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Abstract: 
In this paper, we present new algorithm for the solution of the nonlinear high order 

multi-point boundary value problem with suitable multi boundary conditions. The 

algorithm is based on the semi-analytic technique and the solutions are calculated in 

the form of a rapid convergent series. It is observed that the method gives more 

realistic series solution that converges very rapidly in physical problems. Illustrative 

examples are provided to demonstrate the efficiency and simplicity of the proposed 

method in solving this type of multi- point boundary value problems. 
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1. Introduction 
Some problems which have wide 

classes of application in science and 

engineering have usually been solved 

by perturbation methods. These 

methods have some limitations, e.g., 

the approximate solution involves a 

series of small parameters which poses 

difficulty since the majority of 

nonlinear problems have no small 

parameters at all. Although appropriate 

choices of small parameters do lead to 

ideal solution while in most other 

cases, unsuitable choices lead to 

serious effects in the solutions [1]. The 

semi-analytic technique employed 

here, is a new approach for finding the 

approximate solution that does not 

require small parameters, thus over-

coming the limitations of the 

traditional perturbation techniques. The 

method was first proposed by Grundy 

(2003) and successfully applied by 

other researchers like Grundy (2003- 

2007) who examined the feasibility of 

using two points Hermite interpolation 

as a systematic tool in the analysis of 

initial-boundary value problems for 

nonlinear diffusion equations. In 2005 

Grundy analyzed initial - 

boundary value problems 

involving nonlocal nonlinearities 

using two points Hermite interpolation 

[1], also, in 2006 He showed how two-

point Hermite interpolation can be 

used to construct polynomial 

representations of solutions to some 

initial-boundary value problems for the 

inviscid Proudman-Johnson equation. 

In 2008, Maqbool [2] used a Semi-

analytical Method to Model Effective 

SINR Spatial Distribution in WiMAX 

Networks. Also, in 2008, Debabrata [3] 

studied Elasto-plastic strain analysis by 

a semi-analytical method. 

The existence of positive solutions for 

multi-point boundary value problems is 

one of the key areas of research these 

days owing to its wide application in 

engineering like in the modeling of 

physical problems involving vibrations 

occurring in a wire of uniform cross 

section and composed of material with 

different densities, in the theory of 

elastic stability and also its 

applications in fluid flow through 

porous media. 
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Gupta [4] studied the existence of 

solutions for the generalized multi-

point BVP in the non-resonance case. 

Zhang et al [5] obtained some new 

existence results of the fourth-order, 

four-point BVP, by developing the 

upper and lower solution method and 

the monotone iterative technique; it is 

well known that the upper and lower 

solution method is a powerful tool for 

proving existence results for BVPs. In 

many cases it is possible to find a 

minimal solution and a maximal 

solution between the lower solution 

and the upper solution by the 

monotone iterative technique [5]. 

Liu [6] established sufficient 

conditions for the existence of at least 

one solution of nth order MPBVP. 

Anderson et al [7] concerned with the 

existence and form of solutions to 

nonlinear third-order, three-point and 

multi-point boundary-value problems 

on general time scales. 

Wang et al [8] studied the existence of 

nontrivial solutions for nonlinear 

higher order MPBVP on time scales 

with all derivatives. 

Graef et al [9] obtained sufficient 

conditions for the existence of a 

solution of the higher order MPBVP 

based on the existence of lower and 

upper solutions. 

Liu et al [10] established the existence 

results of multiple monotone and 

convex positive solutions for some 

fourth-order MPBVPs. 

In this paper we use two-point 

osculatory interpolation; essentially 

this is a generalization of interpolation 

using Taylor polynomials. The idea is 

to approximate a function y by a 

polynomial P in which values of y and 

any number of its derivatives at given 

points are fitted by the corresponding 

values and derivatives of P. 

We are particularly concerned with 

fitting function values and derivatives 

at the two end points of a finite 

interval, say [0,1] where a useful and 

succinct way of writing osculatory 

interpolation P2n+1 of degree 2n + 1 

was given for example by Phillips [11] 

as: 

P2n+1(x) = 


n

j 0

{ y )( j (0) q j (x) + 

 (-1) j  y )( j (1) q j (1-x) }  (1) 

q j (x) = ( x j / j!)(1-x) 1n  




jn

s 0







 

s

sn
 

x
s
   

= Q j (x) / j!   (2) 

so that (1) with (2) satisfies: 

y )( j (0) = 
)(

12

j

nP  (0) , y )( j (1) = 
)(

12

j

nP  (1) , j = 0, 1, 2,…, n. 

Implying that P2n+1 agrees with the 

appropriately truncated Taylor series 

for y about 

x = 0 and x = 1. We observe that (1) 

can be written directly in terms of the 

Taylor coefficients ai and bi about x = 

0 and x = 1 respectively, as: 

P2n+1(x) = 


n

j 0

{aj Q j (x) + (-1) j  bj 

Q j (1-x) }   

 (3) 

2. Solution of Multi-Point 

High Order Nonlinear BVP's 

for ODE 
A general form of n- order, m- point 

BVP's is: 

),...,',,( )1()(  nn yyyxfy ,

 10  x , n  3  

 (4a) 

Subject to the boundary condition: 

g( y(0), y'(0), … , y
(n-1)

(0) ) = 0,  

 y
(i)

(ηi ) = µj , j = 0, 1,…, n-3, 

h( y(1), y'(1), … , y
(n-1)

(1) ) = 0 

    

 (4b) 

where i ϵ (0, 1), 2,...,2,1  mi  , g, 

h : R
n 

→ R are continuous functions, 

and µj ϵ R, 

j = 0, 1,…, n-3. 
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where f: [0,1]×R
n
 → R is a continuous 

function, 0 < η1 < η 2 < ⋯ < ηm-2< 1. 

The idea is to use a two - point 

osculator interpolation polynomial 

P2n+1 to solve problem (4) by the 

following steps: 

Step 1: 

Divide the interval domain [0, 1] in to 

m-1 subinterval by i ,  i=1, 2, 

…,m-2, i.e., [0, 1 ], [ 1 , 2 ] , … , 

[ 3m , 2m ] , [ 2m ,1], then apply 

suggested method for each subintervals 

as follows. 

Step 2: 

Construct osculator interpolation 

polynomial P2n+1 for each subintervals 

by evaluating Taylor coefficients of y 

about x= 0, i  , 1, 2,...,2,1  mi  

respectively. 

Step 3: 

Insert the series form in step 2 into 

equation (4a) and put x= 0, i , 1, 

2,...,2,1  mi  respectively, and 

equate the coefficients of powers of x, 

(x- i ), (x-1), 2,...,2,1  mi , to 

obtain 

2,...,2,1),1(),(),0( )()()(  miyyy n

i

nn 

 respectively. 

i.e., to obtain an, y
(n)

( i ), bn , 

2,...,2,1  mi . 

 

Step 4: 

Derive equation (4a) with respect to x 

to obtain new form of equation: 

dx

yyyxdf
xy

n
n ),...,',,(

)(
)(

)1( 
 

    (5) 

Step 5: 

Insert the series form in step 2 into 

equation (5) and put x= 0, i , 1, 

2,...,2,1  mi , respectively and 

equate the coefficients of powers of x, 

(x- i ), (x-1), 2,...,2,1  mi  to 

obtain y
(n+1)

(0), y
(n+1)

( i ), y
(n+1)

(1), 

2,...,2,1  mi , respectively. 

i.e., to obtain an+1 , y
(n+1)

( i ), bn+1 , 

2,...,2,1  mi . 

Step 6: 

Iterate the process in step 5 many times 

to obtain )1(),(),0( )()()( j

i

jj yyy  , 

i=1, …, m-2, j = (n+2), (n+3) ,… 

respectively. (i.e., to obtain aj , y
(j)

( 

i ), bj ). 

The resulting equations can be solved 

using MATLAB package. 

Step 7: 

Use the coefficients obtained in above 

steps to construct P2n+1 for each sub-

intervals [0, 1 ], [ 1 , 2 ] , … , 

[ 3m , 2m ] , [ 2m ,1], the 

constructing polynomials have 

unknown coefficients y
(k)

(0), y
(k)

(1), 

y
(k)

( i ), 2,...,2,1  mi , 

1,...,2,1  nk , we can get half of 

these unknown coefficients by the 

boundary conditions. 

Step 8: 

To evaluate the remainder coefficients 

integrate equation (4a) on [0, x], 

[ i ,x], 

i=1, …, m-2, respectively. 

Step 9: 

Again integrate resulting equations in 

step 8, (n-1) times on [0, x], [ i , x], 

i=1,…,m-2, respectively. 

Step 10: 

Use P2n+1 as a replacement of y in each 

equations in step 8 and 9, then put, x 

= i , i=1, …, m-2 and x=1, 

respectively, in these equations to 

obtain system of n(m-1) equations with 

n(m-1) unknown coefficients which 

can be solved using the MATLAB 

package to get the unknown 

coefficients, then insert it into P2n+1 of 

each subintervals. 

Step 11: 

Summing the P2n+1 of each subinterval 

obtained in step 10 which represent the 

polynomial solution of problem (4). 

Now, we introduce many examples of 

high order multi-point BVP's for ODE 
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to illustrate suggested method. 

Accuracy and efficiency of the 

suggested method is established 

through comparison with other 

methods. 

Example 1: 
Consider the following linear, 4

th
 

order, 3-point BVP's: 

)(4)4( xeyy  e
x
  , 0 

≤ x ≤  1 

with BC : 









 )

2

1
(3

2

1
)

2

1
(,2)1(,2)0(,1)0( eyeyyy

 

Hence the exact solution has the form 

[12]: 
xexxy )1()(   

Solving this example by using 

suggested method, from equation (4), 

we get: 

P15 = 2.15276058 10
-11

 x
15

 + 

0.0000000001345 x
14

 + 

0.00000000233 x
13

 + 0.000000027027 

x
12

 + 0.000000300722 x
11

 + 

0.00000303125 x
10

 + 

0.00002755733512x
9
 + 

0.0002232142836 x
8
 + 

0.001587301587 x
7
 + 0.009722222222 

x
6
 + 0.05x

5
 + 0.2083333333x

4
 + 

0.6666666667x
3
+1.5x

2
 +2x+1. 

For more details, Table (1) gives the 

results for different nodes in the 

domain, for n=7, i.e. P15, and the 

absolute errors obtained by comparing 

it with the exact solution. Figure (1) 

illustrates the accuracy of solution by 

comparing P15 with the exact solution. 

 

Table 1: The Accuracy of the Suggested Method P15 for Example 1. 

xi Exact solution y(x) Suggested solution P15 Error = | y(x) – P15 | 

0 1.000000000000000 1.000000000000000 0 

0.1 1.215688009883213 1.215688009883242 0.002975397705995e-011 

0.2 1.465683309792204 1.465683309792417 0.021338486533296e-011 

0.3 1.754816449848804 1.754816449849434 0.062949645496246e-011 

0.4 2.088554576697778 2.088554576699057 0.127897692436818e-011 

0.5 2.473081906050192 2.473081906052270 0.207744932367859e-011 

0.6 2.915390080624814 2.915390080627676 0.286126677906395e-011 

0.7 3.423379602699810 3.423379602703189 0.337863070853928e-011 

0.8 4.005973671286442 4.005973671289734 0.329158922340866e-011 

0.9 4.673245911198205 4.673245911200373 0.216804352248801e-011 

1 5.436563656918091 5.436563656917566 0.052491344604277e-011 

Max. error 3.378630708539276e-012 

S.S.E 4.180676135479167e-023 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3
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4.5

5

5.5

the solution at n=7

x

y

 

 

exact

p15

 
Fig.1: Comparison between P15 and the Exact Solution for Example 1. 

 

Fazal-i-Haq [12] solved this example 

by numerical method Based on 

uniform Haar wavelets with Maximum 

absolute 5.2462e
− 09

 and relative Errors 

2.2622e
− 09

 and better performance of 
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the suggested algorithm can be 

observed. 

 

Example 2: 
Consider the following nonlinear, 4

th
 

order, 4-point BVP's: 

0242 2582)4(  xxxyy  

 , 0 ≤ x ≤ 1 

with BC: 6
4

1)3( 







y  1)0(' y

 
16

7

2

1









y  3)1(' y  

Hence the exact solution has the form 

[13]: xxxy  4)(  

Solving this example by using 

suggested method from equation (4), 

we get: 

P5 = – x
4
 + x, which is the exact 

solution. 

3. Error Estimation for 

Multi-point Boundary Value 

Problems: 
This paper, present a new, carefully 

designed modification of this error 

estimate which not only results in less 

computational work but also appears to 

perform satisfactorily for nonlocal 

MPBVP, and gives a full analytical 

justification for the asymptotical 

correctness of the error estimate when 

it is applied to a general nonlinear 

problem. 

3.1. Error / Defect Weights 
The weights used to scale either the 

error or the maximum defect differs 

among BVP software. Therefore, the 

BVP component of pythODE allows 

users to select the weights they wish to 

use. The default weights depend on 

whether an estimate of the error or 

maximum defect is being used. If the 

error is being estimated, then the BVP 

component of pythODE uses [14]. In 

this paper we modify this package to 

consist MPBVP and named 

"pythMPODE", defined as: 









)(1

)()(

xp

xpxy
  ; 0 

≤ x ≤ 1  (6) 

where y(x) is exact solution and P(x) is 

suggested solution of MPBVP. 

If the maximum defect is being 

estimated, then the MPBVP 

component of "pythMPODE" uses: 















))(),...,('),(,(1

))(),...,('),(,()(
)1(

)1()(

12

xpxpxpxf

xpxpxpxfxp
n

nn

n  ; 

0 ≤ x ≤ 1  (7) 

The relative estimate of both the error 

and the maximum defect are slightly 

modified from the one used in BVP 

SOLVER. 

We apply this package for example 1 

as follows: 

014
013

)3(

)3(
12

)4(

192863089972521.2
542753096909707.161

505649968028886.3

),...,,(1

),...,,(
















e

e

ppxf

ppxfp n
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For more details see Table (2). 

 

T
a

b
le

 2
: 

T
h

e
 M

a
x

im
u

m
 R

e
la

ti
v

e
 D

ef
e
c
t 

o
f 

E
x

a
m

p
le

 1
.

 

(|
(P

2
n

+
1
)(4

) -f
(x

,…
,p

(3
) )|

 

/1
+

|f
(x

, 
p

,…
, 
p

(3
) )|

)
 

0
 

0
.0

4
0
5

3
5
7

2
9
5

3
7
2

0
5

e-0
1

3
 

0
.0

1
5
9

0
6
4

2
5
5

1
4
6

0
0

e-0
1

3
 

0
.2

1
2
9

4
0
8

5
7
6

9
5
4

4
5

e-0
1

3
 

0
.1

2
0
0

6
7
8

5
7
1

1
0
2

0
3

e-0
1

3
 

0
.2

3
0
8

9
9
7

2
5
2

1
1
9

2
9

e-0
1

3
 

0
.2

2
6
7

9
4
8

4
1
2

0
8
1

6
1

e-0
1

3
 

0
.0

5
5
4

1
5
9

3
4
0

5
0
8

6
3

e-0
1

3
 

0
.1

1
1
8

5
8
0

8
9
1

0
2
6

6
8

e-0
1

3
 

0
.0

1
2
3

1
4
6

5
2
0

1
1
3

0
3

e-0
1

3
 

0
 

2
.3

0
8
9

9
7
2

5
2
1

1
9
2

9
e-0

1
4

 

|(
P

2
n

+
1
)(4

) -f
(x

, 
p

,…
, 

p
(3

) )|
 

0
 

0
.0

7
0
1

6
6
0

9
5
1

5
6
3

1
0

e
-0

1
2

 

0
.0

2
7
5

3
3
5

3
1
0

1
0
7

0
4

e
-0

1
2

 

0
.3

6
8
5

9
4
0

4
4
1

7
5
5

5
2

e
-0

1
2

 

0
.2

0
7
8

3
3
7

5
0
2

0
9
8

2
9

e
-0

1
2

 

0
.3

9
9
6

8
0
2

8
8
8

6
5
0

5
6

e
-0

1
2

 

0
.3

9
2
5

7
4
8

6
1
5

0
7
4

5
5

e
-0

1
2

 

0
.0

9
5
9

2
3
2

6
9
3

2
7
6

1
4

e
-0

1
2

 

0
.1

9
3
6

2
2
8

9
5
4

9
4
6

2
7

e
-0

1
2

 

0
.0

2
1
3

1
6
2

8
2
0

7
2
8

0
3

e
-0

1
2

 

0
 

3
.9

9
6
8

0
2
8

8
8
6

5
0
5

6
4

e
-0

1
3

 

(P
2
n

+
1
)(4

)
 

5
.0

0
0
0

0
0
0

0
0
0

0
0
0

0
0

 

5
.6

3
6
3

7
1
6

8
2
1

8
5
7

3
2

 

6
.3

5
1
2

9
4
3

4
2
4

3
2
8

5
6

 

7
.1

5
4
2

5
1
6

8
0
1

5
3
1

8
6

 

8
.0

5
5
8

5
3
3

6
7
2

6
3
0

6
7

 

9
.0

6
7
9

6
6
9

8
8
8

5
0
3

0
7

 1
0
.2

0
3

8
6
5

2
8
2

1
8
6

4
5
6

 

1
1
.4

7
8

3
9
0

4
3
2

5
8
1

8
1
5

 

1
2
.9

0
8

1
3
7

3
8
5

2
5
6

5
0
8

 

1
4
.5

1
1

6
5
8

3
5
5

8
2
6

0
2
9

 

1
6
.3

0
9

6
9
0

9
7
0

7
5
4

2
7
5

 

 

1
+

|f
(x

, 
p

,…
,p

(3
) )|

 5
.0

0
0
0

0
0
0

0
0
0

0
0
0

0
0

 

6
.6

3
6
3

7
1
6

8
2
1

8
5
8

0
2

 

7
.3

5
1
2

9
4
3

4
2
4

3
2
8

8
3

 

8
.1

5
4
2

5
1
6

8
0
1

5
2
8

1
7

 

9
.0

5
5
8

5
3
3

6
7
2

6
2
8

5
9

 1
0
.0

6
7

9
6
6

9
8
8

8
5
0

7
0
6

 

1
1
.2

0
3

8
6
5

2
8
2

1
8
6

8
4
9

 

1
2
.4

7
8

3
9
0

4
3
2

5
8
1

7
1
9

 

1
3
.9

0
8

1
3
7

3
8
5

2
5
6

3
1
4

 

1
5
.5

1
1

6
5
8

3
5
5

8
2
6

0
0
7

 

1
7
.3

0
9

6
9
0

9
7
0

7
5
4

2
7
5

 

 

f(
x

, 
p

, 
…

,p
(3

) )
 

6
.0

0
0
0

0
0
0

0
0
0

0
0
0

0
0

 

5
.6

3
6
3

7
1
6

8
2
1

8
5
8

0
2

 

6
.3

5
1
2

9
4
3

4
2
4

3
2
8

8
3

 

7
.1

5
4
2

5
1
6

8
0
1

5
2
8

1
7

 

8
.0

5
5
8

5
3
3

6
7
2

6
2
8

5
9

 

9
.0

6
7
9

6
6
9

8
8
8

5
0
7

0
6

 1
0
.2

0
3

8
6
5

2
8
2

1
8
6

8
4
9

 

1
1
.4

7
8

3
9
0

4
3
2

5
8
1

7
1
9

 

1
2
.9

0
8

1
3
7

3
8
5

2
5
6

3
1
4

 

1
4
.5

1
1

6
5
8

3
5
5

8
2
6

0
0
7

 

1
6
.3

0
9

6
9
0

9
7
0

7
5
4

2
7
5

 

M
a

x
. 

er
ro

r
 

x
i

 

0
 0

.1
 

0
.2

 

0
.3

 

0
.4

 

0
.5

 

0
.6

 

0
.7

 

0
.8

 

0
.9

 

1
 

 

3.2. Global - Error Methods 
There are a number of different 

algorithms that can be used to estimate 

the global error effectively. These 

algorithms are based on the use of 

Richardson extrapolation, higher-order 

formulae, deferred corrections, and a 

conditioning constant. The first and 

second global-error estimation 

algorithms are modified and described 

below. 

3.2.1. Richardson extrapolation 

This algorithm starts with a discrete 

numerical solution Yh for a given 

mesh. Next, the software determines a 

more accurate numerical solution Yh/2 

by halving each subinterval of the 

original mesh. 
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Then, an estimate of the norm of the 

global error, eRE, is given by: 

 














212

2
hYYe hp

p

RE  

     

 (8) 

where p is the order of the 

discretization formula. 

In this paper, we modify this algorithm 

to represent the suggested method that 

starts with a discrete solution P2n+1 for 

a given mesh. Next, the software 

determines a more accurate solution 

P2(n+1)+1 by increasing n number of fit 

order for derivative of approximate 

with derivative of exact. 

Then, an estimate of the norm of the 

global error, eMPRE, is given by: 

    










121121)1(2

1)1(2

12

2
nnn

n

MPRE
PPe

     

 (9) 

We apply this algorithm for example 1, 

as follows: 

Apply equation (9) by the following 

(for more details see Table (3)): 

 

Table 3: Appling Modify Richardson Extrapolation for Example 1. 

8 P13 P15 | P15 - P13 | Mod. Richardson 

0 1.000000000000000 1.000000000000000 0 0 

0.1 1.215688009883212 1.215688009883212 0 0 

0.2 1.465683309792205 1.465683309792204 0.008881784197001e-013 0.008882055255816e-013 

0.3 1.754816449848809 1.754816449848804 0.053290705182008e-013 0.053292331534899e-013 

0.4 2.088554576697792 2.088554576697779 0.133226762955019e-013 0.133230828837246e-013 

0.5 2.473081906050211 2.473081906050192 0.182076576038526e-013 0.182082132744237e-013 

0.6 2.915390080624828 2.915390080624814 0.137667655053519e-013 0.137671856465155e-013 

0.7 3.423379602699815 3.423379602699810 0.053290705182008e-013 0.053292331534899e-013 

0.8 4.005973671286443 4.005973671286442 0.008881784197001e-013 0.008882055255816e-013 

0.9 4.673245911198205 4.673245911198205 0 0 

1 5.436563656918091 5.436563656918091 0 0 

Max. error  1.820765760385257e-014 1.820821327442369e-014 
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
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131515

15
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2
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1.820821327442369e
-014

 

3.2.2. Higher - Order Formulae 

Higher – order formulae can be used to 

determine a more accurate numerical 

solution with the same mesh as for the 

original solution. Specifically, the 

global error can be estimated by: 

eHO = ║Yp – Yq║∞    

    

 (10) 

where Yp is the original discrete 

solution of order p and Yq is the more 

accurate discrete solution of order q > 

p. In [14] symmetric formulae are 

used, q = p + 2. 

In this paper, we modify this algorithm 

to represent the suggested method that 

starts with suggested solution P2n+1 for 

a given mesh. Next, the software 

determines a more accurate solution 

P2(n+1) +1 by increase n, number of fit 

order for derivative of approximate 

with derivative of exact. 

Then, the global error can be estimated 

by: 

eHO = ║ P2(n+1)+1  – P2n+1 ║∞   

    

 (11) 
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We apply this algorithm for the 

example 1, as follows: 

Apply equation (11) by the following 

(for more details see Table (3)): 

eHO =  


 1315 ppyy qp = 

1.820765760385257e
-014

. 
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باستخدام  ةالعالية غير خطي  حل مسائل القيم الحدودية متعـددة النقاط من الرتب

 التقنية شبه التحليلية

 
 *مريم محمد هلال            *لمى ناجي محمد توفيق

 
 قسم الرياضيات، كلية التربية ابن الهيثم ، جامعة بغداد*

 

  :الخلاصة
ذات غير الخطية في هذا البحث نعرض خوارزمية جديدة لحل معادلات تفاضلية اعتيادية من الرتب العالية 

حسب بصيغة يالتقنية شبه التحليلية والحل ، الخوارزمية تعمل على أساس الشروط الحدودية عند نقاط متعددة

لتوضيح الدقة و  الأمثلةمتسلسلة سريعة التقارب وهذا يتضح أكثر في المسائل الفيزيائية، أيضا ناقشنا بعض 

 المسائل الحدودية متعددة النقاط .الكفاءة وسهولة أداء الطريقة المقترحة في حل هذا النوع من 

  
 

 


