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Abstract:

Let R be a 2-torision free prime ring and o, T € Aut(R). Furthermore, G: RxR—R is
a symmetric generalized (o, t)-Biderivation associated with a nonzero (o, 7)-
Biderivation D. In this paper some certain identities are presented satisfying by the
traces of G and D on an ideal of R which forces R to be commutative.
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Introduction:

Throughout R will be a ring with general is not true. Let S be a sub ring of
center Z(R) and o, T € Aut(R). A ring R is R. A mapping 7: S— R is said to be
called 2-torsion free, if 2x=0, x €R, implies centralizing on S if [n(x), XJ€Z(R), for
x=0. The symbol [x, y] represent the o y e Furthermore, 7 is called

commutator xy — yx and xoz to the Jordan commutin —
T g whenever [n(x), x] =0, for
product xy + yx. The following identities of all x €S (see [1]). It's known that the

commutator and Jordan product are useful . . .
to prove our theorems which are hold for ~ MOSt important studies in the ring theory

any xy, z €R. is the one that characterizing
o [xz,y]= [%V]Z+X[z V] commutativity of prime and semiprime
o [X,zy] = [x z]y +2[x, Y] rings .So over the last thirty years a lot
o X &Y= 1@[X Ylgr + [X Zlor oY) of works have been done concerning the
o X2 Vo= X2 V]ox + [x. )] Z = X[z, commutativity of rings admitting
o)] + [X, YloZ Sl_Jitab_Iy constrain_ed additive  or
e (x2) 0y =x@oy)—[x y]z = (xoy)z + x[z,  DPiadditive  mappings  such as
v] automorphisms, derivations and
e Xo0(zy) = (xo2)y — z[X, Y] = z(xoy) + [X, Biderivations acting on appropriate
zly subsets of the rings (see, e.g. [1, 2, 3,

4]). A mapping B: RxR— R is said to be
Recall that R is prime if for any a,b €R, symmetric if B(x, y) = B(y, x) holds for
aRb ={0} implies a=0 or b=0 and all pairsx,y € R. A mappingf: R — R
semiprime if for any a €R, aRa ={0} defined by f(x) = B(x, X) , where B is a
implies a=0. It's clear that every prime symmetric mapping will be called the
ring is a semiprime but the converse in trace of B. It obvious that in case B is a
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symmetric mapping which is also
biadditive (i.e., additive in both
arguments), the trace of B satisfies
f(x+y)= f(x) +2 B(x,y)+ f(y), for all x,y
€R (see [5]).
The notion of symmetric Biderivation
was introduced by G. Maksa in [6]. A
symmetric biadditive mapping D(. , .):
RxR— R is called symmetric
Biderivation if D(xy, z)=D(x, z) y +
xD(y, z) holds for all x,y,z €R. The
notion of additive commuting mapping
is closely connected with notion of
Biderivations, that is every commuting
additive mapping f:S —R gives rise to
Biderivation D: SxXS—R defend by D(x,
y)= [f(x), y], for all X, y €S (see [7]).

In 2007 Y. Ceven, and M. A. Oztiirk

in [7] introduce the concept of
symmetric (o, 2)- Biderivation as
follows: A symmetric biadditive

mapping F(., .):RXR—Ris said to be a
symmetric (o, z)-Biderivation if F(xy,
2)= F(x, 2)o(y)+=(x) F(y, z) , for all
X,y,Z € R. It's clear that in this case the
relation F(x,yz) = F(x, y) a(2)+ z(y) F(x,
y) is also satisfied for all x,y,z€ R. In
2010 M. Ashraf introduced in [8] the
notion of symmetric generalized (o, 1)-
Biderivation as follows: A symmetric
biadditive mapping G(., .);RXR —Ris
symmetric  generalized (o, 0)-
Biderivation if there exists symmetric
(o, 7)-Biderivation D such that G(xz, y)
=G(x, y) a(z) + 7(x)D(z, y), for all x, y, z
€R.

Motivated by theses works mentioned
above, in this paper we continue the line of
investigation regarding the relationship
between commutativity of a rings and the
existences of certain specific types of traces
of symmetric (o, 2)-Biderivation and a
symmetric generalized (o, 7)-Biderivation.

1. Some Preliminaries

We shall list the following lemmas which
will be used extensively to prove our
theorems.

Lemma (1.1): [9]

Let R be a semiprime ring, 7 an ideal
of R. If 7 is a commutative as a ring,
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then 7 cZ(R). In addition if R is prime
then R must be commutative.

Lemma (1.2): [10]

Let R be a prime ring of characteristic
different from 2 and 7 be a nonzero
ideal of R. let a, b be afixed elements of
R. if axb+bxa=0 is fulfilled for all x €
7, then either a=0 or b=0.

2. The Main results

We begin our discussion with the
following theorem which extends
Lemma (2.4) that obtained in [11] to a
symmetric (o, t)-biderivation.

Theorem (2.1):

Let R be a 2-torision free prime ring
and U be a nonzero left ideal of R. If R
admits a symmetric (o, 1)-
Biderivation F: RxR—R with f(u) =0,
for all u €U, where f is the Trace of F,
then either F is the zero on R or R is
commutative.

Proof: By the hypothesis, we have:

f(u) =0, for all u €U. (1)
Linearization (1), using this and the 2-
torision freeness, we obtain:

F(u, v)=0, for all u,v €eU. 2
Consequently

F(ru, sv)=0, forall u,v €U and r,s €R.
Expanding this term in two different
ways, we get:

0= F(ru, sv)

= F(r, sv) a(u) + z(r)F(u, sv)

F(r, s)a(v) a(u)+ z(s)F(r, V)o(u)+
7(r)F(u, s)a(v) + z(r)z(s)F(u, v).

On the other hand, we have:

0= F(ru, sv)

= F(ru, s) a(v) + z(s)F(ru, v)

F(r, s)o(u) o(v)+ z(r)F(u, s)a(v)+
7(s)F(r, V)o(u) + 7(s)z(r)F(u, V).
Comparing the two expressions of F(ru,
sv), we arrive because of (2) to:

F(r, s) a(v) a(u) = F(r, s) a(u) a(v), for
alluveUandr,s €eR.

That is

F(r, s) [o(v),a(u)]= 0O, for all uveU
andr,s €R. 3)
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The substitution ts for s in (3) and using
(3) yields that:

F(r, s) a(t) [a(v), a(u)]= 0= 0, for all
u,v eU andr,st eR.

Equivalently

o~ Y(F(r, s)) R [v, u]= 0, for all u,v €U
and r,s €R.

Using the primeness of R gather
together with the automorphismity of o,
we conclude that either F is the zero on
Ror:

[v,u]=0, forall u, veu.

This forces U to be a commutative ideal
of R, hence R is commutative by
Lemma(1.1).

Corollary (2.2): [11, Lemma (2.4)]

Let R be a 2-torision free prime ring
and 7 be a nonzero ideal of R. If D is a
symmetric Biderivation such that D(x,
X) =0, all x € J.then either D =0 or R is
commutative.

Theorem (2.3):

Let R be a 2-torision free prime ring
and U a nonzero ideal of R. Suppose G:
RXR—R is a symmetric generalized
Biderivation associated with a nonzero
Biderivation D such that the Traces d
and g of D and G respectively satisfies
one of the following:

i - [d(u), g(V)]=[u, V], forall u, v eU.
ii - [d(u), g(v)]= uov, forall u, v eU.

then either R is commutative or
G(U,U) € Z(R).

Proof:

(M Suppose that for d and g, we have:

[d(u), g()]= [u, v], for all u, v €U.
1)

Linearization of the relation (1) with
respect to u gives:

[d(u), 9] + [d(w), 9(V)] + 2[D(u, w),
gv)] =[u, v] + [w, V], forall u, v, w €U.
According to (1), the above relation
reduces because of the 2-torisionity free
of R to:

[D(u, w), g(v)] =0, for all u, v, w €U.
(2)

Putting wu for w in (2) leads to:
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[Du, ), gW)] u + D, w)u,
g1+ wld(u), g(V)] +[w, g(v)] d(u)= 0,
forall u, v, w €U.

The above relation becomes in view of
relation (2):

D(u, w)[u, g+ w[d(u), g(V)] +[w,
g(v)] d(u)= 0, for all u, v,w €U.
©)

The substitution uw for w in the relation
(3) and using (3), we see:

d(u) @ [u, g(V)] + [u, 9(v)] w d(u)= 0,
forall u, v, w €U.

An application of Lemma (1.2) implies
that either d(u) = 0, for all u €U or [u,
g(v)] = 0, for all u, v €eU. So U is the
union of the following two sub groups
of U:

M={ueU:d(u) =0}
N={ueU:[u,g(v)] =0}

Since a group cannot be the set theoretic
union of two it's proper subgroups,
hence either U=M or U= If U= M,
that d(u) = 0, for all u €U, then an
application of corollary (3.2) implies
that R is commutative. Otherwise, U
=V, that is::

[u, g(v)] =0, forall u, v €U. (5)
The linearization of (5) with respect to v
gives because of (5) and the 2-torision
freeness:

[u, G(v, w)] = 0, for all u, v, w €U.
(6)

Replacing u by ur in (6) and using (6),
we find:

ufr, G(v, w)] =0, for all u, v, w €U and
r er.

Equivalently

URTr, G(v, w)] =0, forall u, v, w €U
and r eR.

Since U is a nonzero ideal of R, we
conclude that G(U,U) < Z(R).

(i) Suppose that for any u, v €U, we
have:

[d(u), g(v)]= uov. (7)

The Linearization of the above relation
with respect to u we arrive because of
(7) and 2-torisionity free of R to:

[D(u, w), g(v)] =0, for all u, v, w €U.
This relation is similar to relation (2) in
part (i), hence using the same technique
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as used in the proof of the part (i), we
obtain the required result.

Theorem (2.4):

Let R be a 2-torision free prime ring
and U a nonzero ideal of R. Suppose G:
RxXR—-R is a symmetric generalized
Biderivation associated with a nonzero
Biderivation D satisfies that d(u) o
g(v)=[u, v], for all u, v €U, where d and
g are the Traces of D and G
respectively, then either R is
commutative or d is commuting on U.
Proof: Suppose that the Traces d and g
satisfy:

d(u) o g(v)= [u, v], for all u, v €U.
(1)

Linearization of the relation (1) with
respect to v leads to:

d(u) o g(v) + d(u) o g(w) + 2 d(u) o
GV,w )=1[u, v] + [w, V], for all u, v
eu.

The above relation reduces because of
(1) and 2-torisionity free of R to:

d(u) o G(v,w )= 0, for all u, v, w €U.
(2)

Substituting wv for w in (2) gives:

d(u) o G(v, w )v + d(u) o wd(v) =0, for
allu, v, w €U.
According to (2),
becomes:

d(u) o wd(v) =0, forall u, v, w €U.
That is

d(u) w d(v) + wd(v)d(u)
v, w EU. (3)

Left multiplication of (3) by u, we get:
ud(u) w d(v) +uwd(v)d(u)= 0, for all u,
VvV, w €U. 4)

Putting uw instead of w in (3) yields
that:

d(u) uw d(v) +uwd(v)d(u)= 0, for all u,
v, w EU. (5)

By subtracting the relation (4) from (5),
we find:

[d(u), u] w d(v)=0, for all u, v, w €U.
But U is an ideal of R, we have:

[d(u), u]w R d(v)=0, for all u, v, w €U.
By the primeness property of R we
conclude that either d(v)= 0 or [d(u),
ulw =0, forall u, v, w €U.

the last relation

=0, for all u,
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If d(v)= 0, for all v €U, then an
application of theorem (2.1) implies that
R is commutative.

On another hand, if [d(u), ulw = 0, for
all u, w €U, then:

[d(u), uyR w =0, for all u, w €U.

Since U is a nonzero ideal of R, we get:
[d(u), u] =0, for all u €U.

This means that d is commuting on U.

Theorem (2.5):

Let R be a 2-torision free prime ring
and U a nonzero ideal of R. Suppose F:
RxXR-R is a symmetric generalized (o,
1)-Biderivation  associated with a
nonzero (o, 7)-Biderivation D such that
[f(u), u]5~=0, for all u €U, where f is the
Trace F, then R is commutative.

Proof: Suppose that for any u €U, we
have:

[f(u), u],<=0. (1)

Taking u+v for u in (1), using (1) leads
to:

[f(u), Viox + 2[F(u, V), Uloc + 2[F(u, V),
V] * [f(V), U]s- =0, forall u, v €U.
Substituting 2u instead of u, and then
comparing the relation so obtained with
the above one, we get:

[f(u), Vlox + 2[F(u, V), ulg =0, for all u,
v eU. (2)

Putting vu for v in (2), we find:

tW)[f(U), U], +[F(U), V] o(u) + 2F(u,
Vo (), a(u)+ 2[F(u, v), U] o(u) +
2r(v)[d(u), Ulot 2[7(v), T(w)]d(u)= 0,
for all u, v eU.

Where d is the trace of D, according to
the relations (1), (2) and the 2-torisionity
free of R, we get:

t(v)[d(u), U]t [z(v), 7(u)] d(u)= O, for
allu, v eu. 3)

Replacing v by vw in (3), we see:
t(v)r(w)[d(u), u]st[r(v), 7(w]z(w) d(u)
+ t(v)[r(w), t()] d(u)= 0, for all u, v, w
eu.

The above relation reduces because of
(3), to:

[zv), ©(u)]z(w) d(u) = 0O, for all u, v,
eu.

That is
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[v, u] w T71(d()) = 0, for all uv, w
eu. 4)

Consequently

[v, u] Rwr~1(d(u)) = 0, for all uyv,
eu.

Since a group cannot be the set theoretic
union of two it's proper subgroups,
either [v, u] =0, for all u,v €U or U
7-1(d(u))=0, for all u €U.

If [v, u] =0, for all u,v €U yields that U
is commutative ideal, consequently R is

commutative by Lemma (1.1).
Otherwise

U t71(d(u))=0, for all u €U.
Equivalently

U R t71(d(u))=0, for all u €U.

Since U is a nonzero ideal of R and 7 is
an automorphisms of R, we conclude
that d(u)=0, for all u €U.

Hence R is commutative by theorem
(2.2).

Theorem (2.6):

Let R be a 2-torision free prime ring,
U a nonzero ideal of R. Suppose F:
RXR—R is a symmetric generalized (o,
1)-Biderivation associated with a
nonzero (o, 7)-Biderivation D such that
f(u)o(u)= z(u) d(u), for all u €U, where f
and d are the Traces of F and D
respectively, then either R s
commutative or d is commuting on U.
Proof: Suppose that the Traces f and d
satisfy:
f(ua(u)= z(w)d(u),
(1)
Taking u+v instead of u in (1) and using
(1), we get:
f(uo(v) + 2F(u, v)a(v) + 2F(u, v)o(u) +
f(v)a(u) -z(v)d(u) -2tw)Du, v) -
2t(v)D(u, v) -t(u)d(v)
Writing -u for u, then combining the
above relation with the relation so
obtained, we find:
f(Wo(v) + 2F(, v)a(u) = -z(v)d(u) -
2t(u)D(u, v), for all uv €U.
(2)
Replacing v by vu in (2) leads to:

for all u eU.
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fuo(V)o(u)+ 2FUu, Vv)oi(u) +
2t(v)d(u)a(u)= -t(v)r(u)d(u) -27(u)D(u,
V)a(u)- 2z(u)r(v)d(u)

In view of (2), the last relation reduces
to:

-zv)dWao(u)- 2tw)D (u, Vv)a(u) +
2t(v)d(u)o(u) = -t(v)r(u)d(u) -27(u)D(u,
V)a(u)- 2z(u)r(v)d(u)

That is

7(v) (d(U)oo(u)) = - 2z(u)z(v)d(u), for all
u,veu. 3

The substitution wv for v in (3) gives:
r(w)r(v)(d(u)oo (u))
21(u)t(w)r(v)d(u), for all u, v, w €U.
According to (3) and the 2-torisionity
free of R, the above relation becomes:
(w)t(w)r(v)d(U)= t(w)r(w)r(v)d(u), for
allu, v, w €U.

That is

[7(w), T(w)] z(v) d(u)=0, for all u, v, w
eu.

Equivalently

[w, u] Uz~1(d(u))=0, forall u, w €U.
This relation is similar to relation (4) in
theorem (2.6), hence moving in the
same manner as in the proof of the
theorem (2.6) our result gets completed.
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