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Abstract: 
        The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional 

order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and 

collocation method properties are presented. This technique is used to convert the problem into the solution 

of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical 

examples are given to show the accuracy and reliability of the proposed technique. 
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Introduction:   
Fractional Calculus has been pulling in the 

consideration of researchers and specialists from 

long time ago, resulting in the improvement of 

numerous applications. Since the nineties of a 

century ago fractional calculus is being 

rediscovered and connected in an expanding 

number of fields, namely in several areas of 

Physics, Control Engineering, and Signal 

Processing, such as electromagnetism, 

communications, sciences, control, robotics, 

information and many other physical sciences and 

also in medical sciences (1,2,3,4,5). 
Integral equations can be described as being 

a functional equation involving the unknown 

function under one or more integrals. 

Differential equations as well as integral 

equations of fractional order belong to a wider class 

of equations in which the unknown object is a 

function (scalar function or vector function). Such 

kinds of equations are often encountered in 

mathematics and in various sciences that use the 

mathematical apparatus, and they are generally 

called functional equations. 

 Because of the broad utilizations of 

differential equations and integral equations of 

fractional order in engineering and science; research 

in this area has become essentially all around the 

globe (6-16). 
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An Integro-differential equation is an 

equation in which the unknown functions appear 

with derivatives, and either the unknown functions, 

or their derivatives, or both, appear under the sign 

of integration. This, however, is a purely formal 

classification, since we can easily pass from one 

type to the other. Numerous scientific models of 

physical wonders contain integro-differential 

equations; these equations emerge in numerous 

fields like physics, potential theory, astronomy, 

biological models, chemical kinetics and fluid 

dynamics. 

Integro-differential equations are normally 

not being easy to solve analytically; so, it is 

required to obtain an effective approximate solution 

(17-21). Fractional integro-differential equation is 

considered as an important model for various 

physical wonders in engineering and scientific 

fields. Some numerical calculation for solving 

integro-differential equation of fractional order can 

be summarized as follows: variational iteration 

method (22, 23), Haar wavelets method (24), 

Adomian decomposition method (25, 26, 27), 

Laplace decomposition method (28), differential 

transform method (29, 30), Legendre wavelets 

method (31, 32) and Chebyshev wavelets method 

(33, 34, 35). 

     As a special form of integro-differential 

equations of fractional order Volterra-Fredholm 

integro-differential equations of fractional order 

(36, 37).  

That primary point of the Jacobi-collocation method 

over other techniques may be that Jacobi-
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collocation method provides a great finer rate for 

convergence (38, 39). 

      In this article, we consider a Volterra-Fredholm 

integro-differential equation of fractional order as 

follows: 

 
d2u(x)

dx2
+
du(x)

dx
+𝐷x

νu(x) + u(x) =  

f(x) + λ1 ∫ 𝐾1(x, t)u(t)dt
x

a
+ λ2 ∫ 𝐾2(x, t)u(t)

b

a
dt,

0 <  ν ≤ 1                                                         …(1)   

Subject to the homogenous boundary conditions: 

u(a) = 0,   u(b) = 0,   a ≤ x ≤ b                     …(2) 

     The organization of the rest of this article is as 

follows: in section 2 we present some essential 

definitions of the fractional calculus theory, in 

section 3 the Jacobi polynomial, and its properties 

are presented. While in section 4 we show how 

Jacobi polynomial with collocation technique may 

be used to replace problem (1)–(2) by an explicit 

system of linear algebraic equations. Moreover in 

section 5, we introduce some numerical cases to 

show the adequacy of the proposed method, 

concluding remarks are given in the last section. 

 

Fractional Derivative and Integration  

     In this section, we might survey the essential 

definitions and properties of fractional integral and 

derivatives, which are utilized further in (3). 

 

Definition (1):- The left-sided and the right-sided 

Riemann-Liouville fractional integrals  Ia+
v f  and  

Ib−
v f of order v ∈ ℂ (ℜ(α) > 0) are defined by:- 

(Ia+
v f)(x) =

1

Γ(v)
∫

f(t)dt

(x−t)1−v
  (x > a;  ℜ(v) > 0)

x

a
..(3) 

(Ib−
v f)(x) =

1

Γ(v)
∫

f(t)dt

(t−x)1−v
  (x < b;  ℜ(v) > 0),

b

x
                                                              

…(4) 

 

Ix
0f(x) = f(x)                                                  …(5) 

                                                                        

Definition (2):- The left and right Riemann-

Liouville fractional derivative 

 𝐷𝑎+
𝑣 𝑦 and 𝐷𝑏−

𝑣 𝑦 of order 𝑣 ∈ ℂ  (ℜ(𝑣) ≥ 0) are 

defined respectively by :- 

{
 
 
 

 
 
 (𝐷𝑎+

𝑣 𝑦)(𝑥) ≔ (
𝑑

𝑑𝑥
)
𝑛
(𝐼𝑎+
𝑛−𝑣𝑦)(𝑥)

=
1

Γ(𝑛−𝑣)
(
𝑑

𝑑𝑥
)
𝑛

∫
𝑦(𝑡)𝑑𝑡

(𝑥−𝑡)𝑣−𝑛+1
  (𝑛 = [ ℜ(𝑣)] + 1; 𝑥 > 𝑣)

𝑥

𝑎

(𝐷𝑏−
𝑣 𝑦)(𝑥) ≔ (−

𝑑

𝑑𝑥
)
𝑛
(𝐼𝑏−
𝑛−𝑣𝑦)(𝑥)

=
1

Γ(𝑛−𝑣)
(−

𝑑

𝑑𝑥
)
𝑛

∫
𝑦(𝑡)𝑑𝑡

(𝑡−𝑥)𝑣−𝑛+1
  (𝑛 = [ ℜ(𝑣)] + 1; 𝑥 < 𝑏)

𝑏

𝑥

…(6)  

Where [ ℜ(𝑣)] means The integral part of ℜ(v). 
 

Definition (3):- The Caputo fractional derivative 

operator of order v  for the function f: [a, b] → ℝ, is 

given as follows: 

Dx
𝑣f(x) =

1

Γ(n−v)
∫ (x − t)n−𝑣−1
x

0
 f (n)(t)dt, x > 0c                                                 

…(7) 

Where 𝑣 > 0,  n is an integer and n − 1 < 𝑣 ≤ n. 
The relation between Caputo fractional derivative 

and Riemann-Liouville: 

Ix
v Dc x

𝑣f(x) = f(x) − ∑ f (k)(0+n−1
k=0 )

xk

k!
              …(8) 

Where n is an integer and n − 1 < 𝑣 ≤ n. 
Also, for the Caputo fractional derivative we have 

 

Dc x
𝑣C = 0,  (C is a constant)                          …(9) 

                                                                         

Dc x
𝑣xβ = { 

0                          for  β ∈ N0 and  β <  ⌈𝑣⌉                                  
Γ(β+1)

Γ(β+1−v)
xβ−𝑣 ,           for β ∈ N0   and   β ≥ ⌈𝑣⌉ or  β ∉ N and β > ⌊𝑣⌋.

                        ...(10)   

 

     Where ⌈𝑣⌉ and ⌊𝑣⌋ be the ceiling and the floor 

function respectively. 

   

The Jacobi Polynomials 
 The well-known Jacobi polynomials (40) 

are defined on the interval [-1,1] and can  be 

generated with the aid of the following recurrence 

formula: 

 

Ji
(γ,δ)(t) =

(γ+δ+2i−1){(γ2−δ2+t(γ+δ+2i))(γ+δ+2i−2)}

2i(γ+δ+i)(γ+δ+2i−2)
 Ji−1
(γ,δ)(t) 

                              

−
(γ+i−1)(δ+i−1)(γ+δ+2i)

i(γ+δ+i)(γ+δ+2i−2)
Ji−2
(γ,δ)(t), i = 1,2,…    …(11)        

where J0
(γ,δ)(t) = 1 and   𝐽1

(γ,δ)(𝑡) =
γ+δ+2

2
𝑡 +

γ−δ

2
  

with   𝐽𝑖
(γ,δ)(−𝑡) = (−1)𝑖𝐽𝑖

(γ,δ)(𝑡),    

  𝐽𝑖
(γ,δ)(−1) =

(−1)𝑖Γ(γ+δ+1)

𝑖!Γ(δ+1)
,                            …(12)                      

Moreover, the n
th
 derivative of 𝐽𝑖

(γ,δ)
(t), can be 

obtained from 
𝑑𝑛

𝑑𝑥𝑛
𝐽𝑖
(γ,δ)(𝑡) =

Γ(𝑖+𝑛+γ+δ+1)

2𝑛Γ(𝑖+γ+δ+1)
𝐽𝑖−𝑛
(γ+𝑛,δ+𝑛)(𝑡),     …(13) 

 

We also define the so-called shifted Jacobi 

polynomials of degree 𝑖 ∈ ℕ on the interval [0, 𝐿] 

by using the change of variable 𝑡 =
2𝑥

𝐿
− 1. So 

Shifted Jacobi polynomials 𝐽𝑖
(γ,δ)

(
2𝑥

𝐿
− 1) are 

denoted by𝐽𝐿,𝑖
(γ,δ)

(𝑥).  Shifted Jacobi polynomials of 

𝑥 can be determined with the aid of the  

𝐽𝐿,𝑖
(γ,δ)(𝑥) =

(γ+δ+2𝑖−1){(γ2−δ2+(
2𝑥

𝐿
−1)(γ+δ+2𝑖))(γ+δ+2𝑖−2)}

2𝑖(γ+δ+𝑖)(γ+δ+2𝑖−2)
 𝐽𝐿,𝑖−1
(γ,δ) (𝑥)                                         
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  −
(γ+𝑖−1)(δ+𝑖−1)(γ+δ+2𝑖)

𝑖(γ+δ+𝑖)(γ+δ+2𝑖−2)
𝐽𝐿,𝑖−2
(γ,δ) (𝑥), 𝑖 = 1,2, …   (14) 

         Where  𝐽𝐿,0
(γ,δ)(𝑥) = 1    and  

𝐽𝐿,1
(γ,δ)(𝑥) =

γ+δ+2

2
(
2𝑥

𝐿
− 1) +

γ−δ

2
.      

The analytic form of the i-degree shifted Jacobi 

polynomials is given by 

𝐽𝐿,𝑖
(γ,δ)(𝑥) =

∑ (−1)𝑖−𝑘𝑖
𝑘=0

Γ(γ+δ)Γ(𝑖+𝐾+γ+δ+1)

Γ(𝐾+δ+1)Γ(𝑖+γ+δ+1)(𝑖−𝐾)!𝐾!𝐿𝑘
𝑥𝑘 , 𝑖 =

1,2,…,                                                 …(15) 

Where 

𝐽𝐿,𝑖
(γ,δ)(0) = (−1)𝑖

Γ(𝑖+δ+1)

i!Γ(δ+1)
  

and     𝐽𝐿,𝑖
(γ,δ)(𝐿) =

Γ(𝑖+γ+1)

i!Γ(γ+1)
                              …(16)                    

The n
th
  order derivative of shifted Jacobi 

polynomial can be written as(41) : 

𝑑𝑛

𝑑𝑥𝑛
𝐽𝐿,𝑖
(γ,δ)(𝑥) =  𝑏𝑖,𝑛

(γ,δ)
𝐽𝐿,𝑖−𝑛
(γ+𝑛,δ+𝑛)(𝑥),               …(17) 

Where   𝑏𝑖,𝑛
(γ,δ)

= 
Γ(𝑖+𝑛+γ+δ+1)

𝐿𝑛Γ(𝑖+γ+δ+1)
 

The orthogonality condition of shifted Jacobi 

polynomials is 

∫ 𝐽𝐿,𝑗
(γ,δ)(𝑥)𝐽𝐿,𝑘

(γ,δ)(𝑥)Ω𝐿
(γ,δ)(𝑥)𝑑𝑥 = ℓ𝑘,

𝐿

0
           …(18)                                               

Where  Ω𝐿
(γ,δ)(𝑥) = 𝑥δ(𝐿 − 𝑥)γ 

And 

   
   




















.0

,
1!12

111

ji

ji
kkk

kkL

k 



      …(19) 

 

A special case for γ =  δ =  −1/2 and 

γ =  δ =  0,  the Chebyshev and Legendre of the 

first and kinds polynomials respectively, 

A function u(x), which is square integrable 

in (0,1)
 
may be expressed in terms of shifted Jacobi 

polynomials as  

𝑢(𝑥) = ∑ 𝑐𝑗 𝐽𝐿,𝑗
(γ,δ)

(𝑥)∞
𝑗=0                                                             

Where the coefficients 𝑐𝑗 are given by 

𝑐𝑗 =
1

ℎ𝑗
∫ Ω(γ,δ)(𝑥)𝑦(𝑥)𝐽𝐿,𝑗

(γ,δ)1

0
(𝑥)𝑑𝑥      j=0,1,… .                  

Now, by considering the first (m+1)-term of 

shifted Jacobi polynomials. 

Hence u(x) can be written in the form 

𝑢(𝑥) = ∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝑥)𝑚
𝑗=0                                   …(20)

                                                                                       

Theorem (1):- Let u(x) be approximated by the 

shifted Jacobi polynomials as (20) and also suppose 

𝑣 > 0 then: 

𝐷𝑐 0
𝑣𝑢(𝑡) = ∑ ∑ 𝑐𝑗 𝒷𝑗,𝑛

(𝑣)
𝑡𝑗−𝑛−𝑣

𝑗−⌈𝑣⌉
𝑛=0 ,𝑚

𝑗=⌈𝑣⌉        …(21) 

Where 𝒷𝑗,𝑛
(𝑣)

 is given by: 

𝒷𝑗,𝑛
(𝑣)
= (−1)𝑗−𝑛

Γ(γ+δ)Γ(𝑚+𝑗+γ+δ+1)

Γ(𝑗+δ+1)Γ(𝑚+γ+δ+1)(𝑚−𝑗)!𝑗!𝐿𝑗
 ..(22) 

Proof:- Since the Caputo's fractional differentiation 

is a linear operation we have: 

𝐷𝑐 0
𝑣(𝑢(𝑥)) = ∑ 𝑐𝑗 𝐷

𝑐
0
𝑣(𝐽𝐿,𝑗

(γ,δ)
(𝑥)𝑚

𝑗=0 )           …(23) 

 

Now, to calculate 𝐷𝑐 0
𝑣(𝑢(𝑥)) by using Eqs. (9), 

(10) in eq. (15) we have 

𝐷𝑐 0
𝑣(𝐽𝐿,𝑗

(γ,δ)
(𝑥)) = ∑ (−1)𝑖−𝑘

𝑗
𝑛=0   

Γ(γ+δ)Γ(𝑗+𝐾+γ+δ+1)

Γ(𝑛+δ+1)Γ(𝑗+γ+δ+1)(𝑗−𝐾)!𝑛!𝐿𝑛
𝐷𝑐 0
𝑣( 𝑥𝑗−𝑛), 𝑗 =

⌈𝑣⌉, ⌈𝑣⌉ + 1,… ,𝑚                                      …(24) 

                                                                                                                          

Since the degree of Jacobi polynomial is n, then: 

𝐷𝑐 0
𝑣(𝐽𝐿,𝑗

(γ,δ)
(𝑥)) = 0, ∀ 𝑛 = 0,1,2,… , ⌈𝑣⌉ − 1, 𝑣 >

0                                    …(25) 

                             

A combination of (23)-(25), leads to the following 

form: 

 

𝐷𝑐 0
𝑣𝑢(𝑥) =

∑ ∑ 𝑐𝑗𝑏𝑗,𝑛
(𝑣)
=

𝑗−⌈𝑣⌉
𝑛=0

𝑚
𝑗=⌈𝑣⌉

(−1)𝑗−𝑛
Γ(γ+δ)Γ(𝑚+𝑗+γ+δ+1)

Γ(𝑗+δ+1)Γ(𝑚+γ+δ+1)(𝑚−𝑗)!𝑗!𝐿𝑗
𝑥𝑗−𝑛−𝑣 ,  

= ∑ ∑ 𝑐𝑗 𝒷𝑗,𝑘
(𝑣)
𝑥𝑗−𝑛−𝑣

𝑗−⌈𝑣⌉
𝑛=0 ,    𝑚

𝑗=⌈𝑣⌉                    …(26) 

This is the end of the proof. 

 

Function approximation  
 Consider linear Volterra-Fredholm integro- 

differential equations of fractional order derivative 

of the form: 
d2u(x)

dx2
+
du(x)

dx
+ 𝐷𝑐 0

𝑣u(x) + u(x) = f(x) +

λ1 ∫ 𝐾1(x, t)u(t)dt
x

a
+ λ2 ∫ 𝐾2(x, t)u(t)

b

a
dt,   …(27)   

subject to the  homogenous boundary condition (2) 

using Eqs.(17),(25) in Eq.(27) we have: 

 

∑ 𝑐𝑗  
𝒅𝟐

𝒅𝒙𝟐
𝐽𝐿,𝑗
(γ,δ)(𝑥)𝑚

𝑗=0 +∑ 𝑐𝑗  
𝑑

𝑑𝑥
𝐽𝐿,𝑗
(γ,δ)(𝑥)𝑚

𝑗=0 +

∑ ∑ 𝑐𝑗 𝒷𝑗,𝑘
(𝑣)
𝑥𝑗−𝑛−𝑣

𝑗−⌈𝑣⌉
𝑛=0

𝑚
𝑗=⌈𝑣⌉ + ∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)
(𝑥)𝑚

𝑗=0 =

𝑓(𝑥) + λ1 ∫ 𝐾1(x, t)∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝑡)𝑚
𝑗=0 dt

x

a
+

λ2 ∫ 𝐾2(x, t)∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝑡)𝑚
𝑗=0

b

a
dt,                    …(28) 

       

∑ 𝑐𝑗 𝒷𝑗,2
(γ,δ)

𝐽𝐿,𝑗−2
(γ+2,δ+2)(𝑥)𝑚

𝑗=0 +

∑ 𝑐𝑗 𝒷𝑗,1
(γ,δ)

𝐽𝐿,𝑗−1
(γ+1,δ+1)(𝑥)𝑚

𝑗=0 +

∑ ∑ 𝑐𝑗 𝒷𝑗,𝑘
(𝑣)
𝑥𝑗−𝑛−𝑣

𝑗−⌈𝑣⌉
𝑛=0

𝑚
𝑗=⌈𝑣⌉ + ∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)
(𝑥)𝑚

𝑗=0 =

𝑓(𝑥) + λ1 ∫ 𝐾1(x, t)∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝑡)𝑚
𝑗=0 dt

x

a
+

λ2 ∫ 𝐾2(x, t)∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝑡)𝑚
𝑗=0

b

a
dt,                     ...(29) 

 

Now we arrange Eq. (29) at (𝑚 +  1 − ⌈𝑣⌉) points 

𝑥𝑞 as: 

∑ 𝑐𝑗 𝒷𝑗,2
(γ,δ)

𝐽𝐿,𝑗−2
(γ+2,δ+2)

(𝑥𝑞)
𝑚
𝑗=0 +

∑ 𝑐𝑗 𝒷𝑗,1
(γ,δ)

𝐽𝐿,𝑗−1
(γ+1,δ+1)

(𝑥𝑞)
𝑚
𝑗=0 +  



Baghdad Science Journal                      Vol.15(3)2018 

 

347 

∑ ∑ 𝑐𝑗 𝒷𝑗,𝑘
(𝑣)𝑥𝑞

𝑗−𝑛−𝑣𝑗−⌈𝑣⌉
𝑛=0

𝑚
𝑗=⌈𝑣⌉ + ∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)
(𝑥𝑞)

𝑚
𝑗=0 =

𝑓(𝑥𝑞) + λ1 ∫ 𝐾1(𝑥𝑞 , t) ∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)(𝑡)𝑚

𝑗=0 dt
𝑥𝑞
a

+

λ2 ∫ 𝐾2(𝑥𝑞, t) ∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)(𝑡)𝑚

𝑗=0
b

a
dt,    𝑞 = 0,1,… , ⌈𝑣⌉.                          

…(30)                                                                                                                  

For suitable collocation points we use roots of 

shifted Jacobi polynomial  𝐽𝐿,𝑚 + 1 − ⌈𝑣⌉
(γ,δ) (𝑥).   

In order to use the quadrature rule for Eq. (30), we 

transfer the interval [𝑎, 𝑥𝑞] and the interval [𝑎, 𝑏] to 

fixed interval [−1,1] by means of the transformation    

𝑡 =
𝑏−𝑎

2
𝓉 +

𝑎+𝑏

2
 

Eq. (30), for  p =  0,1, . . . , 𝑚 +  1 − ⌈𝑣⌉, may be 

restated as: 

 

∑ 𝑐𝑗 𝒷𝑖,2
(γ,δ)

𝐽𝐿,𝑗−2
(γ+2,δ+2)

(𝑥𝑞)
𝑚
𝑗=0 +

∑ 𝑐𝑗 𝒷𝑖,1
(γ,δ)

𝐽𝐿,𝑗−1
(γ+1,δ+1)

(𝑥𝑞)
𝑚
𝑗=0 +

∑ ∑ 𝑐𝑗 𝒷𝑗,𝑘
(𝑣)
𝑥𝑞

𝑗−𝑛−𝑣𝑗−⌈𝑣⌉
𝑛=0

𝑚
𝑗=⌈𝑣⌉ + ∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)
(𝑥𝑞)

𝑚
𝑗=0 =

𝑓(𝑥𝑞) +
λ1(𝑥𝑞−𝑎)

2
∫ 𝐾1(𝑥𝑞, 𝜉) ∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)(𝜉)𝑚
𝑗=0 d𝜏

1

−1
+  

λ2(𝑏−𝑎)

2
∫ 𝐾2(𝑥𝑞 , 𝜒)∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)(𝜒)𝑚
𝑗=0

1

−1
d𝜏,   

  𝑞 = 0,1,… , ⌈𝑣⌉.                                  …(31)        

                                                                                                                                             

Where 𝜉 =
𝑥𝑞−𝑎

2
𝓉 +

𝑥𝑞+𝑎

2
  and   𝜒 =

(𝑏−𝑎)

2
𝓉 +

(𝑏−𝑎)

2
 

, 

By using the Gaussian integration formula, for 

𝑞 = 0,1,… ,𝑚 − ⌈𝑣⌉, we get: 

 

∑ 𝑐𝑗 𝒷𝑖,2
(γ,δ)

𝐽𝐿,𝑗−2
(γ+2,δ+2)

(𝑥𝑞)
𝑚
𝑗=0 +

∑ 𝑐𝑗 𝒷𝑖,1
(γ,δ)

𝐽𝐿,𝑗−1
(γ+1,δ+1)

(𝑥𝑞)
𝑚
𝑗=0 +  

∑ ∑ 𝑐𝑗 𝒷𝑗,𝑘
(𝑣)
𝑥𝑞

𝑗−𝑛−𝑣𝑗−⌈𝑣⌉
𝑛=0

𝑚
𝑗=⌈𝑣⌉ + ∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)
(𝑥𝑞)

𝑚
𝑗=0 =

𝑓(𝑥𝑞) +
λ1(𝑥𝑞−𝑎)

2
∑ 𝓌𝑑𝐾1(𝑥𝑞 , 𝜉𝓉𝑑)∑ 𝑐𝑗𝐽𝐿,𝑗

(γ,δ)
(𝜉𝓉𝑑)

𝑚
𝑗=0

𝑚
𝑑=0 +  

𝜆2(𝑏−𝑎)

2
∑ 𝓌𝑑𝐾2(𝑥𝑞 , 𝜒𝓉𝑑)∑ 𝑐𝑗 𝐽𝐿,𝑗

(γ,δ)
(𝜒𝓉𝑑)

𝑚
𝑗=0

𝑚
𝑑=0 ,

𝑞 = 0,1,… , ⌈𝑣⌉                              ...(32)                     

            

Where 𝓉𝑑 are 𝑚 +  1 roots of Jacobi polynomial  

𝐽𝑚+1
(𝛼,δ)(𝑡) and 𝓌𝑑 are their weights given in (7). The 

idea of the above approximation is the exactness of 

the quadrature rule for polynomials of degree does 

not exceed 2m + 1. 

Also, by substituting Eq. (20) in boundary 

conditions, we can find ⌈𝑣⌉ of equations we obtain 

𝑢(𝑥) = ∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)(0)𝑚

𝑗=0 = 0,          …(33) 
       

𝑢(𝑥) = ∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(1)𝑚
𝑗=0 = 0         …(34) 

 

Next, Eqs. (33-34), after using (15), can be written 

as 

∑ 𝑐𝑗(−1)
𝑖 Γ(𝑗+δ+1)

i!Γ(δ+1)
𝑚
𝑗=0 = 0,                   …(35) 

∑ 𝑐𝑗
Γ(𝑗+γ+1)

i!Γ(γ+1)
𝑚
𝑗=0 = 1                            …(36)                              

So, from using equations (32) with (35) and (36), 

we get (m + 1) linear algebraic equations which 

can be solved for the unknown coefficients 𝑐𝑗. 

 

Numerical Examples: 

     In this section, we will examine the accuracy and 

efficiency of the proposed method by the following 

two examples: 

 

Example 1(36): Given the following linear singular 

fractional order Volterra-Fredholm integro-

differential equation: 
d2u(x)

dx2
+
1

x
𝐷x
νu(x) +

1

x2
u(x) =

f(x) + ∫ 𝐾1(x, t)u(t)dt
x

0
+ ∫ 𝐾2(x, t)u(t)

1

0
dt,   

 0 <  ν ≤ 1                   …(37) 

with boundary conditions as follows: 

  u(0)  = u(1) =  0                                                 

Where   f(x) = 5 + 1.50451x0.5 −
13x1.5 − x2 + x3 − 2.0674 cos(x) +
5.95385 sin(x),  
And k1(x, t) = sin (x − t)  ,  k2(x, t) = cos (x − t). 
The exact solution of this problem for 𝑣 = 1 is  

𝑢(𝑥) = 𝑥2(1 − 𝑥). 
We apply the proposed method for solving Eq. (37) 

the absolute error AE between our methods with the 

method given in (36) for different values of  γ ,  δ 

with 𝑣 = 0.9 and  m = 8 are shown in (Table 1), 

where 𝑥𝑞 are roots of the shifted Jacobi 

polynomial𝐽8
(γ,δ)

(𝑥). The diagrams of the exact and 

approximate solution for γ = δ = 0, γ = δ = −0.5 

and for m = 4,16 together with  𝑣 = 0.75, 𝑣 = 0.9 

are given in Fig. (1,2). 
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Table 1. The comparison of AE between approximate solution for m=8 and the solution in method (36) 

for m=32 and 𝒗 = 𝟎. 𝟗 
                                   Our methods Method (36) 

𝛄 = 𝛅 = 𝟎 

      𝐱𝐪 
m=8 

𝛄 = 𝛅 = −𝟎. 𝟓 

𝐱𝐪 
m=8 x m=32 

0.02 2.7061e-4 0.01 3.3954e-05 0.1 7.309e-06 

0.10 1.7168e-4 0.08 2.9156e-05 0.2 2.048e-05 

0.24 3.0262e-4 0.22 5.9122e-05 0.3 2.606e-05 

0.41 2.2260e-4 0.40 6.3878e-05 0.4 2.503e-05 

0.59 6.4991e-4 0.60 2.5112e-05 0.6 1.789e-05 

0.76 3.8925e-4 0.78 5.1331e-05 0.7 1.202e-05 

0.90 1.1815e-4 0.92 1.3613e-05 0.8 7.682e-06 

0.98 1.7664e-4 0.99 1.4384e-05 0.9 3.034e-06 

 

 
Figure 1. The comparison between the exact and approximate solution for  𝐦 = 𝟒,  

𝛄 = 𝛅 = 𝟎, left and 𝐦 = 𝟒,  𝛄 = 𝛅 = −𝟎.𝟓 right with 𝒗 = 𝟎. 𝟕𝟓. 

 
 

Figure 2. The comparison between the exact and approximate solution for = 𝟏𝟔,  
𝛄 = 𝛅 = 𝟎,  left and  𝛄 = 𝛃 = −𝟎.𝟓 right with 𝒗 = 𝟎. 𝟗 

 

Example 2(36):- Given the following linear 

fractional order Volterra-Fredholm integro-

differential equation: 

 
d2u(x)

dx2
+ 𝐷x

νu(x) + u(x) = f(x) −

2∫ 𝐾1(x, t)u(t)dt
x

0
+ ∫ 𝐾2(x, t)u(t)

1

0
dt, 0 < α ≤ 1 

…(38) 

With boundary conditions as follows: 

u(0)  = u(1) =  0                       …(39)                                                                                                 

Where f(x) = −
1

30
− 6x +

181x2

20
+ 4x3 −

x5

10
+

x6

15
,   

And k1(x, t) = x − t ,  k2(x, t) = x
2 − t. 

 

      The exact solution of this problem for 𝑣 = 1 is  

𝑢(𝑥) = 𝑥3(𝑥 − 1). 
The approximate solutions which are obtained by 

using the present method for  𝑗 =  4  𝑞 = 0,1,… ,3 

where 𝑥𝑞 are roots of the shifted Jacobi polynomial 

𝐽4
(γ,δ)

(𝑥) and their values for γ and  δ are: 
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𝑥𝑞  γ = δ = 0 γ = δ = −0.5 

𝑥0 0.9306 0.9619 

𝑥1 0.6700 0.6913 

𝑥2 0.3300 0.3087 

𝑥3 0.0694 0.0381 

 

Also 𝓉𝑑 are the roots of Jacobi polynomial 𝐽5
(γ,δ)(𝑡)  with 

𝑤𝑑 are the corresponding weights and their values are: 

 

γ = δ
= −0.5 

𝓉𝑑 𝓌𝑑 

𝓉0 = 0 𝑤0 = 0.628319 

𝓉1 = −0.587785 𝑤1 = 0.628319 

𝓉2 = 0.587785 𝑤2 = 0.628319 

𝓉3 = −0.951057 𝑤3 = 0.628319 

𝓉4 = 0.951057 𝑤4 = 0.628319 

γ = δ
= 0 

𝓉0 = −0.9061798459 𝑤0 = 0.2369268850 

𝓉1 = 0.9061798459 𝑤1 = 0.2369268850 

𝓉2 = −0.5384693101 𝑤2 = 0.4786286704 

𝓉3 = 0.5384693101 𝑤3 = 0.4786286704 

𝓉4 = 0 𝑤4 = 0.5688888888 

Using Eq.(27) we have: 

∑ 𝑐𝑗 𝒷𝑗,2
(γ,δ)

𝐽𝐿,𝑗−2
(γ+2,δ+2)

(𝑥𝑞)
4
𝑗=0 +

∑ ∑ 𝑐𝑗 𝒷𝑗,𝑛
(0.75)

𝑥𝑞
𝑗−𝑛−0.75𝑗−1

𝑛=0
4
𝑗=1 +

∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝑥𝑞)
4
𝑗=0 =  

𝑓(𝑥𝑞) −

λ1𝑥𝑞 ∑ 𝓌𝑑(𝑥𝑞 − 𝜉𝓉𝑑)∑ 𝑐𝑗𝐽𝐿,𝑗
(γ,δ)

(𝜉𝓉𝑑)
4
𝑗=0

4
d=0 +  

λ2(𝑏−𝑎)

2
∑ 𝓌𝑑(𝑥𝑞

2 − 𝜒𝓉𝑑)∑ 𝑐𝑗  𝐽𝐿,𝑗
(γ,δ)

(𝜒𝓉𝑑)
4
𝑗=0

m
d=0    

Next, after using (15), in Eq. (39), we can get 

∑ 𝑐𝑗(−1)
𝑖 Γ(𝑖+δ+1)

i!Γ(δ+1)
4
𝑗=0 = 0,   

∑ 𝑐𝑗
Γ(𝑖+γ+1)

i!Γ(γ+1)
4
𝑗=0 = 1     

 

By applying the suggested method for solving Eq. 

(38), the diagrams of the exact and approximate 

solution when  𝒗 = 0.9 and m = 16 are presented 

in Fig.3. Also the AE for different values of    γ, δ 

with 𝒗 = 0.5  and  m = 4 , m = 8 between our 

methods with the method given in (36) are shown in 

Tables 2 and 3. 

 

Table 2. The comparison of AE between approximate solution and the solution in method (36) for 

𝐦 = 𝟒, with 𝒗 = 𝟎. 𝟓 

                                Our method for 𝐦 = 𝟒, 𝒗 = 𝟎. 𝟓  method (36) 

     𝐱𝐪 γ = δ = −𝟎. 𝟓    𝐱𝐪 γ = δ = 𝟎 x 𝐯 = 𝟎. 𝟓 

0.0381 5.1756e-04 0.0694 5.3877e-04 0.1 1.945e-03 

0.3087 2.6469e-03 0.3300 3.3310e-03 0.3 4.551e-03 

0.6913 4.3335e-4 0.6700 2.6200e-04 0.7 2.394e-03 

0.9619 1.7069e-02 0.9306 1.4028e-02 0.9 `4.607-03 

 

Table 3. The comparison of AE between approximate solution and the solution in method (36) for 

𝐦 = 𝟖, with 𝒗 = 𝟎. 𝟓 

Our method for  𝒎 = 𝟖      𝒗 = 𝟎. 𝟕𝟓            method (36) 

𝒙𝒒 γ = δ = −𝟎. 𝟓 𝒙𝒒 γ = δ = 𝟎 x 𝐯 = 𝟎. 𝟓 

0.0096 3.3954e-05 0.0199 2.7061e-04 0.1 1.945e-03 

0.0843 2.9156e-04 0.1017 1.7168e-04 0.2 3.602 e-03 

0.2222 5.9122e-04 0.2372 3.0262e-03 0.3 4.551 e-03 

0.4025 6.3878e-04 0.4083 2.2260e-03 0.4 4.411 e-03 

0.5975 2.5112e-04 0.5917 6.4991e-03 0.6 5.421 e-04 

0.7778 5.1331e-04 0.7628 3.8925e-04 0.7 2.394 e-03 

0.9157 1.3613e-03 0.8983 1.1815e-04 0.8 4.665 e-03 

0.9904 1.4384e-03 0.9801 1.7664e-02 0.9 4.607 e-03 

 
Figure 3. The comparison between the exact and approximate solution for 𝐦 = 𝟏𝟔 and 𝛄 = 𝛅 = 𝟎 left  

𝛄 = 𝛅 = −𝟎.𝟓 right with 𝒗 = 𝟎. 𝟗  
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Conclusions: 
 In this work, Jacobi-collocation method is 

used to solve fractional order Volterra-Fredholm 

integro-differential equation. The properties of 

shifted Jacobi polynomials together with the 

collocation method are utilized to reduce the 

fractional order Volterra-Fredholm integro-

differential equation to the solution of algebraic 

equations. For the effectiveness for this method, it is 

applied to some examples and obtained results are 

compared between the approximate solution of the 

proposed method with the solution given in (36) and 

they were presented.     
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الكسرية بأستخدام  ةفريدهولم ذات الرتب-فولتيرا نوعطريقة عددية كفوءة لحل المعادلة التفاضلية التكاملية من 

 متعددة حدود جاكوبي وطريقة الحشد
 

 محمد غازي صبري
 

 ، بغداد، العراق.كلية الاسراء الجامعة ،قسم المحاسبة

 

 الخلاصة:
فولتيرا ذات الرتب الكسرية بأستخدام -فريدهولم نوعان الهدف من هذا البحث هو ايجاد الحل العددي للمعادلة التفاضلية التكاملية من 

متعددة حدود جاكوبي المتحولة وطريقة الحشد حيث تم التطرق الى خواص متعددة حدود جاكوبي وطريقة الحشد. يتم تحويل المسألة بهذه 

م اعتماد مجموعة من الامثلة تكابوتو.  تقة الكسرية هنا من نوعالطريقة المقترحة الى مسألة لحل نظام من المعادلات الجبرية الخطية، المش

 لأثبات دقة وموثوقية الطريقة المقترحة.

 
 ةذات الرتب فريدهولم-كاملية من نوع فولتيرامعادلات تفاضلية تال متعددة حدود جاكوبي، الكسرية، ةالمشتق، طريقة الحشد الكلمات المفتاحية:

. الكسرية  
 

 

 

 
 


