

 / (∑        )    (∑        )  

  (∑        )   
  

  
 (∑        )      

 ∑
  

   

 

   
(∑        )  

But the series ∑
  

   

 

   
  converges in B 

(H), then 

         ∑
  

   

 

   
 (∑        )  

          ( )      By , - 
Examples 3. 

1. Let  {      } be a basis for a 

normed space V. Let          zero 

operator, recall     . If         

then by proposition (2) we get  

     ( )     ( )         
  (∑        ), then    ∑       

             ([3], p.26) 

2. Let       be the identity operator 

on V, {      } be a basis for a 

normed space  V   and let       
then by proposition  (2)  we get 

         ( )     ( )  
    (∑        )   

  ∑
 

  
(∑        )

 
    

 ∑
 

  
(∑        )

 
    , since     = I. e 

([3], p.26) 

 

        ∑
 

  

 
   (∑        )         

 ∑
 

  

 
   ,then 

            (∑        ) 

3. Let {      } be a basis for a normed 

space V, and T be a a nilpotent 

operator on V (i.e.    
             for some positive 

integer n) 

Let        then by proposition (2), we 

have 

     ( )  .    
  

  
   

  

  
 

 /  .    
  

  
   

    

(   ) 
/ (∑        ) 

     ( )(∑        )       ( )    

Lemma 4. Let T be a nilpotent operator 

on V, then    is S- act if and only if     

is R-module, where R be the ring of 

polynomials in one variable with 

coefficients in F. 

Proof: Suppose     is S- act we want to 

prove VT is R-module. 

         VT, then         ( )  ,  

then    is R- module. [5] 

Conversely, assume       is R-module   

then      is S-act. ([2], p.13) 

Remark 5. If    is a right R-module, 

then   is (   )-act. ([2], p.13) 

Note the converse is not true, to explain 

this we give example, 

       *      +        is left S-act 

which denoted       ,to prove this 
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define             by         

  (       )                     
 ,               

Then    (    )      (      )  
   (      )            
(      )       (    )    , then  

                 . But    is not module 

with (+, .), since (     )    not Ring 

because it doesn’t satisfy a binary 

operation with (+) ,this give     is act but 

not module.  

Proposition 6. Let T and S be two 

operators on V. If S is similar to T then 

   is isomorphic to   . 

Proof: Assume that T and S are similar, 

and then there exist an invertible 

operator h on V. Such that           
   ([6],p.156),        (        
 )                            

since        , then 

h   =hS    =        =ThS    =TTh

    =  h    =  h     =  Th    =

  h    =  hS    =         
            h, Then        
          ( ) 
Define                       by         

(   ( ))       ( ( ))   ( ) 
To prove     is isomorphism we must 

prove: 

   is well defined, let   (  )     (  ) 

then  (  (  ))   (  (  )) ( since   is 

well defined). Then by equation (1), we 

get 

         ( (  ))   (  (  ))  

  (  (  ))        ( (  )), therefore   

          ( (  ))     ( (  ))  … (3), 

then by equations 2, 3 we get  

       (  (  )) 
  (  (  )) 

 , then    is 

well defined 

 To prove    is one to one, let 

(  (  )) 
  (  (  ))  , then by 

equation (2)  we get    ( (  ))  

   ( (  )), then by equation (1) we get  

 (  (  ))   (  (  )) but h is an 

invertable then      (  (  ))  

      (  (  )), this gives (  (  ))  
(  (  )) therefore     is one to one. 

  To prove    is onto, let   ( )      

then    ( )   , for v    and   

  (   ( ))     , then by equation (2) 

we get (  (   ( ))      ( (   ( ))  

    ( )  then        is onto. 

       We illustrate in the following 

proposition the relation between the 

faithful S-act and the linear operator T. 

Now we need to give the definition of a 

faithful S-act. 

    Recall that    a faithful left S-act if 

for all s, t                      
                       implies s = t. (⌈ ⌉, 
p.46) 

Proposition 7.  For any bounded 

operator T then    is a faithful S-act. 

Proof: we want to show that      is a 

faithful S-act. Let       ( )  
       ( )  
Since     is linear transformation, this 

give          ( )         ( )   , thus    

  (     )     (     ) .Since    is one 

to one, then                , therefore 

(       )                         
     , then     is a faithful  S-act. 

        In ([1], p.63), a subset        of a 

right S-act    is said to be a set of 

generating elements or a generating set 

of     if every element        can be 

presented as        for some 

         .In other words,   is a set 

of generating elements for          
                         
*       +   we say that a right S-act    

is finitely generated if         
           | |      .  

Remark  8.   If V is a finite dimensional 

normed space, then    is finitely 

generated S-act. 

         The following proposition gives 

when the converse of remark (8) is true 

Proposition 9.  If T is onto and    is 

finitely generated, then   is finite 

dimensional. 

Proof: we use the contradiction. Assume 

V is not finite dimensional. Let   
 ( )   *        +. It is clear 

that K is as invariant subspace of V 

(         ⋁           ( )  
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                         ( )   
 ) and by the first isomorphism theorem 

of S-act          
 

 
 . (⌈ ⌉,P.53),since 

T is onto then TV=V, therefore  V  
 

 
 . 

By assuming that V is not finite 

dimensional then either K infinite 

dimensional or K finite dimensional. K 

is an    ariant subspace of V then we 

can consider    . 

If K is finite dimensional then    is 

finite generated by remark (10), the 

subact    is generated by the set 

{   (  )     }       {      } is a 

basis for K. But       given that 

     , since the restriction of T on K 

is the zero operator  . Thus       , 

therefore    can not be finitely 

generated (see example 1 from (3),this 

contradicition with suppose K is finite 

dimensional.  

Then we must K is infinite dimensional, 

the subact    is generated by the set 

{   (  )     }       {      } is a 

basis for K. But       given that 

     , since the restriction of T on K 

is the zero operator  . Thus       , 

therefore    can not be finitely 

generated (see example 1 from (3),but 

   is a subact of     and       is finitely 

generated. This mean infinitely 

generated contain in finitely generated. 

This contradiction shows that V is finite 

dimensional. 

[7] show that an S-act A separated if for 

each a ≠ b in A there exists s≠ e such 

that   sa ≠ sb. 

Proposition 10.  For any bounded 

operator T then      is separated S-act. 

Proof: Let       in    to prove that  

   is separated we have to show that 

there exist s in S, s   such that 

s      
Assume  sa = sb,  e ≠s    ,a,b   ,this 

give       (  )        (  )       
     , Since     is operator then    is 

linear transformation, this gives 

     (  )        (  )     (     ) 
=   (     ), bu    is one to one,then  

            (     ) 
  0,but 

   0 then           this gives either 

  (  )    (  ) or    (  )    (  ) 
but if   (  )    (  ) this gives 

             contradction with assume 

     , then   (  )    (  ) this 

means a=b which is a  contradction 
        is separated S-act. 

      In the following proposition we give 

the converse of the proposition (10) 

Proposition 11.  If     is separated then 

T is one to one. 

 Proof:  Assume    is separated, we 

want to prove T is one to one, let 

       we must prove T(  )  
 (    ),since        then either 

   (  )    (  ) or    (  )    (  ) if 
   (  )    (  )       contradction with 

      , then  

  (  )    (  )        is separated  S-

act then   e ≠s    such that      (  )  
      (  )          

                          
                                  

      (  )        (  )  
   (     )      (     )  this mean  

(     
  

  
 

  

  
  )(     )≠.  

   
  

  
 

  

  
  / (     ), we get  

       (     )  
  

  
(     )  

  

  
(     )   ≠       (     )  

  

  
(     )  

  

  
(     )    

     ≠     ,  (     )   (     ), but 

T is operator  hence       (  )  
    (  ),but       then  (  )  

 (  )    
  

  
(     )  

  

  
(     ) 

 

  
( (     ))  

 

  
( (     ))  so 

 (     )   (     ), by using the same 

way we get  (  )   (  ),……,then we 

prove T is one to one. 

     In the following proposition we 

introduce another conditions to get V is 

cyclic which is every cyclic is finite 

dimensional.  

       Recall that    be an S-system and H 

a subset of S .then H is called reductive  

on     if and only if for each  
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a,b            for all h    implies 

a=b,an  singular relation    on     by 

the set  
*(   )        
                                             +

. [8]  

Proposition  12.  If    is singular S-act 

then V is generated by one element. 

Proof: since    is singular S-act then 
   {( 

 (  )  
 (  ))           

    (  )  

      (  )           
                                   } 

Then        (  )       (  )… (1), 

hence    (     ) =  
 (     ), since   is 

one to one, therefore              , 

then   

        (  )       … (2), but H is 

reductive subset of S, then by (1). We 

find   (  )    (  ), but   is one to 

one, then     =    , we replies    =    on 

(2),then       (  )       , then V is 

generated by one element, this give V is 

finite dimension. 

     Recall that an act    is called torsion 

free if for any x, y      and for any 

right cancellable element c  , the 

equality xc = yc this implies x=y. [1] 

 Proposition 13.  For any bounded 

operator T then    is torsion free S-act. 

Proof: Assume            (  )  
     (  ) ,   

  is cancellable element in 

S, this gives    (     ) =   (     ), 
since    is one to one, this gives (     ) 
= (     ), thus     =   , then either 

  (  )    (  ) or   (  )    (  ), 
if    (  )    (  ), we get a 

contradiction with   =   , then   (  )  
  (  ),thus    is torsion free. 

       In the following proposition we 

introduce sufficient and necessary 

conditions on V in order that    is a 

Noetherian S-act, we need some 

definitions to clear this proposition. 

       Recall that a monid S is right 

Noetherian if and only if it satisfies the 

asending chain condition for right ideals, 

this mean for every a sending chain  

           …         … 

Of its right ideals, there exists n  N such 

that   =    =….    [1] 

     In [9] show that an act    is called 

Noetherian if it satisfies the asending 

chain condition for right sub acts, this 

mean for every asending chain  

           …         … 

Of its right sub acts, there exists n  N 

such that   =    =… 

Theorem 14.  If S is Noetherian and A 

is finitely generated S-act then A is 

Noetherain S-act. [9] 

Proposition 15. Let V is a finite 

dimensional normed space and T is 

similar to any operator J from R to R 

then    is Noetherian S-act if and only if 

S is Noetherian. 

Proof: Since V is finite dimensional 

then     is finitely generated S-act by 

remark (8), therefore    is Noetherian S-

act, by theorem (14). 

        Let            …    
     …be any ascending sequence 

ideals of S, then it is a sequence of 

subacts of     denoted      , where J any 

operator from R to R, since T is similar 

to J, then by Proposition (6),      is 

isomorphic       , thus     is Noetherian 

S- act, therefore this sequence is finite, 

then S is Noetherian. 
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 الاثر التابع للمؤثر

 

 زينب عبد عطيت                    سميرة ناجي كاظم                 
 

  قسى انزَاضُات، كهُة انعهىو نهبنات، جايعة بغذاد.

 

 الخلاصت:
انًؤثز انًزافقة نتهك  – Sفٍ هذا انبحث تى دراسة خصائص انًؤثزات انخطُة ين خلال انفضاءات 

انًؤثزات وبانعكس حُث نظزنا انً بعض انًؤثزات  انخطُة يثم انًؤثزات الاحادَة  و انًؤثزات انشايهة. ين 

جهة اخزي نظزنا فٍ بعض انًفاهُى اننظزَة نهفضاءات انًزافقة نهًؤثزات انخطُة واثزها عهً طبُعة هذه 

نتىنذ، الاثز انفزَذ، الاثز انفاصم، الاثز انًهتىٌ انحز و الاثز الاثز ينتهٍ ا انًؤثزات يثم الاثز انًخهص،

 تًتهك احذي او بعض تهك انصفات .     انتٍ تجعم فضاءات الاثز Tاننىتُزٌ كًا حاوننا يعزفة صفات انًؤثز 

 
تىٌ انحز و الاثز الاثز انًخهص، الاثز انًنتهٍ انتىنذ، الاثز انفزَذ، الاثز انفاصم، الاثز انًه الكلماث المفتاحيت:

 اننىتُزٌ.

 

 
 

 

 
 

 


