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Abstract: 
        A (k,n)-arc is a set of k points of PG(2,q) for some  n, but not n + 1 of them, are 

collinear. 

        A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. 

        In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by 

geometric method, with the related blocking sets and projective codes. 
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1- Introduction:  

        Let PG(2,q) be the projective 

plane over Galois field GF(q). The 

points of PG(2,q) are the non-zero 

vectors of the vector space V(3,q) with 

the rule that X(x1,x2,x3) and                   

Y(x1,x2,x3) are the same point, 

where   GF(q)\{0}. 

Similarly, x[x1,x2,x3] and 

y[(x1,x2,x3] are the same line, where 

  GF(q)\{0}. 

        The point X(x1,x2,x3) is on the line 

Y[y1,y2,y3] if and only if  x1 y1 + x2 y2 + 

x3 y3 = 0. 

        In PG(2,q), there are q
2
 + q + 1 

points and q
2
 + q + 1 lines, every line 

contains exactly           q + 1 points and 

every point is on exactly q + 1 lines. 

 

Definition 1.1:[1] 

        A (k,n)-arc K is in PG(2,q) is a set 

of k points such that some lines of the 

plane meet K in  n  points but no line 

meets K in more than  n  points, where  

n  2. 

 

Definition 1.2:[2] 

        A (k,n)-arc is  complete if it is not 

contained in a (k+1,n)-arc. The 

maximum number of points that can a 

(k,2)-arc can have is m(2,q) and this arc 

is an oval. 

 

Theorem 1.3:[3] 

        In PG(2,q), 

q 1 for q odd
m(2,q)

q 2 for q even


 


 

 

Definition 1.4:[1] 

        A line ℓ in PG(2,q) is an i-secant 

of a (k,n)-arc K if ℓK = i. 

 

Definition 1.5:[1] 

        A variety V(F) of PG(2,q) is a 

subset of PG(2,q) such that 

V(F) = {P(A)  PG(2,q)  F(A) = 0}. 

 

Definition 1.6:[1] 

        Let Q(2,q) be the set quadrics in 

PG(2,q), that is the varieties V(F), 

where: 

2 2 2

11 1 22 2 33 3 12 1 2 13 1 3 23 2 3
F a x a x a x a x x a x x a x x     

                                                                          

…(1) 

If V(F) is non singular, then the quadric 

is a conic, that is, if  
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Is non singular, then the quadric (1) is a 

conic. 

 

Theorem 1.8:[3] 

        In PG(2,q), with q odd, every oval 

is a conic. 

 

Definition 1.9:[3] 

        A point  N  which is not on a 

(k,n)-arc has index i  if there exactly 

i(n-secants) of the arc through  N, the 

number of the points  N  of index  i  is 

denoted by Ni. 

 

Remark 1.10:[3] 

        The (k,n)-arc is complete if and 

only if  N0 = 0. Thus the arc is complete 

if and only if every point of PG(2,q) not 

on the arc lies on some n-secant of the 

arc. 

 

Definition 1.11:[4] 

        An (b,t)-blocking set B in PG(2,q) 

is a set of  b  points such that every line 

of PG(2,q) intersects B in at least  t  

points, and there is a line intersecting  

B  in exactly  t  points. 

        If  B  contains a line, it is called 

trivial, thus  B  is a subset of PG(2,q) 

which meets every line but contains no 

line completely; that is  t  B  ℓ q  

for every line ℓ in PG(2,q). We may 

note that a blocking set is merely a 

(k,n)-arc with  n  q and no 0-secants. 

A blocking set B is minimal if B\{p} is 

not blocking set for every  p  B. 

 

1.12 The Relation Between the 

Blocking (b,t)-set and the (k,n)-arc: 

[4] 

        The (k,n)-arcs and the (b,t)-

blocking sets are each complement to 

the other in the projective plane 

PG(2,q), that is, n + t = q + 1 and k + b 

= q
2
 + q + 1. Thus the complement of 

the (b,t)-blocking set is the set of points 

that intersects every line in at most  n  

points which represents the (k,n)-arc. 

Also finding minimal (b,t)-blocking set 

is equivalent to finding maximal (k,n)-

arc in PG(2,q). 

 

Definition 1.13:[3] 

        In PG(2,q), let B contains a line ℓ 

minus a point P plus a set of q points 

one on each of the q lines through P 

other than ℓ but not all collinear; then B 

is minimal (2q,1)-blocking set. 

Blocking sets of this kind are called 

rédéi-type studied by [Bruen, A.A. and 

Thas, J.A. (1977)] and in [Blockhuis, 

A.A. and Brouwer, E. and S.Z. “onyi, 

T. (1995)]. 

 

Definition 1.14:[5,6] 

        Let V(n,q) denote the vector space 

of all ordered n-tuples over GF(q). A 

linear code C over GF(q) of length  n  

and dimension  k  is a k-dimensional 

subspace of V(n,q). The vectors of C 

are called codewords. The Hamming 

distance between two codewords is 

defined to be the number of coordinate 

places in which they differ. The 

minimum distance of a code is the 

smallest distances between distinct 

codewords. Such a code is called an 

[n,k,d]q code if its minimum hamming 

distance is  d. 

        There exists a relationship 

between complete (n,r)-arcs in PG(2,q) 

and [n,3,d]q codes, given by the next 

theorem. 

 

Theorem 1.15:[5] 

        There exists a projective [n,3,d]q 

code if and only if there exists an (n,n – 

d)-arc in PG(2,q). 

 

2- The Projective Plane PG(2,5)  

        In this paper we consider the case 

q = 5 and the elements of GF(5) are 

denoted by 0,1,2,3,4. 
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        A projective plane  = PG(2,5) 

over GF(5) consists of 31 points, 31 

lines, each line contains 6 points and 

through each point there are 6 lines. 

        Let Pi and Li  be the points and 

lines of PG(2,5), respectively. Let i 

stands for the point Pi, i = 1,2,…, 31. 

The points and the lines of PG(2,5) are 

given in the table (1). 

 

Table (1)Points and Lines of PG(2,5) 

i  Pi     Li   

1 1 0 0 2 7 12 17 22 27 

2 0 1 0 1 7 8 9 10 11 

3 1 1 0 6 7 16 20 24 28 

4 2 1 0 4 7 14 21 23 30 

5 3 1 0 5 7 15 18 26 29 

6 4 1 0 3 7 13 19 25 31 

7 0 0 1 1 2 3 4 5 6 

8 1 0 1 2 11 16 21 26 31 

9 2 0 1 2 9 14 19 24 29 

10 3 0 1 2 10 15 20 25 30 

11 4 0 1 2 8 13 18 23 28 

12 0 1 1 1 27 28 29 30 31 

13 1 1 1 6 11 15 19 23 27 

14 2 1 1 4 9 16 18 25 27 

15 3 1 1 5 10 13 21 24 27 

16 4 1 1 3 8 14 20 26 27 

17 0 2 1 1 17 18 19 20 21 

18 1 2 1 5 11 14 17 25 28 

19 2 2 1 6 9 13 17 26 30 

20 3 2 1 3 10 16 17 23 29 

21 4 2 1 4 8 15 17 24 31 

22 0 3 1 1 22 23 24 25 26 

23 1 3 1 4 11 13 20 22 29 

24 2 3 1 3 9 15 21 22 28 

25 3 3 1 6 10 14 18 22 31 

26 4 3 1 5 8 16 19 22 30 

27 0 4 1 1 12 13 14 15 16 

28 1 4 1 3 11 12 18 24 30 

29 2 4 1 5 9 12 20 23 31 

30 3 4 1 4 10 12 19 26 28 

31 4 4 1 6 8 12 21 25 29 

 

2- The Constructions of (k,n)-

arcs in PG(2,5) :[1] 
 

        Let A ={1,2,7,13} be the set of 

reference and unit points in  = 

PG(2,5), where 1 (1,0,0), 2 (0,1,0), 7 

(0,0,1), 13 (1,1,1). 

        A is a  (4,2)-arc since no three 

points of A are collinear, the points of 

A are the vertices of a quadrangle 

whose sides are the lines: 

[1,1] = {1,2,3,4,5,6} 

[1,7] = {1,7,8,9,10,11} 

[1,13] = {1,12,13,14,15,16} 

[2,7] = {2,7,12,17,22,27} 

[2,13] = {2,8,13,18,23,28} 

[7,13] = {3,7,13,19,25,31} 

The diagonal points of A are the points 

{3,8,12} where [1,2]  [7,13] = 3, [1,7] 

 [2,13] = 8, [1,13]  [2,7] = 12 which 

are the intersections of the pairs of the 

opposite sides. Then there are 25 points 

on the sides of the quadrangle four of 

them are the points of the arc A and 

three of them are the diagonal points of 

A. So there are six points not on the 

sides of the quadrangle which are the 

points of index zero for A, these points 

are: 

20,21,24,26,29,30 

Hence A is incomplete (6,2)-arc. 

 

2.1 The Conics in PG(2,5) through 

the Reference and Unit Points 

 

        The general equation of the conic 

is: 
2 2 2

11 1 22 2 33 3 12 1 2 13 1 3 23 2 3
0a x a x a x a x x a x x a x x     

                                                                          

…(1) 
By substituting the points of A in (1), 

we get; 

a12 + a13 + a23 = 0  and  a11 = a22 = a33 

= 0, so (1) becomes: 

12 1 2 13 1 3 23 2 3
0a x x a x x a x x       …(2) 

If  a12 = 0, then the conic is 

degenerated, therefore  a12  0, 

similarly, a13  0  and  a23  0. 

Dividing equation (2) by a12, we get: 

1 2 1 3 2 3
0x x x x x x       …(3) 

where  13 23

12 12

,
a a

a a
    , then   = – (1 + 

) since 1 +  +  = 0 (mod 5). 

Then (3) can be written as: 

  x1x2+αx1x3−(1+α)x2x3=0            …(4) 

where    0 and   4, for if  = 0  or  

 = 4 we get a degenerated conic, that 

is,  = 1,2,3. 
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2.2 The Equations and the Points of 

the Conics in PG(2,5) through the 

Reference and Unit Points [1] 
 

    For any value of , there is a unique 

conic contains  6  points, 4 of them are 

the reference and unit points 

 

1. If   = 1, then the equation of the 

conic C1 is 

1 2 1 3 2 3
0x x x x x x    

The points of C1 are : 1,2,7,13,20,26. 

2. If   = 2, then the equation of the 

conic C2 is 

1 2 1 3 2 3
2 0x x x x x x     

The points of C2 are : 1,2,7,13,21,29. 

3. If   = 3, then the equation of the 

conic C3 is 

1 2 1 3 2 3
0x x x x x x    

The points of C3 are : 1,2,7,13,24,30. 
Thus we found five conics two of them 

are degenerated and the remaining three 

conics C1, C3, C3 are non-degenerated, 

which are complete (k,2)-arcs. 

 

2.3 The Construction of Complete 

(kn,n)-arcs in PG(2,5) and the 

Related Blocking Sets 

      and Projective Codes 
 

        The complete (k,n)-arcs in PG(2,5) 

can be constructed by eliminating the 

conics given above from PG(2,5) as 

follows: 

 

2.3.1 The Construction of Complete 

(k5,5)-arc 
 

        Let  = PG(2,5), we take a conic, 

say C1, where C1 = {1,2,7,13,20,26}. 

Let K =  – C1 = 

{3,4,5,6,8,9,10,11,12,14,15,16,17,18,19

,21,22,23,24,25,27,28,29,30,31} 

The construction of complete (k5,5)-arc 

must satisfies the following: 

(1) Any line of  must intersects the arc 

in at most 5 points. 

(2) Every point not in the arc is on at 

least one 5-secant of the arc. 

We eliminate five points from K which 

are: 6,12,17,22,25 to satisfy (1). The 

point 20 is of index zero we  add  it  to 

K to satisfy (2), then  

K5=K  {20}\{6,12,17,22,25}= 

{3,4,5,8,9,10,11,14,15,16,18,19,20,21,2

3,24,27,28,29,30,31}. Then K5 is a 

complete (21,5)-arc as shown in table 

(2).  

Let 1 =  – K5 = 

{1,2,6,7,12,13,17,22,25,26}. 1 is 

(10,1)-blocking set of size (2q) which is 

of Rédei-type(figure-1-) contains the 

line L1\{27} = {2,7,12,17,22} and one 

point on each line through the point 27 

other than L1, which are non-collinear 

points: 1,6,13,25,26. Note that each line 

in  intersects 1 in at least one point as 

shown in table (2). By theorem 1.15, 

there exists a projective [21,3,16] code 

which is equivalent to the complete 

(21,5)-arc K5. 

 

 
Fig.-1- 
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Table (2) 

i K5  Li 1  Li 

K5 

 

Li 

1 

 

Li 

1 {27} {2,7,12,17,22} 1 5 

2 {8,9,10,11} {1,7} 4 2 

3 {16,24,28,20} {6,7} 4 2 

4 {4,14,21,23,30} {7} 5 1 

5 {5,15,18,29} {7,26} 4 2 

6 {3,19,31} {7,13,25} 3 3 

7 {3,4,5} {1,2,6} 3 3 

8 {11,16,21,31} {2,26} 4 2 

9 {9,14,19,24,29} {2} 5 1 

10 {10,15,20,30} {2,25} 4 2 

11 {8,18,23,28} {2,13} 4 2 

12 {27,28,29,30,31} {1} 5 1 

13 {11,15,19,23,27} {6} 5 1 

14 {4,9,16,18,27} {25} 5 1 

15 {5,10,21,24,27} {13} 5 1 

16 {3,8,14,20,27} {26} 5 1 

17 {18,19,20,21} {1,17} 4 2 

18 {5,11,14,28} {17,25} 4 2 

19 {9,30} {6,13,17,26} 2 4 

20 {3,10,16,23,29} {17} 5 1 

21 {4,8,15,24,31} {17} 5 1 

22 {23,24} [1,22,25,26} 2 4 

23 {4,11,20,29} {13,22} 4 2 

24 {3,9,15,21,28} {22} 5 1 

25 {10,14,18,31} {6,22} 4 2 

26 {5,8,16,19,30} {22} 5 1 

27 {14,15,16} {1,12,13} 3 3 

28 {3,11,18,24,30} {12} 5 1 

29 {5,9,23,20,31} {12} 5 1 

30 {4,10,19,28} {12,26} 4 2 

31 {8,21,29} {6,12,25} 3 3 

 

2.3.2 The Construction of Complete 

(k4,4)-arc 

        We take the union of two conics, 

say C1 and C2, where C1 = 

{1,2,7,13,20,26} and               C2 = 

{1,2,7,13,21,29}. 

Let K =  – (C1  C2) 

          = 

{3,4,5,6,8,9,10,11,12,14,15,16,17,18,19

,22,23,24,25,27,28, 30,31} 

The construction must satisfies the 

following: 

(1) Any line of  intersects K in at most 

4 points. 

(2) Any point not in K is on at least one 

4-secant. 

We eliminate seven points of K which 

are: 11,12,15,16,17,18,22 to satisfy (1). 

There are no points of index zero for K 

then  

K4=K \{11,12,15,16,17,18,22} = 

{3,4,5,6,8,9,10,14,19,23,24,25,27,28,30

,31}. Then K4 is a complete (16,4)-arc 

as shown in table (3).  

By theorem 1.15, there exists a 

projective [16,3,12] code which is 

equivalent to the complete (16,4)-arc. 

Let 2 =  – K4 

={1,2,7,11,12,13,15,16,17,18,20,21,22,

26,29} is a (15,2)-blocking set of size 

(3q), note that each line in  intersects 

2 in at least two points of  as shown 

in table (3).  

 

Table (3) 

i K4  Li 2  Li 

K4 

 

Li 

2 

 

Li 

1 {27} {2,7,12,17,22} 1 5 

2 {8,9,10} {1,7,11} 3 3 

3 {6,24,28} {7,16,20} 3 3 

4 {4,14,23,30} {7,21} 4 2 

5 {5} {7,15,18,26,29} 1 5 

6 {3,19,25,31} {7,13} 4 2 

7 {3,4,5,6} {1,2} 4 2 

8 {31} {2,11,16,21,26} 1 5 

9 {9,14,19,24} {2,29} 4 2 

10 {10,25,30} {2,15,20} 3 3 

11 {8,23,28} {2,13,18} 3 3 

12 {27,28,30,31} {1,29} 4 2 

13 {6,19,23,27} {11,15} 4 2 

14 {4,9,25,27} {16,18} 4 2 

15 {5,10,24,27} {13,21} 4 2 

16 {3,8,14,27} {20,26} 4 2 

17 {19} {1,17,18,20,21} 1 5 

18 {5,14,25,28} {11,17} 4 2 

19 {6,9,30} {13,17,26} 3 3 

20 {3,10,23} {16,17,29} 3 3 

21 {4,8,24,31} {15,17} 4 2 

22 {23,24,25} [1,22,26} 3 3 

23 {4} {11,13,20,22,29} 2 4 

24 {3,9,28} {15,21,22} 3 3 

25 {6,10,14,31} {18,22} 4 2 

26 {5,8,19,30} {16,22} 4 2 

27 {14} {1,12,13,15,16} 1 5 

28 {3,24,30} {11,12,18} 3 3 

29 {5,9,23,31} {12,20} 4 2 

30 {4,10,19,28} {12,26} 4 2 

31 {6,8,25} {12,21,29} 3 3 

 

2.3.3 The Construction of Complete 

(k3,3)-arc 

        We take the union of three conics, 

say C1 C2 and C3, where C1 = 

{1,2,7,13,20,26},               C2 = 
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{1,2,7,13,21,29} and C3 = 

{1,2,7,13,24,30} 

Let K =  – (C1  C2  C3)  

          = 

{3,4,5,6,8,9,10,11,12,14,15,16,17,18,19

,22,23,25,27,28,31} 

The construction must satisfies the 

following: 

(1) Any line of  intersects K in at most 

three points. 

(2) Any point not in K is on at least one 

3-secant of K. 

We eliminate 10 points of K which are: 

4,6,11,16,22,23,25,27,28,31 to satisfy 

(1). There are no points of index zero 

for K then  

K3 = K \ {4,6,11,16,22,23,25,27,28,31} 

={3,5,8,9,10,12,14,15,17,18,19} is a 

complete                (11,3)-arc as shown 

in table (4).  

By theorem 1.15, there exists a 

projective [11,3,8] code which is 

equivalent to the complete (11,3)-arc 

K3. 

Let 3 =  – K3 = 

{1,2,4,6,7,11,13,16,20,21,22,23,24,25,2

6,27,28,29,30,31}, then 3 is a (20,3)-

blocking set of size (4q)which is a 

trivial since 3 contains some lines of  

completely as shown in table (4), note 

that each line intersects 3 in at least 

three points of .  

 

 

 

 

 

 

 

 

 

 

 

 

Table (4) 

i K3  Li 3  Li 

K3 

 

Li 

3 

 

Li 

1 {12,17} {2,7,22,27} 2 4 

2 {8,9,10} {1,7,11} 3 3 

3  {6,7,16,20,24,28} 0 6 

4 {14} {4,7,21,23,30} 1 5 

5 {5,15,18} {7,26,29} 3 3 

6 {3,19} {7,13,25,31} 2 4 

7 {3,5} {1,2,4,6} 2 4 

8  {2,11,16,21,26,31} 0 6 

9 {9,14,19} {2,24,29} 3 3 

10 {10,15} {2,20,25,30} 2 4 

11 {8,18} {2,13,23,28} 2 4 

12  {1,27,28,29,30,31} 0 6 

13 {15,19} {6,11,23,27} 2 4 

14 {9,18} {4,16,25,27} 2 4 

15 {5,10} {13,21,24,27} 2 4 

16 {3,8,14} {20,26,27} 3 3 

17 {17,18,19} {1,20,21} 3 3 

18 {5,14,17} {11,25,28} 3 3 

19 {9,17} {6,13,26,30} 2 6 

20 {3,10,17} {16,23,29} 3 3 

21 {8,15,17} {4,24,31} 3 3 

22  [1,22,23,24,25,26} 0 6 

23  {4,11,13,20,22,29} 0 6 

24 {3,9,15} {21,22,28} 3 3 

25 {10,14,18} {6,22,31} 3 3 

26 {5,8,19} {16,22,30} 3 3 

27 {12,14,15} {1,13,16} 3 3 

28 {3,12,18} {11,24,30} 3 3 

29 {5,9,12} {20,23,31} 3 3 

30 {10,12,19} {4,26,28} 3 3 

31 {8,12} {6,21,25,29} 2 4 

 

2.3.4 The Construction of Complete 

(k2,2)-arc 

        The construction must satisfies the 

following: 

(1) The complete arc intersects every 

line in  in at most 2 points. 

(2) every point not in the arc is on at 

least one 2-secant of the arc. 

We eliminate 5 points from K3 to 

satisfy (1), which are: 8,9,10,14,18. 

There are no points of index zero for K3 

then K2=K3\ {8,9,10,14,18}= 

{3,5,12,15,17,19} K2 is a complete 

(6,2)-arc as shown in table (5).  

By theorem 1.15, there exists a 

projective [6,3,4] code which is 

equivalent to the complete (6,2)-arc. 

Let 4 =  – K2 = 

{1,2,4,6,7,8,9,10,11,13,14,16,18,20,21,

…,31} 4 is a (25,4)-blocking set of 
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size (5q) which is a trivial since 4 

contains some lines completely as 

shown in table (5), note that each line 

intersects 4 in at least four points.  
 

Table (5) 

i K2  Li 4  Li 
K2  

Li 

4  

Li 

1 {12,17} {2,7,22,27} 2 4 

2  {1,7,8,9,10,11} 0 6 

3  {6,7,16,20,24,28} 0 6 

4  {4,7,14,21,23,30} 0 6 

5 {5,15} {7,18,26,29} 2 4 

6 {3,19} {7,13,25,31} 2 4 

7 {3,5} {1,2,4,6} 2 4 

8  {2,11,16,21,26,31} 0 6 

9 {19} {2,9,14,24,29} 1 5 

10 {15} {2,10,20,25,30} 1 5 

11  {2,8,13,18,23,28} 0 6 

12  {1,27,28,29,30,31} 0 6 

13 {15,19} {6,11,23,27} 2 4 

14  {4,9,16,18,25,27} 0 6 

15 {5} {10,13,21,24,27} 1 5 

16 {3} {8,14,20,26,27} 1 5 

17 {17,19} {1,18,20,21} 2 4 

18 {5,17} {11,14,25,28} 2 4 

19 {17} {6,9,13,26,30} 1 5 

20 {3,17} {10,16,23,29} 2 4 

21 {15,17} {4,8,24,31} 2 4 

22  [1,22,23,24,25,26} 0 6 

23  {4,11,13,20,22,29} 0 6 

24 {3,15} {9,21,22,28} 2 4 

25  {6,10,14,18,22,31} 0 6 

26 {5,19} {8,16,22,30} 2 4 

27 {12,15} {1,13,14,16} 2 4 

28 {3,12} {11,18,24,30} 2 4 

29 {5,12} {9,20,23,31} 2 4 

30 {12,19} {4,10,26,28} 2 4 

31 {12} {6,8,21,25,29} 1 5 

References 
1. Kadhum, S.J., (2001), Construction 

of (k,n)-arcs from (k,m)-arcs in PG(2,p) 

for 2  m < n, M.Sc. Thesis, University 

of Baghdad, Iraq. 

2. Hirschfeld, J. W. P., (2001), 

Complete arcs Discrete Math., North 

Holland Mathematics Studies 123, 

North-Holland, Amesterdam, 243-250. 

3. Hirschfeld, J. W. P., (1979), 

Projective Geometries Over Finite 

Fields, Second Edition, Oxford 

University Press, Oxford. 

4. Hirschfeld, J. W. P. and Storme, L., 

(1998), The Packing Problem in 

Statistics, Coding Theory and Finite 

Projective Spaces, J.Statistical Planning 

and Inference, 72, pp.355-380. 

5. R.Hill, (1992), Optimal Linear 

Codes in: C.Mitichell (Ed.) 

Crytography and Coding, Oxford 

University Press:Oxford, pp.75-104. 

6. Rumen  Daskalov, (2008), Discrete  

Mathematics  308 (1341-1345) , 

AGeometric Construction  of (38,2)-

Blocking Set in PG(2,13) and the 

Related [14,5,3,133]13  code,Technical 

University of Gabrovo, Bulgaria. 

 

 

 

(kn,n)بناء الاقواس  في المستوي إلاسقاطي   PG(2,5) بطريقة هندسية مع  

 المجموعات القالبية والشفرات الاسقاطية المرتبطة بها

 
 *امنيات عدنان حسن    *آمال شهاب المختار

 

 كلية التربية للعلوم الصرفة/ابن الهيثم ، جامعة بغداد، قسم الرياضيات *

 

 

 :الخلاصة
منها على  n + 1ولا توجد  nبحيث ان توجد  PG(2,q)من النقاط في  kهو مجموعة من  (k,n) القوس        

 .(k + 1,n)-كاملا ً اذا لم يكن محتوى في قوس (k,n) –استقامة واحدة، فيكون القوس 

 PG(2,5)في المستوي الاسقاطي  n = 2,3,4,5كاملة حيث  (kn,n) –في هذا البحث نقوم ببناء اقواس         

 بطريقة هندسية، مع المجموعات القالبية والشفرات الاسقاطية المرتبطة بها.

 


