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Abstract:

In this paper, an approximate solution of nonlinear two points boundary variational problem is presented.
Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem.
The convergence of this polynomial has been verified; also different numerical examples were given to
show the applicability and validity of this method.
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Introduction:
Many problems in mathematical physics  Section 4 the convergence test for the introduced

and engineering are connected with the calculus of  method has been studied, then the conclusion.

variations which is concerned with finding extrema

for functional opposed to function. Usually 2- Boubaker polynomials(9, 10):

functionals are defined by definite integrals, with  Boubaker polynomials have been applied first by

boundary conditions and smoothness requirements, Boubaker et al. to deal with heat equation in

which appear in the problem formulation (1). physical model, and then several papers have been
Many researchers have worked in this field, M. applied with different applications in physics,

Razzaghia, S. Yousefi used in 2000 Legendre  applied sciences...etc.

wavelets to solve variational problems(2). Boubaker polynomial (Bo) is presented by the

Abdulaziz O., and others in 2008 applied Homotopy  following equation:

-perturbation method to obtain approximate §(k)

analytical solutions to variational problems(3). Dixit Boy(2) = Z (k — 47) cr ] (-1)7Z52 (1)

S. and Singh K. and others in 2010 used Bernstein (k—r) 7

orthonormal polynomials of degree six (4). With

Ordokhani Y. in 2011 applied Walsh-hybrid r o (k-7 k=012

functions for solving the problems of variational, k=7 ri(c—2r)1”’ i

using a combination of block-pulse functions and andé (k) = [EJ _ 2k+((-D*-1)

Walsh functions then with Bernoulli polynomials in 2 4

another paper (5,6). Najeeb S., Abdalelah A. in Bog(z) =1, Boy(2) — &

2012, utilized Chebyshev wavelets for solving some _ _Bo(2)=2z"+2,..

variational problems(7). Mohammadi R. and Sadat and a recursive relation of this polynomial has given

A. in 2015 developed a new method using quadratic @S follows: _

polynomial Spline (). Also Mohammadi R., Zahedi ~ B9i(2) = 2B0j_1(2) — Boj_5(2), ~ forj > 2

M. and Bayat Z. in 2015, developed an exponential Also the Boubaker's operational matrix of

Spline method for solving calculus of variations(8). ~differentiation and integration has been deduced
This paper can be outlined as follows: in Section ~ before (see (11)).

2 Boubaker polynomials are defined with its

recurrence relation. In Section3, the application of ~ 3-Application of Boubaker polynomials for

Boubaker polynomials for solving variational ~ solving variational problems:

problems, with some numerical examples have been

presented.

r=0

We demonstrate the application of Boubaker
polynomials to solve some variational problem.
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n

f=f= Zain Bo;, = aBo(t) .. (2)
i=0
where a =[ag, , a1, ..., &m]' and Bo (t) = [Bogn,BOy,
....Bon]
Consider the case n=5, then equation (2)
becomes

5
f =) ajs Bojs =a’Bo(t) ..(3)
; 5 Bojs

Hence a=[ags, ass, ..., ass] and Bo(t)=[Bogs, BOs, ...,
Boss]"

Differentiating equation (3) with respect to t, to get
f =a"Bo(t)..(4)
where a=[ags, ais, ...
80'15, ...,BO'SS]T

then substituting in variational problem to find f .
Example 1. Using first order functional with
boundary conditions

1
J(2) = f (Z%2 +tz+z¥dt ..(5)
0

z(0) =0, z(1) = i(Boundary conditions) ... (6)

The exact solution is z(t) = %+ ciet + et

, ass] and Bo (t) = [BOys,

2—e e—2e?
4(e2-1) and c; = 4(e2-1)
We approximate the variable z (t) using
Boubaker polynomial
Z (t)=apsBoos(t)+a1sBoss(t)+asBoss(t+...  ...(7)
z(t)=a' Bo(t) ...(8)
where a =[ags, ais, 8s,835,845,855] and Bo(t) =[Bogs,
B0ss, B0s, B0zs, B0ys, Boss]"
By differentiation equation (8), we obtain
2(t) = a’Bo(t) ..(9)
Substituting equations (8) and (9) into (5), we get:

1
J(2) = f [a"Bo(t)BoT (t)a + a’tBo(t)
0

+ a’Bo(t)Bo” (t)a]dt

where ¢; =

letH =
2 [ [Bo(t)Bo™ (t) + Bo(t)Bo” ()]dt ...(10)

1
qT = J tBoT(t)dt ..(11)
0
The equations (10) and (11) can be written as
1
J(2) = EaTHa +qTa ..(12)

with boundary conditions equation (6)
z (0) =a'Bo (0) =0, and z (1) =a'Bo (1) =1/4
subject to Fa-b=0, where

Bo™(0) -
b= (BZT(I)): (11 g gg —i —03)'

)

b={1)

4 - *
The optimal values of unknown parameters a

can be obtained by using Lagrange multiplier
equation,

a=-H 'a+H 'FT(FH'FT)"Y(FH 'a + b),
then

a;, wherei=0,1,2,3,4,5 are

a'=[0.46144119, 0.37468906, -0.24982508,
0.07515296, -0.01910448, 0.00202181]"

A comparison between the approximate z (t)
using Boubaker polynomial and exact solution is
shown in Table (1).The solution has been illustrated
in Fig.1 by using Matlab.

Table 1. comparison between estimated values
and exact values of z (1)

t Zapp. Zexact |Zexaﬂjp0.|
0 0 0 0
0.1 0.04195064 0.04195072 8*10®
0.2 0.07931744 0.07931714 3*107
0.3 0.11247342 0.11247322 2*107
0.4 0.14175064 0.14175081 1.7*107
0.5 0.16744257 0.16744291 3.4*107
0.6 0.18980653 0.18980668 1.5*10”
0.7 0.20906613 0.20906593 2*10”
0.8 0.22541368 0.22541340 2.5*107
0.9 0.23901264 0.23901272 8*10®
1 0.24999999 0.25 1*10°®
0-25 T T : : T : : : —
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Figure 1.Shows approximate and exact solutions for
examplel

Example2: Using first order quadratic problem with
boundary conditions

1
J(2) = f (z%2+z%)dt ...(13)
z(0) =0, z(1) =01 ( boundary conditions) ... (14)

et—et

The exact solution is z(t) = T

As in example 1, we can compute the optimal
solution of variational problem using Boubaker
polynomial. The results are shown in Table (2),and
illustrated in Fig.2.
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Table 2.comparison between estimated values

2
and exact values of z(t) <e€

[ f (e (©) — 2y (D)2 dt
0

t Zapp ZEXaCt |ZEXaCt-Zapp.| 1
0 0 0 0 N+M N 2 P
01 008523382 008523370  12*107 1
02 017132009 017132045  2.6*107 f (Z a;Bo;y (t) —ZaiBOi.N(t)> dt] < e
03 025012154 025012183  2.9*107 °\i= =0
04 034951677 034951660  1.7*107 v -
05 044340090 044340944  46%107 1
0.6 054174031 054174007  24*107 f (z aiBOi.N(f)> <e
07 064549236 064549262  2.6107 0 \iZFh1
0.8 07570506 075570548 4.2+10” N NoM :
o
0 oo ommw el |[(2 eno)( 2 es)e]
i=N+1 i=N+1
. N+M N+M 1
0.0 1 <e€ aiajf Bo;(t)Bo;(t)dt < e
0s I i=N+1j=N+1 0

0.7

0.6

So the polynomial Boubaker can be reduced to the

simple form  YN*M a2 <e¢

0.5

0.4

0.3

Conclusion:
E In this paper, Boubaker polynomials have been
. I utilized as an evaluation solution for reducing the
R variational problems into quadratic programming
Figure2. Shows approximate and exact solutions ~ Problems. These polynomials were proved to be an
for example 2 efficient and powerful tool for solving variational
problems. Some examples were presented to
demonstrate the applicability and validity of this

+  approximate
exact sol.

0.2 ‘

0.1

+

From the above, the results represent a good
approximation to the exact solution, which indicates

method; also Matlab plotting was used to illustrate

that Boubaker polynomials are very efficient in  theresults.
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