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Abstract:

Plane cubics curves may be classified up to isomorphism or projective
equivalence. In this paper, the inequivalent elliptic cubic curves which are non-
singular plane cubic curves have been classified projectively over the finite field of
order nineteen, and determined if they are complete or incomplete as arcs of degree
three. Also, the maximum size of a complete elliptic curve that can be constructed
from each incomplete elliptic curve are given.
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Introduction: N; is the number of rational points of
Let GF(q) =F, denote the  FoverF;. Then
Galois field of order q, where g is prime g+ 1—|2\/q| <N, <q+1+|2,/q],
number, and where [x] is the integer part of x € R.
V (3,q9) = {X = (%1, %2, x3)|x; € F;} Definition [2] 3: A rational inflexion
be the respective vector space of row point P of an elliptic cubic curve F is

vectors of length three with entries in F,. one for which the unique tangent at P
Let PG(2,q) be the corresponding  has three-point contact.
projective plane. The points P(X) = The condition that the tangent line at P

[x1; x5; x3] of PG(2,q) are the one- has triple contact with the curve is
dimensional subspaces of V(3,q). The  expressed  algebraically by  the
lines of PG(2,q) are the two-  requirement that

dimensional subspaces of V(3,q). For F(Xo,X1,X2)

further details, see [1][2]. = [ (Xo, X1, X3) - g(Xo, X1, X2)
Definition [1] 1: Let F be a form. A + (aXo+bX1+cX;)3 h(Xo, X1, X2),
projective plane curve F is the set where F is a form of degree n and

F ={P(X) € PG(2,q)| F(X) = 0}. () f(Xo,X1,X,) is the linear form
A point P(X) of F is a rational point of ~ defining the tangent line at P,
F. (i) g(Xo,X1,X,) is some form of
Theorem (Serre [3]) 2: If F is an  degreen—1,
elliptic cubic curve defined over F;, and
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(iii) h(Xy, X1, X,) is a form of degree
n— 3,

(iv) (aXo+bX;+cX;) is some linear
form vanishing at P. See [4].

Definition [2] 4: An elliptic cubic curve
F is called harmonic or equianharmonic
if the four tangents through a point form
a harmonic or equianharmonic set. An
elliptic cubic curve which is not
harmonic or equianharmonic is called
general.

It is well known that any elliptic
cubic curve  F has nine rational
inflexions over Fq, g # 0 (mod 3).
Over F,, the possible number of rational
inflexions on an elliptic cubic curve is
0,1,3 or 9 . An elliptic cubic curve exist
with nine rational inflexions if q =
1 (mod 3) and with three rational
inflexions for all q. See [2, Chapter 11].
Theorem [2][5] 5: If P, is the numbers
of distinct elliptic cubic curves up to

projective equivalence over F;, then
2

-4 -3 -3
p=srze ()4 (2) +3(2)

q q q
Here the bracketed numbers are
Legendre and Legendre—Jacobi symbols
taking the values —1, 0, 1.
Let n; for i = 0,1,3,9 be the number of
projective equivalence classes with
exactly i rational inflexions. So,
according to n;, Py =ng+mn, +nz+
Ng.
Definition [2] 6: A rational inflexional
triangle is a set of three lines over Fq
through the nine inflexions of F.

An elliptic cubic curve Fover Fq,
q # 0 (mod 3), is denoted by F,
where n is the number of rational
inflexions and r is the number of
rational inflexional triangles. Here,
Fr =G, H, &, when F IS
respectively general, equianharmonic,
harmonic. Also, if n=3 and the
inflexions tangent are concurrent then
F=€E and if n=0 and F is
equianharmonic write F = &;. See [2].
Definition [2] 7: A (k;r)-arc K, is a set
of k points of a projective plane such
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that some r, but no r + 1 of them are
collinear. It is also called arc of degree
r.
Definition [2] 8: A(k;r)-arc is called
complete if it is not contained within
(k + 1;n)-arc.
Definition [2] 9: The maximum size of
a (k;r)-arc in PG(2,q)is denoted by
my(2,q).
Definition [2] 10: Let M be a set of
points in any plane. An i-secant is a line
meeting M in exactly i points.
In the projective plane, most of elliptic
cubic curves can be regarded as an arc
of degree three.
Questions about elliptic cubic curves
over a finite field Fj:

(1) How many inequivalent elliptic

cubic curves are there?

(2) How many  complete and
incomplete elliptic cubic curves are
there?

(3) What is the maximum size of a
complete arc of degree three that
can be constructed from each
incomplete arc?

(4) Is there a complete elliptic cubic
curve (complete arc of degree
three)  constructed from the
incomplete elliptic cubic curve of
size equal to m5(2, q)?

Question one has been investigated in
[2] for F, 2<q <13, and also
answered for g =17 in [6]. Question
two and three have been answered for
q = 2,3,57in[7], g = 11,13 in [8] and
forqg = 17 in [6].

The largest size of an (n; r)-arc of
PG(k,q) is indicated by m,(k,q). In
[4] and [5], bounds for m,(2,q) are
given. In particular, m,(2,q) < 2q +
1 for q = 4;see [6].

Question four is a part of another
question which is: what is the value of
m,(k,q) whenr =2and =27

The value of m3(2,q) has been given
in [2] for 2<q <13. In [7], a full
classification of (n;3)-arc have been
given for ¢g=7,11 in [9][10], and
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maximal arcs of degree three have be@n)
found in [11].

The aim of this paper is to answer
question two and three over F,, q =
2,3,5,7.

The aim of this paper is to answer these
four questions over F;q. TO do that, the
following steps have been taken:

(1) Finding projectively distinct elliptic
cubic curves in PG (2,19).

(2) For each of these, write down the
canonical form.

(3) Then list the rational points of each
one.

(4) The complete and incomplete elliptic
cubic curves have been determined with
stabilizer group type.

(5) The size of complete arcs of degree
three that contain the incomplete ones
are given.

(6) Finally, the corresponding AMDS
codes parameters for these arcs of
degree three have been computed.

Canonical Form of an Elliptic Cubic
Curve Over a Finite Field

Theorem [2] 11: A non-singular plane
cubic curve  with form F and nine
rational inflexions exists over F;, if and
only if g =1 (mmod 3), and then F has
canonical form

F = X3X3X3-3cXo X1 X,.

Theorem [2] 12: A non-singular plane
cubic curve  with form F and three
rational inflexions exists over F, for all

q. The inflexions are necessary
collinear.
(i) If the inflexional tangent are

concurrent, the canonical forms are
as follows:
(@qg = 0,2 (mod 3),
F = XoX;(Xo+X,) + X3;
(b)g =1 (mod 3),
F = XoX;(Xo+X,) + X3;
F = XoX;(Xo+X,) + cX3;
F = XoX;(Xo+X,) + cX3;
where c is a primitive of F,. Here, F
will denote by &.

If the inflexional tangent are not
concurrent, the canonical form is as
follows:
F = XoX1 X, + e(Xo+X1+X3)3,
e+0,1/27.
Theorem [2] 13: A non-singular plane
cubic curve with form F defined over
F,q= p" and at least one rational
inflexion has one of following canonical
forms.
() p#23,
F =X2X, + X3 + cXoX? +dX3,
where 4¢3 + 27d? # 0.
(i)p =3,
(@ F = X2X, + X3 + bX, X2 +dX3,
where bd # 0.
(b) F =X2X, + X3 + cXoX? +dX3,
where ¢ # 0.
(ii)p = 2,
@ F=X.X2+XX X, + X3+
bXZX,+cX X2,

where b = 0 or a fixed element of trace
1,and ¢ # 0;
(b) F =X2X; +X,X? +eX3 +
cXoX? + dX3,
where e =1 when (¢ —1,3) =1 and
e=1,a, a? when (g —1,3) = 3,
with a a primitive element of F,; also,
d = 0 or a particular element of trace
1.
Theorem [2] 14: A non-singular plane
cubic curve with form F defined over
F,, q =p", with no rational inflexion
has one of following canonical forms.
() g = —1(mod 3),

F = X3 —3c(X2 — dXoX, + X2)X,
— (X3 —3X,X?
+dX?),

where X3 — 3X + disirreducible.
(i) g = 1(mod 3),
@F = X3 + aX? + a?X3 —
3cXoX1X,,
with « a primitive element of F,.
(b) F = XoX? + X2X, + eX X3—c(X§
+ eX3
+ e2X3-3eXo X, X>),
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with « a primitive element of F, and
e = a,a’. Here, when ¢ # 0, and F is
equianharmonic, write F = £F; when
¢ =0, and F is equianharmonic, write
F = &t

(iii) q = 0 (mod 3),

F = X5+X; +cX3+dX2X, +
dX X7 + d?XoX?+dX,XZ,

where ¢ # 1 and X3+dX—1is a
fixed irreducible polynomial over F,.

Elliptic Cubic Curves Over GF(19)
Theorem 15: In  PG(2,19), the
following are satisfied:

(1) Pyg = 62.

(2) ny =20, ny =26, ng =14, ng =
2.

(3) N,takes every value between 7 and
21.

(4) There are 306 elliptic cubic curve of
type general with at least one inflexion
and 34 of them are inequivalent.

(5) The 62 inequivalent elliptic cubic
curves divided into 30 complete and 32
incomplete.

(6) An elliptic cubic curve with k points
is a complete (k; 3)-arc when k have the
following

values:

18,20, 21, 22,23, 24, 25,26,27,28.
Full details on elliptic cubic curves over
GF(19) have been given in Tables 1, 2,
3, 4.

Table 1: Elliptic cubic curves with exactly nine rational inflexions

Fr | Canonical form |FT| | Description M(Fy) |G
&s X5 + X3 + X3 27 Complete — Gsy
G X3+ X3 +X3+7X0X,X, |18 Incomplete 21 (Zsx Z3)x Z3

The group Gs4 has 9 elements of order 2, 26 elements of order 3, and 18 elements of

order 6.

Table 2: Elliptic cubic curves with exactly three rational inflexions

Fr | No. Canonical form |£7| | Description | M(FED G
1 XoX,: X, —6(Xy +X; +X,)° 12 Incomplete 27 S3
2 XoX: X, +3(Xy +X; +X,)° 15 Incomplete 27 S3
3 XoX. X, +4(Xy +X, +X,)° 15 Incomplete 27 S3
4 XXX, + Xy + X, +X,)° 18 Incomplete 21 S3
5 XoX: X, —7(Xy +X; +X,)° 18 Incomplete 22 S3
6 XoX: X, +2(Xy +X; +X,)° 21 Complete — S3
7 XoX: X, +5(X, +X, +X,)° 21 Complete — S3
1 8 XoX: X, +9(Xy +X, +X,)° 24 Complete — S3
3 9 XoX X, —9(Xy + X, +X, ) 24 Complete — S3
10 XoX: X, —3(Xy +X; +X,)° 24 Complete — S3
11 XoXi X, —2(Xy + X, +X,)° 24 Complete — S3
12 XoX: X, —8(Xy +X; +X,)° 27 Complete — S3
4 13 Xo X1 (Xo + X)) +2X3 12 Incomplete 27 S3x Z3
& 14 XoX1(Xo + Xy) + 4X3 21 | Complete — S3x Z3
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Table 3: Elliptic cubic curves with exactly one rational inflexion

Fr No. Canonical form |Fr | Description M(F)) G
1 X X2+ X3 —9XX? — 3X3 14 Incomplete 27 Z2
2 X, X2+ X3 —8XoX? +9X3 14 Incomplete 27 Z2
3 X1 X3 + X3 — 9Xo X + 6X3 17 Incomplete 23 Z2
4 X X2+ X3 — 9X X7 — 2X3 20 Incomplete 22 Z2
5 X1 X3 + X3 — 9X X7 + 2X3 20 Incomplete 22 Z2
G? 6 X, X2+ X3 —9XX? — 6X3 23 Complete 21 Z2
7 X X2+ X3 — 9Xo X7 + 3X3 26 Complete - Z2
8 X X2+ X3 — 8XoX? —9X3 26 Complete - Z2
20 9 X1XZ + X3 + XoX? 20 Incomplete 21 Z2
! 10 X1 XZ + X3 + 2X X7 20 Complete — Z2
11 X1XZ + X3 — 9Xo X7 + 7X3 13 Incomplete 27 Z2
12 X, X2 + X3 — 99X, X# — 5% 16 Incomplete 26 Z2
13 X1 X% + X5 — 9X X2 — 4X} 16 Incomplete 25 Z2
14 X X2+ X3 —9X, X2 +9X3 16 Incomplete 25 Z2
15 X, X2 + X3 — 8X X} +8X; 16 Incomplete 25 Z2
16 X1X2 + X3 — 8Xo X% — 4X} 19 Incomplete 22 Z2
g ¥ X, X2 + X3 — 8X,XZ + X3 19 Incomplete 21 72
Y] o8 X, X% 4+ X3 — 8X X2 + 6X3 22 Incomplete 23 Z2
19 X, X2 + X3 — 8X X% + 7X3 22 Incomplete 23 Z2
20 X X7 + X3 — 8X,X? +5X3 25 Complete — Z2
21 X, X2 + X3 — 9X X2 — X3 25 Complete — Z2
22 X, X2 + X3 — 8X X2 +2X3 28 Complete - Z2
23 X2X, + X3 +6X3 19 Incomplete 21 Z6
& | 24 X2X, + X3 —8Xx3 28 Complete - Z6
Gt | 25 X2X, + X3 —9X,XZ + 8X° 22 Complete - Z2
&t 26 X, X2 + X3 — 2% 13 Incomplete 28 Z6
Table 4: Elliptic cubic curves with no rational inflexions
Fr | No. Canonical form |%r] | Description | M(FD) G
1 | X X2+ X2X, +4X, X2 —5(X8 + 4X3 — 3X3 + 7X, X, X5) 12 Incomplete 27 Z3
2 XoXZ + X2X, + 4X, X3 + 9(X3 + 4X3 — 3X3 + 7X X, X,) 15| Incomplete 26 Zs
3 Xo X2+ X2X, + 2X,XZ — 4(X3 + 2X3 + 4X3 — 6X,X,X;) 15| Incomplete 26 Z
4 XoX? + X2X, + 2X,X3 — 5(X3 + 2X3 + 4X3 — 6X,X,X,) 18 | Incomplete 21 Zs
5 Xo X2+ X2X, + 4X, X2 — 2(X3 + 4X3 — 3X3 + 7X, X, X;) 18 | Incomplete 21 Zs
6 XoX? + X2X, + 2X,X3 — (X3 + 2X7 + 4X3 — 6X,X,X,) 21 | Complete - Zs
7 XoX2 + X2X, + 2X,X2 — 2(X3 + 2X3 + 4X3 — 6XX,X;) 21 | Complete - Z
Gi 8 XoX? + X2X, + 2X, X3 — 8(X3 + 2X3 + 4X3 — 6X,X,X,) 24| Complete - Zs
9 Xo X2+ X2X, + 2X,X2 + 9(X3 + 2X3 + 4X3 — 6X,X,X;) 24 | Complete - Zs
10 Xo X2+ X2X, + 4X, X2 — (X3 + 4X3 = 3X3 + 7X X, X,) 24| Complete - Zs
11 XoX2 + X2X, + 4X, X2 — 8(X3 + 4X3 — 3X3 + 7XX,X;) 24| Complete - Z
12 XoX2 + X2X, + 4X, X2 — 4(X3 + 4X3 — 3X3 + 7X, X, X,) 27 | Complete - Zs
o 13 XoX? + X2X, + 2X, X2 12 Incomplete 27 Z3x Z4
0 14 XoX? + X2X, + 4X X2 21 Complete - Z3x Z4
15 X3+ 2X3 + 4X,? — 3X,X, X, 18 | Complete - Z:x Zs
. 16 X3 +2X3 +4X2 + 7X X X, 18 | Incomplete 24 Z3x Z4
Go 17 X3+ 2X3 + 4X2 + 4X X, X, 18 Complete - Z3x Z3
18 X3 +2X3 +4X2 —5X XX, 18 | Incomplete 21 Z3x Z4
& 19 X3 +2X3 +4X3 — 7X, X, X, 27 Complete - Z3 X Z3
& | 20 X3 +2X3 +4X,7 27 Complete - % 223)(
3
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AMDS Codes of Dimension Three

A linear g-ary [n, k,d] code or an
[n,k,d]q -code C is a subspace of
V(n,q), where the dimension of C
isdimC = k, and the minimum
distance is

d(C) = d = min{w(x) | x

€ C\{0}}
= min{d(x; y)| x
* vy}
Here, with x = (x1,..,xn) and
y = (ylr"'ry”)l
w(x) = [{i [xi # 0}
is the weight of the word x and
d(x,y) = l{ilxi = yi}|
is the (Hamming) distance between the
words x and y.
Definition[12] 16:

Q) An [n, k,d]q —code is called
MDSif d=n—k+1.

(i)  An [n,k,d]q —code is called
AMDS if d =n—k.

(iii) A linear code for which any
two columns of a generator
matrix are linearly
independent is called a
projective code.

Theorem [12] 17: There exists a
projective [n, k, d]q-code if and only if
there exists an (m;n— d)—arc in
PG(k—1,q).

Corollary 18: There is a one-to-one
correspondence between (n; 3)-arcs in
PG(2,19) and projective [n,3,n — 3]19-
codes C.

In Table 5, the AMDS codes
corresponding to the (n; 3)-arcs for
12 <n < 28

in PG(2,19) and the parameter e of
errors corrected are given.

Table 5: AMDS code over PG(2,19)

(n; 3)—arc AMDS (n; 3) —arc AMDS e
code code

(12; 3)-rc [12,3,9]19 (21; 3)-arc [21,3,8],9 8

(13;3)-arc | [13,3,10]14 (22; 3)-arc 22,3,19]19 9

(14;3)-arc [14,3,11]49 (23; 3)-arc 23,3,20]49 9

(15;3)-arc [15,3,12]49 (24; 3)-arc 24,3,21]49 10

(16;3)-arc | [16,3,13]10

[ 1
[ ]
[ ]
(25; 3)-arc [25,3,22]19 10
[ 1
[ 1
[ 1

(17;3)-arc | [17,3,14]y9 (26; 3)-arc 26,3,23]19 11
(18;3)-arc [18,3,15]19 (27; 3)-arc 27,3,24],9 11
(19;3)-arc [19,3,16]19 (28; 3)-arc 28,3,25],9 12

O |IN|N|oo|joja|lo | B>

(20;3)-arc [20,3,17]19
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