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Abstract:

In this paper, we present new algorithm for the solution of the nonlinear high order
multi-point boundary value problem with suitable multi boundary conditions. The
algorithm is based on the semi-analytic technique and the solutions are calculated in
the form of a rapid convergent series. It is observed that the method gives more
realistic series solution that converges very rapidly in physical problems. Illustrative
examples are provided to demonstrate the efficiency and simplicity of the proposed
method in solving this type of multi- point boundary value problems.

Key words: Differential Equation, Multi-point Boundary Value Problem,

Approximate Solution.

1. Introduction

Some problems which have wide
classes of application in science and
engineering have usually been solved
by perturbation methods. These
methods have some limitations, e.g.,
the approximate solution involves a
series of small parameters which poses
difficulty since the majority of
nonlinear problems have no small
parameters at all. Although appropriate
choices of small parameters do lead to
ideal solution while in most other
cases, unsuitable choices lead to
serious effects in the solutions [1]. The
semi-analytic  technique employed
here, is a new approach for finding the
approximate solution that does not
require small parameters, thus over-
coming the limitations of the
traditional perturbation techniques. The
method was first proposed by Grundy
(2003) and successfully applied by
other researchers like Grundy (2003-
2007) who examined the feasibility of
using two points Hermite interpolation
as a systematic tool in the analysis of
initial-boundary value problems for
nonlinear diffusion equations. In 2005
Grundy analyzed initial -

boundary value problems
involving nonlocal nonlinearities
using two points Hermite interpolation
[1], also, in 2006 He showed how two-
point Hermite interpolation can be
used to  construct  polynomial
representations of solutions to some
initial-boundary value problems for the
inviscid Proudman-Johnson equation.
In 2008, Magbool [2] used a Semi-
analytical Method to Model Effective
SINR Spatial Distribution in WiMAX
Networks. Also, in 2008, Debabrata [3]
studied Elasto-plastic strain analysis by
a semi-analytical method.

The existence of positive solutions for
multi-point boundary value problems is
one of the key areas of research these
days owing to its wide application in
engineering like in the modeling of
physical problems involving vibrations
occurring in a wire of uniform cross
section and composed of material with
different densities, in the theory of
elastic  stability and also its
applications in fluid flow through
porous media.
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Gupta [4] studied the existence of
solutions for the generalized multi-
point BVP in the non-resonance case.
Zhang et al [5] obtained some new
existence results of the fourth-order,
four-point BVP, by developing the
upper and lower solution method and
the monotone iterative technique; it is
well known that the upper and lower
solution method is a powerful tool for
proving existence results for BVPs. In
many cases it is possible to find a
minimal solution and a maximal
solution between the lower solution
and the upper solution by the
monotone iterative technique [5].

Liu [6] established  sufficient
conditions for the existence of at least
one solution of nth order MPBVP.
Anderson et al [7] concerned with the
existence and form of solutions to
nonlinear third-order, three-point and
multi-point boundary-value problems
on general time scales.

Wang et al [8] studied the existence of
nontrivial solutions for nonlinear
higher order MPBVP on time scales
with all derivatives.

Graef et al [9] obtained sufficient
conditions for the existence of a
solution of the higher order MPBVP
based on the existence of lower and
upper solutions.

Liu et al [10] established the existence
results of multiple monotone and
convex positive solutions for some
fourth-order MPBVPs.

In this paper we use two-point
osculatory interpolation; essentially
this is a generalization of interpolation
using Taylor polynomials. The idea is
to approximate a function y by a
polynomial P in which values of y and
any number of its derivatives at given
points are fitted by the corresponding
values and derivatives of P.

We are particularly concerned with
fitting function values and derivatives
at the two end points of a finite
interval, say [0,1] where a useful and
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succinct way of writing osculatory
interpolation Pyy.; of degree 2n + 1
was given for example by Phillips [11]
as:

n

I32n+1(x) = Z {y(j) (O) q j (X) +

j=0

(1) yP@)aq;(1x)} 1)
0,00 = (x'1)a0" 3. (:”J
x° )

=Q,; () /]! 2)

so that (1) with (2) satisfies:

YOO =Py . yP()=
Pijn)ﬂ 1) , j=0,1,2,...,n.

Implying that Pj,.1 agrees with the
appropriately truncated Taylor series
for y about

x =0 and x = 1. We observe that (1)
can be written directly in terms of the
Taylor coefficients a; and b; about x =
0 and x = 1 respectively, as:

Pons1(X) = n {aj Qj(x) + ('1)j bj

Q;(1-x)}
3)
2. Solution of Multi-Point
High Order Nonlinear BVP's
for ODE
A general form of n- order, m- point
BVP's is:
y© =ty YY),
0<x<1, n=3
(42)
Subject to the boundary condition:
g( ¥(0), ¥'(0), ... , ¥"0) ) =0,
yOmi) =1, =0, 1,...,n3,
h(y(@), y(D), ..., y"(1)) =0

(4b)
where n,€ (0, 1), Vi=12,..m-2 , g,
h : R" — R are continuous functions,
and yjeR,
j=0,1,...,n-3.
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where f: [0,1]xR" — R is a continuous
function, 0 <my <M< <Mm2< L.

The idea is to use a two - point
osculator interpolation  polynomial
Pone1 to solve problem (4) by the
following steps:

Step 1:

Divide the interval domain [0, 1] in to
m-1 subinterval by 7,, =1, 2,

..m-2, ie, [0,m] [m.m] ., ...,

[nm—S’nm—Z] ’ [nm—2’1]1 then apply
suggested method for each subintervals
as follows.

Step 2:

Construct  osculator interpolation
polynomial Pn41 for each subintervals
by evaluating Taylor coefficients of y
about x=0, n, , 1, Vi=12,..m-2
respectively.

Step 3:

Insert the series form in step 2 into
equation (4a) and put x= 0, 7, 1,
Vi=12,...m—2 respectively, and
equate the coefficients of powers of x,
X-n), (x-1), Vi=12..m-2, to
obtain

y®0),y" (1), y® @), vi=12,.,m~2
respectively.

ie, to obtain a, Y“(n) b, ,
Vi=12,.,m-2.

Step 4:
Derive equation (4a) with respect to x
to obtain new form of equation:

1 (ﬂ)
y(n+1)(x): df (X1 yvy 1---1y )
dx

()

Step 5:

Insert the series form in step 2 into
equation (5) and put x= 0, 7, 1,
Vi=12,...m—-2, respectively and
equate the coefficients of powers of x,
X-7), (x-1), Vi=12...m-2 to
obtain y"™(0), y"I( 7)), y"I(),
Vi=12,.,m-2, respectively.
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i.e., to obtain an1 , Y™( 7)), bue
Vi=12,...m-2.

Step 6:

Iterate the process in step 5 many times
to obtain y (0), y (7,), y ) ,

=1, ..., m-2, j = (n+2), (nt3) ,...
respectively. (i.e., to obtain a , y%(
1), bj).

The resulting equations can be solved
using MATLAB package.

Step 7:

Use the coefficients obtained in above
steps to construct P,n.1 for each sub-

intervals  [0,n,], [m.n,] ., ... ,
[nm—S ’ 77m72] ’ [nm,z ,1], the
constructing polynomials have
unknown coefficients y®(0), y®(1),
y®( ), Vi=12,.,m-2,

vk =12,...,n-1, we can get half of
these unknown coefficients by the
boundary conditions.

Step 8:

To evaluate the remainder coefficients
integrate equation (4a) on [0, X],
[77i ’X]v

i=1, ..., m-2, respectively.

Step 9:

Again integrate resulting equations in
step 8, (n-1) times on [0, x], [7,, X],
i=1,...,m-2, respectively.

Step 10:

Use P,n+1 as a replacement of y in each
equations in step 8 and 9, then put, x
=n,, i=l, ..., m-2 and x=1,
respectively, in these equations to
obtain system of n(m-1) equations with
n(m-1) unknown coefficients which
can be solved using the MATLAB
package to get the unknown
coefficients, then insert it into P2y, Of
each subintervals.

Step 11:

Summing the P41 Of each subinterval
obtained in step 10 which represent the
polynomial solution of problem (4).
Now, we introduce many examples of
high order multi-point BVP's for ODE
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to illustrate  suggested method.
Accuracy and efficiency of the
suggested method is established
through  comparison ~ with  other
methods.

Example 1:

Consider the following linear, 4"
order, 3-point BVP's:

y@ =y +4e , 0
<x<1

with BC :
Y(0) =1.Y'(0) = 2,y = 26, y() = %[%(%)j

Hence the exact solution has the form
[12]: y(x) =@+ x)e*

Solving this example by using
suggested method, from equation (4),
we get:

P;s = 215276058 10 x® +
0.0000000001345 xH +
0.00000000233 x= + 0.000000027027

x? + 0.000000300722 x* +
0.00000303125 x10 +
0.00002755733512x° +
0.0002232142836 x8 +

0.001587301587 x’ + 0.009722222222
x® + 0.05x° + 0.2083333333x* +
0.6666666667x°+1.5x” +2x+1.

For more details, Table (1) gives the
results for different nodes in the
domain, for n=7, i.e. Pi5 and the
absolute errors obtained by comparing
it with the exact solution. Figure (1)
illustrates the accuracy of solution by
comparing P15 with the exact solution.

Table 1: The Accuracy of the Suggested Method P;5 for Example 1.

Xi Exact solution y(x) Suggested solution Py5 Error =|y(x) — Pss |

0 1.000000000000000 | 1.000000000000000 0

0.1 | 1.215688009883213 | 1.215688009883242 0.002975397705995¢ !
0.2 | 1.465683309792204 | 1.465683309792417 0.021338486533296¢
0.3 | 1.754816449848804 | 1.754816449849434 0.062949645496246¢
0.4 | 2.088554576697778 | 2.088554576699057 0.127897692436818¢
0.5 | 2.473081906050192 | 2.473081906052270 0.207744932367859¢
0.6 | 2.915390080624814 | 2.915390080627676 0.286126677906395¢ "
0.7 | 3.423379602699810 | 3.423379602703189 0.337863070853928¢
0.8 | 4.005973671286442 4.005973671289734 0.329158922340866¢ °**
0.9 | 4.673245911198205 | 4.673245911200373 0.216804352248801¢ "
1 5.436563656918091 | 5.436563656917566 0.052491344604277¢°*
Max. error 3.378630708539276¢°*

S.S.E 4.180676135479167¢ "%

the solution at n=7

14 L L L
0 0.1 0.2 0.3

L
0.5

L L L
0.6 0.7 0.8 0.9 1

Fig.1: Comparison between P;5 and the Exact Solution for Example 1.

Fazal-i-Haq [12] solved this example
by numerical method Based on
uniform Haar wavelets with Maximum
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absolute 5.2462¢~ % and relative Errors
2.2622¢~ * and better performance of
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the suggested be

observed.

algorithm can

Example 2:
Consider the following nonlinear, 4™
order, 4-point BVP's:

y@ —y?+x®—2x° +x*-24=0
, 0<x<1

with BC: y® (%) -6

1 7
y(g)zﬁ y®)=-3

Hence the exact solution has the form

y'(0)=1

[13]: y(X)=-x*"+x

Solving this example by using
suggested method from equation (4),
we get:

Ps = — x* + x, which is the exact
solution.

3. Error Estimation for

Multi-point Boundary Value

Problems:

This paper, present a new, carefully
designed modification of this error
estimate which not only results in less
computational work but also appears to
perform satisfactorily for nonlocal
MPBVP, and gives a full analytical
justification for the asymptotical
correctness of the error estimate when
it is applied to a general nonlinear
problem.

Hp(4)2n+1 - f(X, p,..., p(g))‘

. _ 3.996802888650564¢ °*°

3.1. Error / Defect Weights

The weights used to scale either the
error or the maximum defect differs
among BVP software. Therefore, the
BVP component of pythODE allows
users to select the weights they wish to
use. The default weights depend on
whether an estimate of the error or
maximum defect is being used. If the
error is being estimated, then the BVP
component of pythODE uses [14]. In
this paper we modify this package to

consist MPBVP and named

"pythMPODE", defined as:

ly() - p(x)|, o
L+[p03), |

<x<1 (6)

where y(X) is exact solution and P(X) is
suggested solution of MPBVP.
If the maximum defect is being
estimated, then  the MPBVP
component of "pythMPODE" uses:
[P&, () = £ (x, p(x), P'(X),-..p" (X)),
1+ f (% PO, (%), P ()]
0<x<1 (7)
The relative estimate of both the error
and the maximum defect are slightly
modified from the one used in BVP
SOLVER.
We apply this package for example 1
as follows:

= 2.308997252119286e °**

1+

[£0% P )
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For more details see Table (2).
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algorithms are modified and described

below.

3.2. Global - Error Methods

There are a number

of different

3.2.1. Richardson extrapolation

algorithms that can be used to estimate

the global

This algorithm starts with a discrete

error effectively. These

numerical solution Y, for a given

algorithms are based on the use of

mesh. Next, the software determines a
more accurate numerical solution Yj,

Richardson extrapolation, higher-order

formulae, deferred corrections, and a

by halving each subinterval of the

original mesh.

conditioning constant. The first and

second

estimation

global-error
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Then, an estimate of the norm of the
global error, erg, is given by:

2p
€re = 2P _1 (Yh_Y%
(8)
where p is the order of the

discretization formula.

In this paper, we modify this algorithm
to represent the suggested method that
starts with a discrete solution P41 for
a given mesh. Next, the software
determines a more accurate solution
Pom+1)+1 Dy increasing n number of fit

order for derivative of approximate
with derivative of exact.

Then, an estimate of the norm of the
global error, evpre, IS given by:

22(n+1)+1 *

= m(%mﬂ —P.

9)
We apply this algorithm for example 1,
as follows:
Apply equation (9) by the following
(for more details see Table (3)):

e

MPRE

o0

Table 3: Appling Modify Richardson Extrapolation for Example 1.

8

P13

P15

| P15 Pus |

Mod. Richardson

0

1.000000000000000

1.000000000000000

0

0

0.1

1.215688009883212

1.215688009883212

0

0

0.2

1.465683309792205

1.465683309792204

0.008881784197001¢**

0.008882055255816¢ %%

0.3

1.754816449848809

1.754816449848804

0.053290705182008¢ ™

0.053292331534899¢

0.4

2.088554576697792

2.088554576697779

0.133226762955019¢

0.133230828837246¢

0.5

2.473081906050211

2.473081906050192

0.182076576038526¢

0.182082132744237e %%

0.6

2.915390080624828

2.915390080624814

0.137667655053519¢

0.137671856465155¢

0.7

3.423379602699815

3.423379602699810

0.053290705182008e ™

0.053292331534899¢ ™

0.8

4.005973671286443

4.005973671286442

0.008881784197001¢™*

0.008882055255816e ™

0.9

4.673245911198205

4.673245911198205

0

0

1

5.436563656918091

5.436563656918091

0

0

Max. error

1.820765760385257¢ %

1.820821327442369e

22n+1 _1

215
(ﬁ}( Pis — Pis =

o0

1.820821327442369¢ 1

3.2.2. Higher - Order Formulae
Higher — order formulae can be used to
determine a more accurate numerical
solution with the same mesh as for the
original solution. Specifically, the
global error can be estimated by:

evo = || Yp— Yo

22(n+l)+1
€vpre = (p2(n+1)+1 ~ Pana

0 =

(10)
where Y, is the original discrete
solution of order p and Yy is the more
accurate discrete solution of order q >
p. In [14] symmetric formulae are
used,g=p + 2.
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In this paper, we modify this algorithm
to represent the suggested method that
starts with suggested solution Pyn.q for
a given mesh. Next, the software
determines a more accurate solution
Pom+1) +1 Dy increase n, number of fit
order for derivative of approximate
with derivative of exact.

Then, the global error can be estimated
by:

€Ho = ” P2(n+1)+1 — Pons1 ||oo

(11)
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We apply this algorithm for the
example 1, as follows:

Apply equation (11) by the following
(for more details see Table (3)):

eHO = Hyp - yq HOO = || p15 - p13||00 =
1.820765760385257¢ 4.
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