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Abstract:

In this paper we use non-polynomial spline functions to develop numerical
methods to approximate the solution of 2" kind Volterra integral equations.
Numerical examples are presented to illustrate the applications of these method, and
to compare the computed results with other known methods.
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1. Introduction

Many problems of mathematical
physics can be started in the form of
integral equations. These equations
also occur as reformulations of other
mathematical problems such as partial
differential equations and ordinary
differential equations. Therefore, the
study of integral equations and
methods for solving them are very
useful in application. In recent years,
there has been a growing interest in the
Volterra integral equations arising in

various fields of physics and
engineering[1].

Some valid methods, for
solving Volterra equations using

various methods have been developed
by many researchers, e.g. [1-7]. In this
paper, we present for first time a non-
polynomial spline function to introduce
numerical method for solving linear
Volterra integral equation (VIE) of the
second kind.

u(x) = f(x) +f: k(x, tlu(t)dt ,
1)

where k(x,t) and f(x) are known
functions, but u(t) is an known
function. The rest of this paper is
organized as follows: In section 2, we
will introduce the non-polynomial
spline functions. In section 3, we will

a<x<h -

perform it on Volterra integral
equation of the second kind and
demonstrate the solving process by
discretization. In section 4, we offers
three examples of second kind linear

VIE with non-polynomial spline
approximation method, and finally
section 5 concludes the paper.
2. Non-polynomial  Spline
Method

Consider the partition

A= {t,, t,,t;, ...t} of [a,b]c R . Let
S(A) denote the set of piecewise

polynomials on subinterval
I, = [t,t;24] of partition A. In this
work, we consider non-polynomial
spline method for finding approximate
solution of VIE of the second kind.
Consider the grid point ti on the
interval [a,b] as follows:

a=th<ti<t,<..<p=b (2
ti=to+ih ,i=0,1,...,n .3
h =22 . (4

where n is a positive integer. Let u(t)
be the exact solution of (1) and S;(t) be
an approximate to u;=u(t;) obtained by
the segment Pi(t). Each non-
polynomial spline segment P;(t) has the
form[8]:
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where a;,b;,c;, and d; are constant and
k is the frequency of the trigonometric
functions which will be used to raise
the accuracy of the method. We
consider the following relations:
P.(t)=a, +d, = ult;) ~ Si(t,)
Py(t)=kb, +c =u(t) ¥ 5, ()
P“l(tl:] = _kzal = u“[tl:] N 5:'" (t;)

P i(t)= k%, =u (t) 5, (t)

We can obtain the wvalues of
al,bi,cl,and d; as follows:

a; ———u () ——5 () .

hl - —Eu (tlj R _ESE (ti.:]

uy, =u (a)=f (a) + (ak;jt}

| } ula k(a2
=x <=a dx

).

g = (a) =

C0+ (B2 (2010

d ;:f{} lymquia) + 2 —— dk x'x} [=qu2 (a)+ k(a,a]u"[a]
.. (13)

Therefore, we approximate the solution
of (1) using (5) following algorithm

(VIENPS):
Algorithm (VIENPS)
To find the approximate

solution of (1), first we select positive
integer n, and perform the following

steps:

Step 1: Set h=(b-a)/n;
t,=t, +ih,i=01,..,n,t; =a,t_=bhb
and u, = f(a)

Step 2: Evaluate a,. by cy and dy by
substituting 10-13 in equations 6-9.
Step 3: Calculate P,(t) using step 2
and equation 5 for i=0.

Step 4: Approximate u; & P, (t,).
Step 5: For i=1to n-1 do the following
steps:

Step 6: Evaluate a;,b;,c; and d, using

equations 6-9 and replacing u(t;),

208

Ju(a) + k(a,a)u'(a) -

X_

Bk
ula) + ( a:’t}

c; —u(t]+ u (t) % S, (tj+k1 J()
.. (8) ._
d; = u(t) + ;u'(6) & 8,(6) + 5/ (1)
.. (9)
fori=0,1,...,n

3. The Solving Method
Consider the linear VIE of the

second kind (1), in order to solve (1),
we differentiate (1) three times with
respect to x and then put x=a, to get:

u, =u(a) = f(a)

.. (10)

u'y, =u'(a) = f (a) + k(a,a)u(a)

. (11)

- (12)

=) u(@)+

x=

u(t)u (t)andu (t,) by PB(t),
P (t;),F; (t;)and B (t).

Step 7: Calculate P,(t) using step 6
and equation 5.

Step 8: Approximate u;;; = P (t;41).

4. Numerical Examples
4.1 Example 1: Consider VIE of
second kind [1]:

o(x) =x+f(t—xjca(t)dt,o <x<1

o
the exact solution is @(x) = sinx.
Results have been shown in Table 1,
where P, (x) denote the approximate

solution by the proposed method and
err=|@(x) - B (x) |.
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Table 1: Computed Absolute Error of Exam

4.2 Example 2: Consider VIE of

le (1) and The Result Obtain in [1]

X Exact Solution @ (x:] Pi [X:] error error obtain in 1]
00]0 0 0

0.1 | 0.099833416646828 0.099833416646828 | 0 2.0508063e-012
0.2 | 0.198669330795061 0.198669330795061 | 0 8.3558996e-013
0.3 | 0.295520206661340 0.295520206661340 | 5.551115123e-017 | 2.0756558e-013
0.4 | 0.389418342308651 0.389418342308650 | 1.110223024e-016 | 2.4960310e-013
0.5 | 0.479425538604203 0.479425538604203 | 1.110223024e-016 | 3.6565473e-013
0.6 | 0.564642473395035 0.564642473395035 | 1.110223024e-016 | 1.5317015e-013
0.7 | 0.644217687237691 0.644217687237691 | 1.110223024e-016 | 1.190846e-013
0.8 | 0.717356090899523 0.717356090899523 | 2.220446049e-016 | 2.5211375e-013
0.9 | 0.783326909627483 0.783326909627483 | 3.330669073e-016 | 2.8431391e-013
1.0 | 0.841470984807897 0.841470984807896 | 4.440892098e-016 | 8.8095244e-013

second kind [2,4]:

yix) =1 +f(t—xj}r[t]dr,n <x<1

the exact solution is y(x) = cosx.

Results have been shown in Table 2,

where P,(x) denote the approximate
solution by the proposed method.

o
Table 2: Computed Absolute Error of Example (2) and The Result Obtain in
2]and [4]
Exact Solution ¥ (x] Pi (Xj error error obtainin [4] | error obtain in [2]

0.0 | 1.000000000000000 1.000000000000000 | O - 0

0.1 0.995004165278026 0.995004165278026 | 0 9.97e-08 -

0.2 0.980066577841242 0.980066577841242 | 1.11022302462e-016 | 4.16e-07 0

0.3 0.955336489125606 0.955336489125606 | 1.11022302462e-016 | 8.77e-07 -

0.4 0.921060994002885 0.921060994002885 | 2.22044604925e-016 | 1.58e-06 0

0.5 0.877582561890373 0.877582561890373 | 2.22044604925e-016 | 6.76e-07 -

0.6 0.825335614909678 0.825335614909678 | 2.22044604925e-016 | 3.35e-06 8.993e-015

0.7 0.764842187284489 0.764842187284488 | 3.33066907387e-016 | 4.48e-06 -

0.8 0.696706709347165 0.696706709347165 | 3.33066907387e-016 | 5.52e-06 5.031e-013

0.9 0.621609968270664 0.621609968270664 | 3.33066907387e-016 | 6.80e-06 -

1.0 0.540302305868140 0.540302305868139 | 4.44089209850e-016 | 2.61e-04 1.142e-011

4.3 Example 3: Consider VIE of second kind [1]:

u(x)=2x+5— 3e¥ —I—f e fult)dt 0= x=<1

the exact solution is wu(x)= x+ 1.
Results have been shown in Table 3,

o

where P,(x) denote the approximate
Table 3: Computed Absolute Error of Example (3)

Exact Solution H(x:] P, [:x:] error
0.0 | 2.000000000000000 2.000000000000000 | O
0.1 | 2.100000000000000 2.100000000000000 | O
0.2 | 2.200000000000000 2.200000000000000 | 0
0.3 | 2.300000000000000 2.300000000000000 | 4.440892098500e-016
0.4 | 2.400000000000000 2.400000000000000 | 4.440892098500e-016

0.5 | 2.500000000000000

2.500000000000000

4.440892098500e-016

0.6 | 2.600000000000000

2.600000000000001

4.440892098500e-016

0.7 | 2.700000000000000

2.700000000000001

4.440892098500e-016

0.8 | 2.800000000000000

2.800000000000001

8.881784197001e-016

0.9 | 2.900000000000000

2.900000000000001

8.881784197001e-016

1.0 | 3.000000000000000

3.000000000000001

8.881784197001e-016

5.Conclusion

Volterra

In this paper, non-polynomial
spline function method for solving
equations of the

integral

solution by the proposed method and
err=|@(x) - B.(x) |.

second kind is presented successfully.
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VIE and

This new idea based on the use of the
its derivatives.
necessary to mention that this approach

So it is
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can be used when f(x) and k(x,t) are
analytic. The proposed scheme is
simple and computationally attractive
and their accuracy are high and we can
execute this method in a computer

simply. The numerical examples
support this claim.
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