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Abstract:

Our aim in this paper is to study the relationships between min-cs modules
and some other known generalizations of cs-modules such as ECS-modules, P-
extending modules and n-extending modules. Also we introduce and study the
relationships between direct sum of mic-cs modules and mc-injectivity.
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1- Introduction

Throughout this paper all rings R
are commutative with identity and all
R-modules are unitary. We write A <
M to indicate that A is a submodule of
M.

A submodule N< M is called
essential in M (denoted by N <, M) if
for each W < M, NnW=(0) implies
W=(0).[1, p.15]

A submodule N of M is called
closed if N has no proper essential
submodule extension in M; that is if
N <. W for some W < M, then N=W.
it is clear that M, (0) are closed
submodules.

An R-module M is called an
extending module (or, CS-module) if
every submodule is an essential in a
direct summand of M. Equivalently,
every closed submodule is a direct
summand, [2, P.55]

A nonzero submodule N of M is
called a minimal closed submodule if
there is no nonzero closed submodule
W of M such that WcN. For example,

<2> and <3> are minimal closed
submodules in a Z-module Zs,
also <3> and <4 > are minimal closed

submodules in Z1, as a Z-module.
An R-module M is called min-CS
module if all minimal closed

submodules are direct summand of M
[3].

It is clear that every CS-module
IS min-CS module, but not conversely.

For more details about min-CS
module, see [4].

Recall that an  ec-closed
submodule N of an R-module M, is a
closed submodule which contains
essentially a cyclic submodule [5].

Lemma (1.1):

Let U be a minimal closed
submodule of an R-module M. Then U
is an ec-closed submodule.

Proof:

Since U is a minimal closed
submodule of M, then U is a uniform
closed submodule, by [4, lemma
(2.1.6), p.24] Thus for each x € U we
have <x > <, U.

Hence U is an ec-closed submodule.

Recall that an ECS R-module M
is a module such that every ec-closed
submodule is a direct summand [5].

Proposition (1.2):
Every ECS-R-module is min-CS.
Proof:

*Department of Mathematics-1bn-Al-Haitham College of Education for purescience - University of Baghdad

**]bn-Al-Haitham College of Education for purescience - University of Baghdad

235



Baghdad Science Journal

Vol.11(2)2014

Let M be an ECS-module, and let
U be a minimal closed submodule of
M.
So by lemma (1.1) U is an ec-closed
submodule.
Hence U is a direct summand of M,
since M is an ECS-module. Thus M is
a min-CS module.

Recall that, R-module M has
uniform dimension (briefly U-dim) if
M does not contain an infinite direct
sum of nonzero submodules.

Equivalently, M is contains an
essential submodule of the form U1l®
... ®Un for some uniform submodule
Ui c M.

If no such integer n exists, we
write U-dim = oo; that is M contains an
infinite direct sum of nonzero
submodules, see [6, proposition 6.4].

Another name wused for the
uniform  dimension is  Goldie
dimension (or Goldie rank), named
after its discover. We prefer the term
"uniform dimension" since the uniform
modules play a key rule in its
definition.

Also Goodearl, see [p.79, p.86],
gave the name finite dimensional
module for module with finite uniform
dimension.

It is easy to check that U-dim M =
0 if and only if M = 0 and U-dim M =
1if and only if M is a uniform module.

The following result is given in
[5, proposition 1.2, p.1249].

Proposition (1.3):

Let M be a module with finite
uniform dimension. Then M is a CS
module if and only if M is an ECS
module.

Hence we can give the following
result:
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Corollary (1.4):

Let M be an R-module with a
finite uniform dimension. Then the
following statements are equivalent:

M is a CS-module.

M is an ECS-module.

M is a min-CS module.

Proof:

(1) < (2) : It follows by proposition
(1.3).

(1) & (3) : It follows by [4, corollary
(2.2.19), p.57].

Corollary (1.5):

Let M be a Noetherian (or
Artinian)  R-module.  Then  the
following statements are equivalent:

M is a CS-module.

M is an ECS-module.
M is a min-CS module.
Proof:

It follows directly by corollary
(1.4), since every  Noetherian
(Artinian) module has a finite uniform
dimension, by [6, corollary 6.7, p.211].

Also, we have the following:

Corollary (1.6):

Let R be a Goldie ring. Then the
following statements are equivalent:
R is a min-CS ring.
R is an ECS-ring.
R is a CS-ring.
Proof:

Since a Goldie ring R has a finite
uniform dimension.
Hence the result follows directely by
corollary (1.4).

Example (1.7):

Let M = Q @ Zp as a Z-module,
where p is any prime integer.
M is not CS-module, by[4, examples
(2.2.25(1)), p.61].
Since M has a finite uniform
dimension, M is not min-CS and M is
not ECS, by corollary (1.4).
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Example (1.8): [5, p.1248]

Let R be a ring such that R :[EDE E’E]
, Risnot CS by [5,p.1248].

Since R has finite uniform dimension,
R is not min-CS and R is not ECS by
corollary (1.4).

Recall that, an R-module M is
called a P-extending module if every
cyclic submodule of M is essential in a
direct summand of M, [7].

Proposition (1.9):

Let M be a nonsingular module
with finite uniform dimension. Then
the  following  statements  are
equivalent:

(1)) MisCs.

(2) M is ECS.

(3) M is P-extending.

(4) M is min-CS.

Proof:

(1) < (2): 1t follows by [5, proposition
1.2(ji)].

(2) < (3): It follows by [5, proposition
1.2(0)].

(1) < (4): It follows by [4, corollary
(2.2.19), p.57].

Now, we have the following

Lemma (1.10):

Let M be an indecomposable R-
module with uniform submodule. If M
is ECS then M is uniform.

Proof:

Let M be an ECS-module. Then
by proposition (1.2), M is a min-CS
module.

Hence the result follows by [4,
corollary (2.1.12), p.27].

Proposition (1.11):

Let M be an indecomposable R-
module with uniform submodule. Then
the  following  statements  are
equivalent:
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(1)M is a min-CS module.

(2) M is a uniform module.

(3) M is a CS-module.

(4) M is an ECS-module.

Proof:

(1) < (2): It follows by [4, corollary
(2.1.12), p.27].

(2) < (3): Itisclear.

(3) © (1): Itisclear.

(4) < (2): It follows by proposition
(1.10).

Recall that an R-module M is
called n-extending if every closed
submodule A of M (with a U-dim(A) <
n) is a direct summand of M.

Or equivalently:

Every submodule A of M (with U
— dim(A) < n) is essential in a direct
summand of M, [7].

To prove the following result we
need the following lemma which
appeared in [8, proposition 4].
However we give a different proof.
Lemma (1.12):

Let M be an R-module. If M is 1-
extending module then M is n-

extending module, for each n eZ,.
Proof:

The proof is by induction.
Assume, for any submodule V of M
with dim(V) < n, V is a direct
summand. Let K be a closed
submodule of M with U — dim = n such
that n > 1. Since K has a finite uniform
dimension.

Then K has a uniform closed
submodule U, by [4, proposition
(1.62), p.17].

So dim(U) < dim(K) = n, by [1,
proposition 3.18, p.86], [6, proof of
proposition .4, p.211].

But U is closed in K and K is closed in
M. So we get U is closed in M, by [1,
proposition (1.5), p18].

Then by induction, U is a direct
summand of M; that is M = U @ U’ for
some U'<M.
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Hence K=K n (U ® U') and U < K.
Thus K = U & (K n U") by modular
law.
This implies K mn U' is closed in K.
But K has a finite uniform dimension.
Hence dim(K n U") < dim(K) = n, by
[6, theorem 6.37, p.219], [2, 5-10,
p.41].
Since K n U'is closed in K and K is
closed in M, then K n U' is closed in
M, by [1, proposition (1.5), p18].
It follows that K m U' is a direct
summand of M, by induction.
Hence M = (K n U") @ W for some W
< M. Which implies that U' = U' n [(K
N U) @ W].
But K n U' < U', then by modular law
U'=(KnNU)®WnU.
On the other hand M = U @ U..
This implies that
M=U®[KnU)®Wn U

= [Ud(KnU)]®WnU)

=K® (WnU).
Thus K is a direct summand of M.

Now, we will prove that under the
class of finite uniform dimension each
of the following modules are
equivalent to a min-CS module: CS-
modules, 1-extending modules, and
ECS-modules.

Theorem (1.13):

Let M be a module with finite
uniform dimension. Then the following
statements are equivalent:

M is CS-module.

M is 1-extending module.

M is ECS-module.

M is min-CS module.

Proof:

1) < (3) < (4) : It follows by
corollary (1.4).

(1) = (2): Itis clear.

(2) = (1) Let M be a l-extending
module. To prove M is CS-module.

Let C be a closed submodule of M.
Since M has a finite uniform
dimension.
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Then C has a finite uniform dimension
by [6, theorem 6.37, p.219], [2, 5-10,
p.41].

But M is 1-extending module, then by
lemma (1.12), M is n-extending for

each ne N.
Hence C is a direct summand. Thus M
is a CS-module.

Now we introduce the following
definitions

Definition (1.14):

Let M; and M, be R-modules. M,
is called M,-mc-injective if for each
minimal closed submodule N of M,
and for each R-homomorphism map f:
N —— M; can be extended f "M,
e d M1

N——>M,
fo 0O f'
Ml
f'oi=N where i is the inclusion map.

Definition (1.15):

Let M; and M, be R-modules. M;
and M; are said to be mutually mc-
injective if My is M,-mc-injective and
M3 is M;-mc-injective.

To prove the next theorem, we
need the following lemma, compare
with [2, lemma 7.5, p.57].

Lemma (1.16):

Let M be an R-module such that
M = M; @ M,, where M; and M, are
submodules of M. Then M; is M,-mc-
injective if and only if for each
minimal closed submodule N of M
such that N n My = 0 there exists A <
M,N<Aand M=M; @ A.

Proof:

(=) Let N be a minimal closed
submodule of M such that N n My = 0.
Let ti: M—— My and mp: M—— M,
be the natural projection maps.
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Let g: m1IN and B: | N.

Since M; is Mjy-mc-injective, there
exists a homomorphism f: M; —— M;
such that f o B =g.

N—£>M,
Al O f
I\/Il

Let L = {f(m) + m such that m € M}.
This implies N <L and M =M; @ L.
To show this:
Letx e My L, thenXx € M; and X e
L. Then x —f (m) =0, m = 0; hence x =
f(m) =1(0) =0.
This implies that M; N L =0.
Now, to prove M =M1 @ L.
Let m € M, then m = m; + m;, such
that my € My and m; € M.
But m = (my — f(my)) + (f(my) + my) €
M, +L.
ThusM =M; @ L.
To prove N <L.

Letn e Nson=a+bforsomea e
M, and b e M,.

Since B(n) € M2, then f(B(n)) + B(n) e
L.

Hence g(n) + B(n) e L, sincefo f=g.
But g: 7 [N and B: w2/ N, we have

g(n) = g(@+b) =aand p(n) = pa +
b)= b; it follows that g(n) + B(n) = a +
b=n.

Thusn e L.

(<) Let S be a minimal closed
submodule of My, and let f: S—— M;.
To extend finto f "M, —— M.

Put H = {—f(s) + ssuch that s € S}.
Hence, there exists g0 S — H
defined by g(s) = — f(s) + s, and g is an
isomorphism.

Hence S is isomorphic to H. Hence H
is minimal closed in M.

But H is closed submodule in M, and
M closed in M, imply H is closed in
M, by [1, proposition (1.5), p18].
Suppose there exists K is closed in M
such that K < H.

Since H c My, K = M.
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But K < M and K is closed in M.
Thus K is closed in My, by [1, p.18].
Thus H = K since H is minimal closed
in M,.

Therefore K is a minimal closed in M.
We can show that H n My = 0; for this
letx e H N M.

Then x € Hand x € My, X € H implies
that x = —f(s) + s for some s € M..
Sox +f(s)=s € Min M, =0. Then
we gets=0and x =—f(s) =—f(0) = 0.
ThusH~M; =0.

By hypothesis, there exists A < M such
that H<Aand M=M; @ A.

Let ©: M; @ A—— M; be the natural
projection.

It follows that ker 7 = {m € M; n(m) =
0}.

Butm=m; +aforsomem; e M, a e
A.

Thus t(m) = n(m; +a) =m; = 0.

This implies ker T = A.

ow. o < . .
, g = M, —> My is a
homomorphism and for each s € S ¢
M.
g(s) = glf(s) + (= f(s) +s)]

= 9(f(s)) + 9(=1(s) * 5)
Since f(s) e Myand —f(s) +se H<A
= ker m.
Then g(f(s)) = (s), g(- f(s) +5)) = 0.
Thus g(s) = f(s). It follows that g o i =
f, where i is the inclusion mapping
from S to M.

S——M,
fo 0Og
I\/Il

T
Thusg = M2 js an extension of f.

In the following theorem, we give
a condition, under which the direct
summands of min-CS modules are
min-CS modules.

Compare the following result with
[2, proposition 7.10, p.59].
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Theorem (1.17):

Let M be an R-module such that
M= M; & My and M; and M, are
relatively-mc-injective. Then:

M; and M, are min-CS modules if and
only if M is a min-CS module.
Proof:

(=) It follows directly by [4,

Corollary (2.1.16), p.29].
(<) Let K be a minimal closed
submodule of M. Then by [4, lemma
(2.2.3), p46], K n My = 0 or
K" M;=0. Assume K~ M; =0, so
by lemma (1.16). There exists a
submodule A of M such that
M= M; & A and K < A. Hence

M =M, ® A Wwhich is equivalent to

1
A by second isomorphism theorem.
But (M/M;) equivalent to M,. Thus M,
equivalent to A.
On the other hand, M, is a min-CS
module, hence A is a min-CS module,
by remarks and [4, examples (2.1.3
(10)), p.22].
But K is a minimal closed of M and K
c A, implies K is a minimal closed of
A.
Hence K is a direct summand of A.
Thus A=K ® W, for some W < A.
Thus M = M; @ (K ® W) = K @ (M,
@ W).
Thus K is a direct summand of M.
Hence M is a min-CS module.

To give our next result, we prove
the following lemma:

Lemma (1.18):

Let M be an R-module, and K is a
minimal closed submodule of M. If K
is M-mc-injective, then K is a direct
summand of M.

Proof:

Let i :
map.

Since K is M-mc-injective, then i can
be extended to 6 : M—— K.

K —— K be the identity
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Thus M = K @ ker 6, as we can see
below.

Let x € M, then 6(x) € K and x —
0(x) eker 0 because 6( x — 6(x))=0(x) —
0(x)=0

But x =0(x) + (x — 6(x)) € K + ker 6.
Now, let X € K m ker 6. Then x € K
and x € ker 6 and 6(x) = 0.

But 6(x) = x, since 6 is the extension of
i on K.

Thus x =0 and K m ker 6 = 0.

So that M = K @ ker 0.

Thus K is a direct summand of M.

Proposition (1.19):

Let M be an R-module. Then the
following statements are equivalent:
(1) M is a min-CS module.

(2) Every module is M-mc-injective.
(3) Every minimal closed submodule
of M is M-mc-injective.

Proof:

(1) = (2) Let M; be an R-module and
let K < M, such that K is a minimal
closed of M and let a: K—— Mj. To
extend a to B: M—— My,

Since K is a minimal closed submodule
of M.

Then there exists K' <M such that K @
K'=M.

Define B: M—— M by:

B(x +y):{ot(X) if y=0

0 otherwise.
Where x e Kandy e K.

Hence B is the extension of a.

(2) = (3) Itis clear.

(3) = (2) It follows by lemma (1.18).
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