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Abstract:

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional
order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and
collocation method properties are presented. This technique is used to convert the problem into the solution
of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical
examples are given to show the accuracy and reliability of the proposed technique.

Keywords: Collocation Method, Fractional derivative, Jacobi polynomial, Volterra-Fredholm integro-
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Introduction:

Fractional Calculus has been pulling in the
consideration of researchers and specialists from
long time ago, resulting in the improvement of
numerous applications. Since the nineties of a
century ago fractional calculus is being
rediscovered and connected in an expanding
number of fields, namely in several areas of

Physics, Control Engineering, and Signal
Processing, such as electromagnetism,
communications, sciences, control, robotics,

information and many other physical sciences and
also in medical sciences (1,2,3,4,5).

Integral equations can be described as being
a functional equation involving the unknown
function under one or more integrals.

Differential equations as well as integral
equations of fractional order belong to a wider class
of equations in which the unknown object is a
function (scalar function or vector function). Such
kinds of equations are often encountered in
mathematics and in various sciences that use the
mathematical apparatus, and they are generally
called functional equations.

Because of the broad utilizations of
differential equations and integral equations of
fractional order in engineering and science; research
in this area has become essentially all around the
globe (6-16).

Department of Accounting Al-Esra‘a University College,
Baghdad, Iraq
E-mail: mohammed.ghazi@esraa.edu.ig

344

An Integro-differential equation is an
equation in which the unknown functions appear
with derivatives, and either the unknown functions,
or their derivatives, or both, appear under the sign
of integration. This, however, is a purely formal
classification, since we can easily pass from one
type to the other. Numerous scientific models of
physical wonders contain integro-differential
equations; these equations emerge in numerous
fields like physics, potential theory, astronomy,
biological models, chemical kinetics and fluid
dynamics.

Integro-differential equations are normally
not being easy to solve analytically; so, it is
required to obtain an effective approximate solution
(17-21). Fractional integro-differential equation is
considered as an important model for various
physical wonders in engineering and scientific
fields. Some numerical calculation for solving
integro-differential equation of fractional order can
be summarized as follows: variational iteration
method (22, 23), Haar wavelets method (24),
Adomian decomposition method (25, 26, 27),
Laplace decomposition method (28), differential
transform method (29, 30), Legendre wavelets
method (31, 32) and Chebyshev wavelets method
(33, 34, 35).

As a special form of integro-differential
equations of fractional order Volterra-Fredholm
integro-differential equations of fractional order
(36, 37).

That primary point of the Jacobi-collocation method
over other techniques may be that Jacobi-
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collocation method provides a great finer rate for
convergence (38, 39).

In this article, we consider a Volterra-Fredholm
integro-differential equation of fractional order as
follows:

d?u(x) v
= T + DJu(x) + u(x) =

f(x) + 7, fa K (x, u()dt + A, fa K, (x, t)u(t) dt,

du(x)

0<v<1 ..(1)
Subject to the homogenous boundary conditions:
u(@) =0, u(b)=0, a<x<b ...(2)

The organization of the rest of this article is as
follows: in section 2 we present some essential
definitions of the fractional calculus theory, in
section 3 the Jacobi polynomial, and its properties
are presented. While in section 4 we show how
Jacobi polynomial with collocation technique may
be used to replace problem (1)-(2) by an explicit
system of linear algebraic equations. Moreover in
section 5, we introduce some numerical cases to
show the adequacy of the proposed method,
concluding remarks are given in the last section.

Fractional Derivative and Integration

In this section, we might survey the essential
definitions and properties of fractional integral and
derivatives, which are utilized further in (3).

Definition (1):- The left-sided and the right-sided
Riemann-Liouville fractional integrals Iy, f and
Iy_f of order v € C (R(a) > 0) are defined by:-

1 b f(Ddt
1D = 75 fy omiss (x< b R) > 0),

...(4)
12f(x) = f(x) ...(5)

Definition (2):- The left and right Riemann-
Liouville fractional derivative

DZ.y and Dj_y of order v e C (R(v) = 0) are
defined respectively by :-

0L = (L) uy @

1 d\" x  y()adt
= r'(n-v) (E) fa (X—'-“)Tﬂ (Tl - [iR(U)] +Lx> v)

05 = (-2) G )

1 d\" b y(t)dt
= (@) L esm @=[RWI+Lx<b)

...(6)
Where [ R(v)] means The integral part of R(v).

Definition (3):- The Caputo fractional derivative
operator of order v for the function f: [a,b] = R, is
given as follows:

‘DY(x) = T
..(7
Wherev > 0, nisanintegerandn—1 < v <n.
The relation between Caputo fractional derivative
and Riemann-Liouville:

k

¥ “DIF(x) = f(x) — TRog f® (01 .(8)
Wherenisanintegerandn—1<v <n.

Also, for the Caputo fractional derivative we have

— v fM()dt, x>0

1 0x_f()dt
1:D09 =555 fa gy (>3 AW > 0).6) °DYC = 0, (C is a constant) ...(9)
8 0 for p € Nyand B < [v]
NV —
D= r(réﬁi)v)xﬁ_”' forB € Ny and B =[v]or B & Nandp > |v] .-(10)

Where [v] and [v] be the ceiling and the floor
function respectively.

The Jacobi Polynomials

The well-known Jacobi polynomials (40)
are defined on the interval [-1,1] and can be
generated with the aid of the following recurrence
formula:

,6
IREIGE
(y+8+2i—1){(y2—82+t(y+8+zi))(y+8+zi—2)}

(v 8)
2i(y+8+i)(y+8+2i-2) (t)

_ (y+i-D)(8+i-1)(y+8+2i) (yg)
i(y+8+i)(y+8+2i-2) 1 2 ®,i=12,. .(11)

where ]((,V'S) (t)=1 and ]1(y O(t) =
with D (—¢) = (~)y ¥ (),

y+8+2 )

2

—1t+

(YS) DT(y+8+1)
D ="rem ..(12)

Moreover, the n" derivative of ]L.(Y"S)(t), can be
obtained from

](y 8)( £) = F(i+n+y+8+1)](y+n 8+n)(t) .(13)

dxn 2" (i+y+6+1)7L

We also define the so-called shifted Jacobi
polynomials of degree i € N on the interval [0, L]

by using the change of variable t = sz —1. So
Shifted Jacobi JOE-
denoted by]LY 5) (x). Shifted Jacobi polynomials of
x can be determined with the aid of the

P00 =
(y+8+2i—1){(y2—82+(ZTX—1)(y+6+2i))(y+6+2i—2)} (y8)

Ll 1()

polynomials 1) are

2i(y+8+i)(y+6+2i-2)
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_ (yH=D(S+I-1)(y+8+20) (yg)
i(Y+8+i) (y+6+2i-2) Lz z(x) i=12,.

Where ]fy Yx)=1 and
(y8) y+8+2 2x y-8

(0 =L (F-1)+ 12
The analytic form of the i-degree shifted Jacobi
polynomials is given by

- (14)

5
I ) =

Ni—k T(y+8)T(i+K+y+86+1) Kk s
Zk=0( D T(K+8+ 1) (i+y+8+1)(i—K)KILK ™’ L=
1,2, ... ...(15)
Where
v,5) _ i T@+6+1)
i~ (@) =1 iIr(s+1)

v.8) __ T(i+y+1)
and J} (L)_—i!F(y+1) ...(16)

The n™  order derivative of shifted Jacobi
polynomial can be written as(41) :

,0 ,8 ,6
LI = bV (), (17
.8 _ F(l+n+y+8+1)
Where by, = LT (i+y+6+1)

The orthogonality condition of shifted Jacobi
polynomials is

Jo lfyf’( WD @YD ()dx = £, ...(18)
Where 00 (x) = x8(L — x)¥
And
Uk +y+1rk+5+1) . .
= ! =1 .19
=202k +y+5+KI0K+y+5+1)
0 i#].
A special case for y = § = —1/2 and

y = 8§ = 0, the Chebyshev and Legendre of the
first and kinds polynomials respectively,

A function u(x), which is square integrable
in (0,1) may be expressed in terms of shifted Jacobi
polynomials as

u(x) = T2 ¢ /1 (%)
Where the coefficients c; are given by

f D)y (dx 0,1,

Now, by considering the first (m+1)-term of
shifted Jacobi polynomials.
Hence u(x) can be written in the form

u(x) = Mo ) (x) .(20)

Theorem (1):- Let u(x) be approximated by the
shifted Jacobi polynomials as (20) and also suppose

v > 0 then:

Du(®) = S B 620, 2
W) . .
Where &;, " is given by:
™ _ (—1)i-n I'(y+8)I(m+j+y+8+1)
b = () e (22)

Proof:- Since the Caputo's fractional differentiation
is a linear operation we have:
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DY (u(®) = XM DEUYY () ...(23)
Now, to calculate °D¥(u(x)) by using Egs. (9),
(10) in eg. (15) we have
DU (2)) = Bhoo (-1
F(y+8)F(}+K+y+8+1) CDg(xj_n), j=

F(n+8+1)r(j+y+8+1)(j—K)'n!lL™
vl [vl+1,..,m ...(24)

Since the degree of Jacobi polynomial is n, then:
DYUYP () =0, vn=012..,[v]-1, v>

0 ...(25)

A combination of (23)-(25), leads to the following
form:

‘D¥u(x) =
[v] (v)
Zm[vlzil 0 CJ jn —
(_ )] n F(y+8)I'(m+j+y+6+1) j—n—v’

L(j+8+1)I(m+y+8+1)(m—j)!jILJ

[v] W), j-n-
_Zm Mz] o C] 1}”{ xJ N v’

This is the end of the proof.

...(26)

Function approximation

Consider linear Volterra-Fredholm integro-
differential equations of fractional order derivative
of the form:

2

T+ RO+ Dru) +u(x) = () +
M LKy (o Du®dt + 2, [ K Du® dt, ...(27)
subject to the homogenous boundary condition (2)
using Eqgs.(17),(25) in Eq.(27) we have:

,6 ,8
g SO @) + g O +
,8
i [U]ZJ [U]Cj &(V)x] n-— v_l_zj OC]](Y )(x) —
FOO)+A LK) E ey P (0 de +

X LK) X P () dt, ..(28)

,8) ;(y+2,6+2)
it s )L\; 2
) S
YR A OB
Zm . 2] [87] ¢ &]E';)x] n-v +Z C]](Ys)(x) —
)
f(x) + 2 [ K () X ) )<t) dt +

X LK) Xl P () dt,

(x) +

.(29)

Now we arrange Eq. (29) at (m + 1 — [v]) points
Xgq 8S:

v,8) ;(y+2,6+2)
j=0C b5 s (xq) +

(y8) y+1 5+1)
j=06i & (xq) +
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i— P 1)

il ZQJSJ] Cj f'j(,l;?xq] R D) C]]LY )(xq) =
)

f(xq) + )\1 xq Kl(xq,t) Z c]]Ly )(t) dt +

8

A Y Kz(xq,t)z Lol PO d, q=041, ..,
.-(30)

For suitable collocation points we use roots of

shifted Jacobi polynomial ]ﬂfi 1— (0
In order to use the quadrature rule for Eq. (30), we
transfer the interval [a, x,] and the interval [a, b] to

fixed interval [—1,1] by means of the transformation

t="2r+22

Eq. (30) for p =
restated as:

[v].

0,1,....m + 1 — [v], may be

SO ) +
j=0 ¢ ﬂ(YS) g+118+1)( o)t
j:[v]zj [v] ¢ {,](Z)x j-n-v +Zm0C]]Ly8)(xq) =
f(xq) +
%)) it §) 2 c,]((y;)” ©dr +
S Ka(xq ) Ziko 6, 00 d,
q=01,..,[vl]

ZJ 0

.31

(b— a)

Where & = =& a)t 4=

By using the Gaussian integration formula, for
q=0,1,..,m—[v], we get:

(y8) y+28+2)
=06 s (xq) +

(8) +18+1)
)yia OCJ’F’/Y Y (xq) +

L] 1
vl ) ,8) —

j= [v]zil 0 G {"j(,?c X' "+ CJ]LY (xq) =
f(xg) +
A(xg—a s
MO s Ky (g, Eeg) B0 I (Ea) +
A (b ) 8
ZTa OdeZ(xq:Xftd)Z ijiy )(Xtd),
q=01,..,[v] ..(32)
Where £; are m + 1 roots of Jacobi polynomial
,(,?fl)(t) and w4 are their weights given in (7). The

idea of the above approximation is the exactness of
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the quadrature rule for polynomials of degree does
not exceed 2m + 1.

Also, by substituting Eg. (20) in boundary
conditions, we can find [v] of equations we obtain

u(x) = ¥y ¢/ 0) =0, ..(33)
u(x) = 0c]]LYS)(l) =0 ...(34)

Next, Eqgs. (33-34), after using (15), can be written
as

F(]+8+1)
_] =0 ](_ )l 1'F(8+1) ) (35)
m o LUt ...(36)

J=0% ir(y+1)
So, from using equations (32) with (35) and (36),
we get (m+ 1) linear algebraic equations which
can be solved for the unknown coefficients c;.

Numerical Examples:

In this section, we will examine the accuracy and
efficiency of the proposed method by the following
two examples:

Example 1(36): Given the following linear singular
fractional  order  Volterra-Fredholm integro-
differential equation:
2
T+ IDyu() + Sux) =
f() + [ Ky (6, Du(®dt + [ Ky (x, Hu(t) dt,
O<v<sl
with boundary conditions as follows:
u(0) =u(1) =0

Where f(x) =5+ 1.50451x%° —
13x%% — x2 + x3 — 2.0674 cos(x) +
5.95385 sin(x),
Andk;(x,t) =sin(x —t) , ky(x,t) = cos(x —t).
The exact solution of this problem for v =1 is
u(x) = x2(1 — x).
We apply the proposed method for solving Eq. (37)
the absolute error AE between our methods with the
method given in (36) for different values of y, &
with v = 0.9 and m = 8 are shown in (Table 1),
where x, are roots of the shifted Jacobi

.37

ponnomiaI]éY'S) (x). The diagrams of the exact and
approximate solution fory=6 =0,y =6 =—-0.5
and for m = 4,16 together with v = 0.75, v = 0.9
are given in Fig. (1,2).
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Table 1. The comparison of AE between approximate solution for m=8 and the solution in method (36)
form=32andv = 0.9

Our methods Method (36)
Yy=8=0 _ Yy=8=-0.5 _ _

X m=8 Xq m=8 X m=32
0.02 2.7061e-4 0.01 3.3954e-05 0.1 7.309e-06
0.10 1.7168e-4 0.08 2.9156e-05 0.2 2.048e-05
0.24 3.0262¢-4 0.22 5.9122e-05 0.3 2.606e-05
0.41 2.2260e-4 0.40 6.3878e-05 0.4 2.503e-05
0.59 6.4991e-4 0.60 2.5112e-05 0.6 1.789e-05
0.76 3.8925e-4 0.78 5.1331e-05 0.7 1.202e-05
0.90 1.1815e-4 0.92 1.3613e-05 0.8 7.682e-06
0.98 1.7664e-4 0.99 1.4384e-05 0.9 3.034e-06

0.15

0.15

T T
= Exact
* Approx.

0.1 011

u(x)
u(x)

0.05 | 0.05 -

0

I 1 1 I I 1 1 I I 0 I I L I I I L L I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

roots of shifted Jacobi for gamma=segma=-0.5 roots of shifted Jacobi for gamma=segma=0
Figure 1. The comparison between the exact and approximate solution for m = 4,
y=8=0,leftandm =4, y =8 = —0.5 right withv = 0.75.

T T
= Exact
% Approx.

0.15

0.15

T T
Xacl
* Approx.

01|
01t

u(x)
u(x)

0.05
[ 0.05

0

01 02 03 04 05 06 07 08 00
roots of shifted Jacobi for gamma=segma=-0.5

I L L I L 1 I L I
! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

roots of shifted Jacobi for gamma=segma=0

Figure 2. The comparison between the exact and approximate solution for = 16,
y=86=0, leftand y =B = —0.5 right withv = 0.9

181x? x> x®

Example 2(36):- Given the following linear — \ypare f(x) = —~ — 6x + pa3 X
fractional order  Volterra-Fredholm integro- 30 20 , 1018
differential equation: And  ki(xt) =x—t, kyx ) =x"-t

d?u(x) _
oz T Dyu(x) + u(x) = f(x) — The exact solution of this problem for v = 1 is
2 [ K (o Du®dt+ ) K Du®dt0<a<1  u(@) =x*(x—1).

...(38) The approximate solutions which are obtained by

With boundary conditions as follows: using the present method for j = 4 ¢=0,1,..,3

u(0) =u() = 0 ...(39) where x, are roots of the shifted Jacobi polynomial
]iy"s) (x) and their values for y and § are:
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2 =820 y=8=-05 3t a7 () +

X, 0.9306 0.9619 i1, 4075 jin o7

X 0.6700 0.6913 Yic1Zn=0G jn ' Xq +

Xy 0.3300 0.3087 4 (v,9) ) =

X 0.0694 0.0381 ?é‘o)’] L (%a)

x [—
q
. . . (v.8)
Also £, are the roots of Jacobi polynomial /() with  M¥q Xd=oWa(Xq = §ey) D=0 CiJL; (§eq) +
i i i : Az (b—a) 8
w, are the corresponding weights and their values are: 2 : Ymowy (xg _ Xtd) Z}*zo G ]g )(Xtd)
Z Next, after using (15), in Eg. (39), we can get
d Wq 4 i T(i+8+1)
ty=0 w, = 0.628319 Yi=o¢(—1) e = O
y=35 t, = —0.587785 w,; = 0.628319 F(i+y+1)
=-05 £, = 0.587785 w, = 0.628319 Y06 oD
t; = —0.951057 ws = 0.628319 Yy
t, = 0.951057 w, = 0.628319 . .
t, = —0.9061798459  w, = 0.2369268850 By applylng the suggested method for solvmg Eq.

v=58 t; = 0.9061798459  w; = 0.2369268850 (38), the diagrams of the exact and approximate
-0 t, = —0.5384693101  w, = 0.4786286704 solution when v = 0.9 and m = 16 are presented

3= 05384693101 wy = 04786286704 3y rjg 3 A5 the AE for different values of vy, &

Using £9.(27) weﬁaje(? wy = 0.5688888888  \ith = 0.5 and m =4 . m = 8 between our
' ' methods with the method given in (36) are shown in
Tables 2 and 3.

Table 2. The comparison of AE between approximate solution and the solution in method (36) for
m =4, withv=0.5

Our method form = 4,v = 0.5 method (36)

Xq y=6=-0.5 Xq y=6=0 X v=20.5
0.0381 5.1756e-04 0.0694 5.3877e-04 0.1 1.945e-03
0.3087 2.6469e-03 0.3300 3.3310e-03 0.3 4.551e-03
0.6913 4.3335e-4 0.6700 2.6200e-04 0.7 2.394e-03
0.9619 1.7069e-02 0.9306 1.4028e-02 0.9 *4.607-03

Table 3. The comparison of AE between approximate solution and the solution in method (36) for
m = 8, withv=0.5

Our method for m=8 v =0.75 method (36)

Xq y=6=-0.5 X4 y=6=0 X v=0.5
0.0096 3.3954e-05 0.0199 2.7061e-04 0.1 1.945e-03
0.0843 2.9156e-04 0.1017 1.7168e-04 0.2 3.602 e-03
0.2222 5.9122e-04 0.2372 3.0262e-03 0.3 4,551 e-03
0.4025 6.3878e-04 0.4083 2.2260e-03 0.4 4.411e-03
0.5975 2.5112e-04 0.5917 6.4991e-03 0.6 5.421 e-04
0.7778 5.1331e-04 0.7628 3.8925e-04 0.7 2.394 e-03
0.9157 1.3613e-03 0.8983 1.1815e-04 0.8 4.665 e-03
0.9904 1.4384e-03 0.9801 1.7664e-02 0.9 4.607 e-03

0 K=

Exact
% Approx.

-0.02

0.04

u(x)

X -0.06
E

-0.08

-0.1

. . . . . . . . . 012t . . . L L . L L L J
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
roots of shifted Jacobi for gamma=segma=-0.5 roots of shifted Jacobi for gamma=segma=0

Figure 3. The comparison between the exact and approximate solution for m = 16 andy = 8 = 0 left
y=8=-0.5rightwithv=0.9
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Conclusions:

In this work, Jacobi-collocation method is
used to solve fractional order Volterra-Fredholm
integro-differential equation. The properties of
shifted Jacobi polynomials together with the
collocation method are utilized to reduce the
fractional order  Volterra-Fredholm integro-
differential equation to the solution of algebraic
equations. For the effectiveness for this method, it is
applied to some examples and obtained results are
compared between the approximate solution of the
proposed method with the solution given in (36) and
they were presented.

Conflicts of Interest: None.
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