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Abstract: 

             Our aim in this paper is to study the relationships between min-cs modules 

and some other known generalizations of cs-modules such as ECS-modules, P-

extending modules and n-extending modules. Also we introduce and study the 

relationships between direct sum of mic-cs modules and mc-injectivity. 
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1- Introduction 
        Throughout this paper all rings R 

are commutative with identity and all 

R-modules are unitary. We write  A  

M to indicate that A is a submodule of 

M. 

        A submodule N M is called 

essential in M (denoted by N e M) if 

for each W  M, NW=(0) implies 

W=(0).[1, p.15] 

        A submodule N of M is called 

closed if N has no proper essential 

submodule extension in M; that is if      

N  e W for some   W  M, then N=W. 

it is clear that M, (0) are closed 

submodules. 

        An R-module M is called an 

extending module (or, CS-module) if 

every submodule is an essential in a 

direct summand of M. Equivalently, 

every closed submodule is a direct 

summand, [2, P.55] 

         A nonzero submodule N of M is 

called a minimal closed submodule if 

there is no nonzero closed submodule 

W of M such that WN. For example, 

< 2 > and < 3 > are minimal closed 

submodules in a              ℤ-module ℤ6, 

also <3 > and < 4 > are minimal closed 

submodules in ℤ12 as a ℤ-module. 

         An R-module M is called min-CS 

module if all minimal closed 

submodules are direct summand of M 

[3]. 

         It is clear that every CS-module 

is min-CS module, but not conversely. 

 

          For more details about min-CS 

module, see [4]. 

    

         Recall that an ec-closed 

submodule N of an R-module M, is a 

closed submodule which contains 

essentially a cyclic submodule [5]. 

 

Lemma (1.1):  
        Let U be a minimal closed 

submodule of an R-module M. Then U 

is an ec-closed submodule. 

Proof:  

        Since U is a minimal closed 

submodule of M, then U is a uniform 

closed submodule, by [4, lemma 

(2.1.6), p.24] Thus for each x  U we 

have < x > ≤ e U. 

Hence U is an ec-closed submodule.  

 

        Recall that an ECS R-module M 

is a module such that every ec-closed 

submodule is a direct summand [5]. 

 

Proposition (1.2):  
        Every ECS-R-module is min-CS. 

Proof:  
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        Let M be an ECS-module, and let 

U be a minimal closed submodule of 

M. 

So by lemma (1.1) U is an ec-closed 

submodule. 

Hence U is a direct summand of M, 

since M is an ECS-module. Thus M is 

a min-CS module. 

 

        Recall that, R-module M has 

uniform dimension (briefly U-dim) if 

M does not contain an infinite direct 

sum of nonzero submodules. 

        Equivalently, M is contains an 

essential submodule of the form U1 

… Un for some uniform submodule 

Ui  M. 

        If no such integer n exists, we 

write U-dim = ; that is M contains an 

infinite direct sum of nonzero 

submodules, see [6, proposition 6.4]. 

       Another name used for the 

uniform dimension is Goldie 

dimension (or Goldie rank), named 

after its discover. We prefer the term 

"uniform dimension" since the uniform 

modules play a key rule in its 

definition. 

        Also Goodearl, see [p.79, p.86], 

gave the name finite dimensional 

module for module with finite uniform 

dimension. 

        It is easy to check that U-dim M = 

0 if and only if M = 0 and U-dim M = 

1 if and only if M is a uniform module. 

 

        The following result is given in 

[5, proposition 1.2, p.1249]. 

 

Proposition (1.3):  
        Let M be a module with finite 

uniform dimension. Then M is a CS 

module if and only if M is an ECS 

module. 

 

        Hence we can give the following 

result: 

 

 

Corollary (1.4):  
        Let M be an R-module with a 

finite uniform dimension. Then the 

following statements are equivalent: 

M is a CS-module. 

M is an ECS-module. 

M is a min-CS module. 

Proof:  

(1)  (2) : It follows by proposition 

(1.3). 

(1)  (3) : It follows by [4, corollary 

(2.2.19), p.57]. 

Corollary (1.5):  
        Let M be a Noetherian (or 

Artinian) R-module. Then the 

following statements are equivalent: 

M is a CS-module. 

M is an ECS-module. 

M is a min-CS module. 

Proof:  

        It follows directly by corollary 

(1.4), since every Noetherian 

(Artinian) module has a finite uniform 

dimension, by [6, corollary 6.7, p.211]. 

 

        Also, we have the following: 

 

Corollary (1.6):  
        Let R be a Goldie ring. Then the 

following statements are equivalent: 

R is a min-CS ring. 

R is an ECS-ring. 

R is a CS-ring. 

Proof:  

        Since a Goldie ring R has a finite 

uniform dimension. 

Hence the result follows directely by 

corollary (1.4). 

 

Example (1.7):  

        Let M = Q  ℤp as a ℤ-module, 

where p is any prime integer. 

M is not CS-module, by[4, examples 

(2.2.25(1)), p.61]. 

Since M has a finite uniform 

dimension, M is not min-CS and M is 

not ECS, by corollary (1.4).  
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Example (1.8): [5, p.1248] 
 

Let R be a ring such that R =                 

, R is not CS by [ 5 ,p.1248]. 

 

Since R has finite uniform dimension, 

R is not min-CS and R is not ECS by 

corollary (1.4). 

 

        Recall that, an R-module M is 

called a P-extending module if every 

cyclic submodule of M is essential in a 

direct summand of M, [7]. 

 

Proposition (1.9):  
        Let M be a nonsingular module 

with finite uniform dimension. Then 

the following statements are 

equivalent: 

(1) M is CS. 

(2) M is ECS. 

(3) M is P-extending. 

(4) M is min-CS. 

Proof:  

(1)  (2): It follows by [5, proposition 

1.2(iii)]. 

(2)  (3): It follows by [5, proposition 

1.2(i)]. 

(1)  (4): It follows by [4, corollary 

(2.2.19), p.57]. 

 

        Now, we have the following 

 

Lemma (1.10):  
        Let M be an indecomposable R-

module with uniform submodule. If M 

is ECS then M is uniform. 

Proof:  

        Let M be an ECS-module. Then 

by proposition (1.2), M is a min-CS 

module. 

Hence the result follows by [4, 

corollary (2.1.12), p.27]. 

 

Proposition (1.11):  
        Let M be an indecomposable R-

module with uniform submodule. Then 

the following statements are 

equivalent: 

(1)M is a min-CS module. 

(2) M is a uniform module. 

(3) M is a CS-module. 

(4) M is an ECS-module. 

Proof:  

(1)  (2): It follows by [4, corollary 

(2.1.12), p.27]. 

(2)  (3): It is clear. 

(3)  (1): It is clear. 

(4)  (2): It follows by proposition 

(1.10). 

 

        Recall that an R-module M is 

called n-extending if every closed 

submodule A of M (with a U-dim(A) ≤ 

n) is a direct summand of M. 

Or equivalently: 

        Every submodule A of M (with U 

– dim(A) ≤ n) is essential in a direct 

summand of M, [7]. 

 

        To prove the following result we 

need the following lemma which 

appeared in [8, proposition 4]. 

However we give a different proof. 

Lemma (1.12):  
        Let M be an R-module. If M is 1-

extending module then M is n-

extending module, for each  n ℤ+. 

Proof:  

        The proof is by induction. 

Assume, for any submodule V of M 

with dim(V) < n, V is a direct 

summand. Let K be a closed 

submodule of M with U – dim = n such 

that n > 1. Since K has a finite uniform 

dimension. 

Then K has a uniform closed 

submodule U, by [4, proposition 

(1.62), p.17]. 

So dim(U) < dim(K) = n, by [1, 

proposition 3.18, p.86], [6, proof of 

proposition .4, p.211]. 

But U is closed in K and K is closed in 

M. So we get U is closed in M, by [1, 

proposition (1.5), p18]. 

Then by induction, U is a direct 

summand of M; that is M = U  U' for 

some U' ≤ M. 
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Hence K = K  (U  U') and U ≤ K. 

Thus K = U  (K  U') by modular 

law. 

This implies K  U' is closed in K. 

But K has a finite uniform dimension. 

Hence dim(K  U') < dim(K) = n, by 

[6, theorem 6.37, p.219], [2, 5-10, 

p.41]. 

Since K  U' is closed in K and K is 

closed in M, then K  U' is closed in 

M, by [1, proposition (1.5), p18]. 

It follows that K  U' is a direct 

summand of M, by induction. 

Hence M = (K  U')  W for some W 

≤ M. Which implies that U' = U'  [(K 

 U')  W]. 

But K  U'  U', then by modular law 

U' = (K  U)  (W  U'). 

On the other hand M = U  U'. 

This implies that 

M = U  [(K  U')  (W  U')] 

    = [U  (K  U')]  (W  U') 

    = K  (W  U'). 

Thus K is a direct summand of M. 

 

       Now, we will prove that under the 

class of finite uniform dimension each 

of the following modules are 

equivalent to a min-CS module: CS-

modules, 1-extending modules, and 

ECS-modules. 

 

Theorem (1.13):  
        Let M be a module with finite 

uniform dimension. Then the following 

statements are equivalent: 

M is CS-module. 

M is 1-extending module. 

M is ECS-module. 

M is min-CS module. 

Proof:  

(1)  (3)  (4) : It follows by 

corollary (1.4). 

(1)  (2): It is clear. 

(2)  (1) Let M be a 1-extending 

module. To prove M is CS-module.  

Let C be a closed submodule of M. 

Since M has a finite uniform 

dimension.  

Then C has a finite uniform dimension 

by  [6, theorem 6.37, p.219], [2, 5-10, 

p.41]. 

But M is 1-extending module, then by 

lemma (1.12), M is n-extending for 

each  n  ℕ. 

Hence C is a direct summand. Thus M 

is a CS-module. 

 

        Now we introduce the following 

definitions 

 

Definition (1.14):  
        Let M1 and M2 be R-modules. M1 

is called M2-mc-injective if for each 

minimal closed submodule N of M2 

and for each R-homomorphism map f: 

N  M1 can be extended f ':M2 

 M1 
i

2

1

N M

f f '

M



 
f ' ○ i = N where i is the inclusion map. 

 

Definition (1.15):  
        Let M1 and M2 be R-modules. M1 

and M2 are said to be mutually mc-

injective if M1 is M2-mc-injective and 

M2 is M1-mc-injective. 

 

        To prove the next theorem, we 

need the following lemma, compare 

with [2, lemma 7.5, p.57]. 

 

Lemma (1.16):  
        Let M be an R-module such that 

M = M1  M2, where M1 and M2 are 

submodules of M. Then M1 is M2-mc-

injective if and only if for each 

minimal closed submodule N of M 

such that N  M1 = 0 there exists  A ≤ 

M, N ≤ A and M = M1  A. 

Proof:  

        () Let N be a minimal closed 

submodule of M such that N  M1 = 0. 

Let 1: M  M1 and 2: M  M2 

be the natural projection maps. 
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Let g: 1N and : 2N. 

Since M1 is M2-mc-injective, there 

exists a homomorphism f: M2  M1 

such that f ○  = g. 

 

2

1

N M

A f

M




 

Let L = {f(m) + m such that m  M2}. 

This implies N ≤ L and M = M1  L. 

To show this: 

Let x  M1  L, then x  M1 and x  

L. Then x – f (m) = 0, m = 0; hence x = 

f (m) = f(0) = 0. 

This implies that M1  L = 0. 

Now, to prove M = M1  L. 

Let m  M, then m = m1 + m2 such 

that m1  M1 and m2  M2. 

But m = (m1 – f(m2)) + (f(m2) + m2)  

M1 +L.  

Thus M = M1  L. 

To prove N ≤ L. 

Let n  ℕ so n = a + b for some a  

M1 and b  M2. 

Since (n)  M2, then f((n)) + (n)  

L. 

Hence g(n) + (n)  L, since f ○  = g. 

But g: 1N and : 2N, we have 

g(n) = g(a + b) = a and (n) = (a + 

b)= b; it follows that g(n) + (n) = a + 

b= n. 

Thus n  L. 

() Let S be a minimal closed 

submodule of M2, and let f: S  M1. 

To extend f into f ':M2  M1. 

Put H = {– f(s) + s such that s  S}. 

Hence, there exists g: S  H 

defined by g(s) = – f(s) + s, and g is an 

isomorphism. 

Hence S is isomorphic to H. Hence H 

is minimal closed in M2. 

But H is closed submodule in M2 and 

M2 closed in M, imply H is closed in 

M, by [1, proposition (1.5), p18]. 

Suppose there exists K is closed in M 

such that K  H. 

Since H  M2, K  M2. 

But K  M2 and K is closed in M. 

Thus K is closed in M2, by [1, p.18]. 

Thus H = K since H is minimal closed 

in M2. 

Therefore K is a minimal closed in M. 

We can show that H  M1 = 0; for this 

let x  H  M1. 

Then x  H and x  M1, x  H implies 

that x = – f(s) + s for some s  M2. 

So x + f(s) = s  M1  M2 = 0. Then 

we get s = 0 and x = – f(s) = – f(0) = 0. 

Thus H  M1 = 0. 

By hypothesis, there exists A ≤ M such 

that H ≤ A and M = M1  A. 

Let : M1  A  M1 be the natural 

projection. 

It follows that ker  = {m  M; (m) = 

0}. 

But m = m1 + a for some m1  M, a  

A. 

Thus (m) = (m1 + a) = m1 = 0. 

This implies ker  = A. 

Now, g = 2M


:M2  M1 is a 

homomorphism and for each s  S  

M2. 

g(s) = g[f(s) + (– f(s) + s)] 

      = g(f(s)) + g(– f(s) + s) 

Since f(s)  M1 and – f(s) + s  H ≤ A 

= ker . 

Then g(f(s)) = f(s), g(– f(s) + s)) = 0. 

Thus g(s) = f(s). It follows that g ○ i = 

f, where i is the inclusion mapping 

from S to M2. 
i

2

1

S M

f g

M



 

Thus g = 2M


 is an extension of f. 

 

        In the following theorem, we give 

a condition, under which the direct 

summands of min-CS modules are 

min-CS modules. 

        Compare the following result with 

[2, proposition 7.10, p.59]. 
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Theorem (1.17):  
        Let M be an R-module such that 

M = M1  M2 and M1 and M2 are 

relatively-mc-injective. Then: 

M1 and M2 are min-CS modules if and 

only if M is a min-CS module. 

Proof:  

        () It follows directly by [4, 

Corollary (2.1.16), p.29]. 

() Let K be a minimal closed 

submodule of M. Then by [4, lemma 

(2.2.3), p.46], K  M1 = 0 or                    

K  M2 = 0. Assume K  M1 = 0, so 

by lemma (1.16). There exists a 

submodule A of M such that                  

M = M1  A and K  A. Hence 

1

1

A


  


 which is equivalent to 

A by second isomorphism theorem. 

But (M/M1) equivalent to M2. Thus M2 

equivalent to A. 

On the other hand, M2 is a min-CS 

module, hence A is a min-CS module, 

by remarks and [4, examples (2.1.3 

(10)), p.22]. 

But K is a minimal closed of M and K 

 A, implies K is a minimal closed of 

A. 

Hence K is a direct summand of A. 

Thus A = K  W, for some W ≤ A. 

Thus M = M1  (K  W) = K  (M1 

 W). 

Thus K is a direct summand of M. 

Hence M is a min-CS module. 

 

        To give our next result, we prove 

the following lemma: 

 

Lemma (1.18):  
        Let M be an R-module, and K is a 

minimal closed submodule of M. If K 

is M-mc-injective, then K is a direct 

summand of M. 

Proof:  

        Let i : K  K be the identity 

map. 

Since K is M-mc-injective, then i can 

be extended to  : M  K. 

Thus M = K  ker , as we can see 

below. 

Let x  M, then (x)  K and x – 

(x)ker  because ( x – (x))=(x) – 

(x)= 0 

But x = (x) + ( x – (x))  K + ker . 

Now, let x  K  ker . Then x  K 

and x  ker  and (x) = 0. 

But (x) = x, since  is the extension of 

i on K. 

Thus x = 0 and K  ker  = 0. 

So that M = K  ker . 

Thus K is a direct summand of M. 

 

Proposition (1.19):  
        Let M be an R-module. Then the 

following statements are equivalent: 

(1) M is a min-CS module. 

(2) Every module is M-mc-injective. 

(3) Every minimal closed submodule 

of M is M-mc-injective. 

Proof:  

(1)  (2) Let M1 be an R-module and 

let K ≤ M, such that K is a minimal 

closed of M and let : K  M1. To 

extend  to : M  M1. 

Since K is a minimal closed submodule 

of M. 

Then there exists K' ≤ M such that K  

K' = M. 

Define : M  M1 by: 

( ) if = 0
+ ) =

0 otherwise.


 



x y
x y

 
Where x  K and y  K'. 

Hence  is the extension of . 

(2)  (3) It is clear. 

(3)  (1) It follows by lemma (1.18). 
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 الخلاصة:
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