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Abstract:

The expanding use of multi-processor supercomputers has made a significant impact
on the speed and size of many problems. The adaptation of standard Message Passing
Interface protocol (MPI) has enabled programmers to write portable and efficient
codes across a wide variety of parallel architectures. Sorting is one of the most
common operations performed by a computer. Because sorted data are easier to
manipulate than randomly ordered data, many algorithms require sorted data. Sorting
is of additional importance to parallel computing because of its close relation to the
task of routing data among processes, which is an essential part of many parallel
algorithms.

In this paper, sequential sorting algorithms, the parallel implementation of many
sorting methods in a variety of ways using MPICH.NT.1.2.3 library under C++
programming language and comparisons between the parallel and sequential
implementations are presented. Then, these methods are used in the image processing
field. It have been built a median filter based on these submitted algorithms. As the
parallel platform is unavailable, the time is computed in terms of a number of
computations steps and communications steps.
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1. Introduction

A parallel computer is a set of Blue Gene/Q packaging hierarchy  socumustuss
processors that are able to work b il
cooperatively to solve a computational pri- ooy

problem. This definition is broad S0 :

enough to include parallel s \ o
supercomputers that have hundreds or ‘\) S

thousands of processors (fig.1) [1],
networks of workstations, multiple- :
processor workstations, and embedded 410 Cas B Rack 7.95em

5b. 10 Drawer
systems.  The  performance  of g el e
MICroprocessors, memories  and g =)
networks has been improved over 25 to

40 years [2]. Parallel computing has .
been considered to be "the high end of
computing”, and has been used to
model difficult problems

Fig.1 One example of Parallel System,
IBM Blue Gene / Q Super Computer

[1]
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in many areas of science and
engineering such as: Atmosphere,
Earth, Environment, Physics-applied,
nuclear, particle, condensed matter,
Bioscience, Biotechnology, Genetics,

Chemistry, Molecular  Sciences,
Geology, Seismology, Mechanical
Engineering-from  prosthetics  to
spacecraft, Electrical Engineering,
Circuit  Design,  Microelectronics,
Computer  Science,  Mathematics,

Image Processing and so on. In this
paper, the parallelism is used in sorting
algorithms and as an application in
median filter.

2. Related Work

There exist large bodies of research on
parallelizing the sorting algorithms
such as [3... 7]. In [3] the dual core
Window-based platform was used to
study the effect of parallel processes
number and also the number of cores
on the performance of some sorting
algorithms. The authors [4] presented a
2D median filter. It had
been implemented in three parallel
programming models. The authors [5]
used field-programmable gate arrays in
sorting networks. In [6] the histogram
sort, sample sort and radix sort were
implemented using two modern
supercomputers. In [7] a novel merge-
based external sorting algorithm for
one or more CUDA- enabled GPUs
had been presented.

3. Bitonic Sort

A bitonic sorting network sorts n
elements in (leg® n) time [8]. A
bitonic sequence has two tones
increasing and decreasing, or vice
versa. Any cyclic rotation of such
networks is also considered bitonic.
<1; 2; 4; 7; 6; 0> is a bitonic sequence,

because it first increases and then
decreases. To sort any random
sequence using bitonic sort, the

sequence first is converted to a bitonic
sequence. The functions sort_up and
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sort_down sort the sequences into an
increasing and decreasing order
respectively using any type of sorting
as shown in algorithm1.

Algorithm 1: Bitonic Sort

Bitonic Sort // Sort the sequence A

1. begin
2. i=0
/I first A is converted to length of 2
3. no. of element= length (A)
4. while (no. of element > 2%)
5 i++
6. for(x=0;x<2' --no. of elemen; x + +)
7. Alno. of element + x] =0
8.y=0
9. x=length (A) /4
10. while (x =1)

{
11. for(i=x; i<0; i--)

{
12. sort_ up ( A, index, index +
45;:1" —1)
13.  sort_down(

H}-

Aindex+ 20—, index + 4 = 2% 1)
14. index =index + 4 = 2¥

}
15. y++
16. x=x/2

}

17.x=1

18.n=length (A)
19. while (n/2=1)

{
20. index=0
21, for(i=0,i<x,i++)
22. for(j=0,j<x,j++)
23.  if Alindex +j]>A[index+n/2+
il
{
24, temp = A[ index + j]
25. Alindex +j]=ATindex +n/2 +
il
26. Alindex+n/2+j]=temp
}
27. index =index +n
28. Xx=x%*2
29. n=n/2

30. end Bitonic Sort
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4. Mapping Bitonic Sort to a
Hypercube

In the implementation of the parallel
program a number of processes
(process is a set of executable
instructions (program)) are created.
More than one process can be executed
on a single processor. An important
feature for the MPI is the possibility of
using MPI on virtually any computer,
even a serial one. Message passing
systems generally associate only one
process per processor. The basis of the
MPI parallel model is that each
processor has its own private memory
and private arrays. This is true for both
shared and distributed memory
architectures. It is possible to test the
parallel algorithms which are presented
in this work on a single processor
using MPI. It is possible to execute
these programs using different number
of processors. Algorithm 2 shows the
implementation of bitonic sort using
hypercube interconnection  system.
Figure (2) illustrates the
communication during the last stage of
the bitonic sort algorithm. More
information on bitonic sort can be
found in [9].

Algorithm 2: Parallel formulation of
bitonic sort on a hypercube with n = 2d
processes. In this algorithm, label is
the process's label and d is the
dimension of the hypercube.
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Parallel Bitonic_ Sort(sequence)

1.PARALLEL BITONIC_SORT(label, d)
/I sort a sequence on process with id =

label in a d-dimensional hypercube

2. begin

3.Get

Communicator

the information about the

4.Compute the number of processes and
determine the process label

5.Set up the Topology

6. Get process label in the new topology
7.Get the coordinates

8. Save row, column,.... coordinate

9.fori=0;i<d;i++

10. forj=i;j>0; j--

11. if (i + 1)st bit of label= jth bit of label
then

12. comp_exchange max(j);

13. else comp_exchange min(j);

15. end Parallel Bitonic_Sort

During each step of the algorithm,
every process performs a compare-
exchange operation. The algorithm
performs a total steps of:

(1+logn) (logn) /2 1)
thus,
the parallel run time

is: T, =68(log*n) (2)

This parallel formulation of bitonic
sort is cost optimal with respect to the
sequential implementation of bitonic
sort (that is, the process-time product is

@)

but it is not cost-optimal [9] with
respect to an optimal comparison-
based sorting algorithm, which has a
serial time complexity of

f(nlog*n)

&(nlogn). 4)
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Step3 Stepd

Fig.2 Communication during the last
stage of bitonic sort. Each wire is
mapped to a hypercube process; each
connection represents a compare-
exchange between processes.

Mesh

There are several ways for mapping the
sequence onto the mesh processes
(Fig.3):

(a) row-major mapping,

(b) row-major snakelike mapping, and
(c) row-major shuffled mapping.

—O—0—)
O—O—0—)

Fig.3 2-D Mesh Processes (16 nodes).

For row-major shuffled mapping, the
parallel run time is:

T, = 6(log® n) + 0(/n) (5)

More information on this subject can
be found in [8]. This is not a cost-
optimal formulation, because the
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process-time product is:  8(n**=) but
the sequential complexity of sorting is
g (nlogn) (4)

5. A Block of Elements per

Process

In the parallel formulations of the
bitonic sort algorithm presented so far,
it was assumed that there were as many
processes as elements to be sorted. In
this part it is considered that the case in
which the number of elements to be
sorted is greater than the number of
processes.

Let p be the number of processes and n
be the number of elements to be sorted,
such that p < n. Each process is
assigned a block of n/p elements and
cooperates with the other processes to
sort them. One way to obtain a parallel
formulation is to think of each process
as consisting of n/p smaller processes.
In other words, imagine emulating n/p
processes by using a single process.
The run time of this formulation will
be greater by a factor of n/p because
each process is doing the work of n/p
processes.  This  virtual  process
approach leads to a poor parallel
implementation of bitonic sort for the
reason that for the case of a hypercube
with p processes. Its run time will be

(6)

which is not cost-optimal because the
process-time product is explained in
equation 3 as #(nlog®n). An alternate
way of dealing with blocks of elements
is to use the compare-split operation.
(n/p)-element blocks are being sorted
using compare-split operations. The
problem of sorting the p blocks is
identical to that of performing a bitonic
sort on the p blocks using compare-
split operations instead of compare-
exchange operations. Since the total
number of blocks is p, the bitonic sort
algorithm has a total of

6((nlog®n)/p)
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(1 +logp) (logp)/2 steps @)

Because = compare-split  operations
preserve the initial sorted order of the
elements in each block, at the end of
these steps the n elements will be
sorted. The main difference between
this formulation and the one that uses
virtual processes is that the n/p
elements assigned to each process are
initially sorted locally, using a fast
sequential sorting algorithm. This
initial local sort makes the new
formulation more efficient and cost-
optimal.

5.1 Hypercube

The block-based algorithm for a
hypercube with p processes is similar
to the one-element-per-process case,
but now there are p blocks of size n/p,
instead of p elements.

The parallel run time of this
formulation is:

locel sort comparisions

Tp =6( ZlogZ +  8( log?
P Htpfﬂzi;,) (;log"p)
+ Htfiagfp} (@)

Because the sequential complexity of
the best sorting algorithm is & (n log
n), the speedup and efficiency are as
follows:

¢ = E'l:nxlngn:- (9)

o[ (Z)108(2) }+8((Z)iog® s

E = 1
1-8((logp)/(logn))+8((logp)/ (logn))

(10)

5.2 Mesh The block-based mesh
formulation is also similar to the one-
element-per-process case. The parallel
run time of this formulation is:

local sort comparisions

Tp = ?(;Iag;} + H[;Eag-pj
+ g(%} (ll)

The efficiency and speedup as follows:

5= Binlogn) i (12)

o (2)10e(3) |+ (Shes™s J+o(n/ 23
(i o k. LW /

1

" 1=8(og’s) (ogn) + B(lg’s) (oze) + O ogn)
(13)

E

(13)

By comparing the communication
overhead of this mesh-based parallel
bitonic sort to the communication
overhead of the hypercube-based
formulation, it can be seen that it is
higher by a factor of

8(,/p /log®p) (14)

From the analysis for hypercube and
mesh, it can be seen that the parallel
formulations of bitonic sort are neither
very efficient nor very scalable. This is
because the sequential algorithm is
suboptimal. Good  speedups are
possible on a large number of
processes only if the number of
elements to be sorted is very large.

6. Quicksort

Quicksort is one of the most common
sorting algorithms for sequential
computers because of its simplicity,
low overhead and optimal average
complexity.

Algorithm 3 has an average complexity
of: & (n log n). (15)
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Algorithm 3: Quick Sort
QuickSort (A,q,r)

. begin

if (g>=r)end

. Partition (A, q, r +1, pivot)
. QuickSort (A, g, pivot -1)

. QuickSort ( A, pivot+1,r)
. end QuickSort

oUuhwWNR

Algorithm 4 describes the partition

algorithm. The operation of quicksort

is illustrated in Fig.4. The complexity

of partitioning a sequence of size k is
8(k). (16)

More information on quick sort can be

shown in [9].

kAIgorithm 4: Partition

Partition ( A)

1. Partition (A, left, right, pivot)
2. begin

3. pivot=A[ left]
LeftToRight = left +1

5. RightToLeft = right -1

6. notCrossed = true

7. while (notCrossed ) {

8

)

Eall

while ( A [LeftToRight ] < pivot

9. LeftToRight + +

10. while ( A [ RightToLeft ] >
pivot )

11. RightToLeft - -

12. If ( LeftToRight < =

RightToLeft ) {

13. temp = A[ RightToLeft ]

14. A [ RightToLeft ] = A [
LeftToRight ]

15. A [ LeftToRight ] = temp
16. LeftToRight + +
17. RightToLeft - -
}

18. Else notCrossed = false

}
19. A[left] = A[RightTolLeft]
20. end Partition Algorithm

w [lelifsfsfals]s]

o EEEEGLELD] @ -

o CEGELERG] O e
o [EEGELEEE

o [EELEER

Fig.4 Example of the quicksort

algorithm sorting a sequence of size n
=8.

7. Parallelizing Quicksort

There are different techniques to
parallelize the quicksort method. The
following sections describe several of
them.

7.1 Shared
Formulation
The implementation of this algorithm
is shown in Algorithm 5. Fig. 5 and
Fig.6 describe the operation of this
algorithm [9].

Address Space

Algorithm 5 Parallel

Algorithm

QuickSort

Parallel QuickSort (A)

1. ParallelQuickSort (A, g, 1)

/I Sort the sequence A/q...r] on a
number of processes
2.begin
3. Create a number of processes P

/I The formulation is a shared address
type
4. Partition the sequence A into blocks of
size n/p
5. block Ai assigns to process Pi
6. Master Process select a pivot element
7. Master Process broadcast pivot to all
the processes
8. Rearrange (Al, Si, Li, pivot)

I/ each process arrange its block into two
sub blocks  Si with elements smaller
than the pivot and Li with elements
greater than pivot
9. Store the Si block at the beginning of

297




Baghdad Science Journal

Vol.11(2)2014

A and the Li at the end of A

10. Master Process divide the processes

into two groups
11. If the process in the 1% group

ParallelQuickSort (S, left of S, right

of S)
12. If the process in the 2" group

ParallelQuickSort (L, left of L, right

of L)
13. end ParallelQuickSort

The overall complexity of the parallel
algorithm is:

local sort
—_—

6(>log>) +

array splits

TF=

6(Zlog p)+6 (log’p)

7.2 QuickSort on a Hypercube

This parallel quicksort algorithm takes
advantage of the topology of a p-
process hypercube connected parallel
computer. If n be the number of
elements to be sorted and p = 27 be the
number of processes in a d-
dimensional hypercube. Each process
is assigned a block of n/p elements,
and the labels of the processes define
the global order of the sorted sequence.
This  formulation is shown in
Algorithm 6. Median filter is one of
the applications that use sorting
algorithms in its implementation. The
following section describes it briefly.
The parallel implementations of this
filter are described in the following
sections.
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Fig.5 An example of the execution of
an  efficient  shared-address-space
quicksort algorithm.
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Fig.6 Efficient global rearrangement of
the array.

after global
rearrangement

!
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Algorithm  6: on a

Hypercube

QuickSort

Parallel QuickSort Hypercube (B,n)

1.ParallelQuickSortHyperCube (B, n)
/I sort sequence B of size n on d dimensional
hypercube
2. begin
3. id := process's label;
4.fori =1toddo

5 {
6. X = pivot
7 partition B into B1 and B2 such that
B1= x < B2

8. if ith bit is 0 then {
9. send B2 to the process along

the i th communication link
10. C = subsequence received along

the i th communication link
11. B=B1UC

}

12, else{
13. send B1 to the process along

the ith communication link
14, C = subsequence received along the

ith communication link

15. B=B2UC

}
16. }
20. sort B using sequential quicksort //

described in Algorithm 5
21. end ParallelQuickSortHyperCube
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8. Median Filter

In image processing it is usually
necessary to perform a high degree of
noise reduction in an image before
performing higher-level processing
steps. The median filter is a non-linear
digital filtering technique, often used to
remove noise from images or other
signals. Median filters are particularly
effective in the presence of impulse
noise [10] [11], also called salt-and-
pepper noise because of its appearance
as white and black dots superimposed
on an image (Fig.7).

The operation of the filter is shown in
Fig.8. The implemented algorithm is
shown in Algorithm 16. Any other
sorting method like quick-sort can also
be used.

The sorting operation has to be done
for each pixel; the median operation is
a bit slower than other algorithms.
Higher the wvalue of n (or
median_extent ), more values would
have to be sorted ( n2 ) and so slower
will be the operation. The median filter
algorithms can be implemented in
parallel. There are two choices: one
can use the parallel implementation for
sorting algorithms described
previously. The other choice is: since
the window of the filter slides on the
entire image and in each step the
computations IS performed
independently, this computations can
be parallelized using more than one
processor (Algorithm 8). In this work a
number of processes are created in
order to simulate the processors.
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(b) image corrupted b
pepper noise

(c ) image corrupted by
salt noise

Fig.7 An image corrupted by salt-and-
pepper noise by pepper noise

sorted list
|3_2| 33| 34| 35@ 3E.| 35| 3?| gs|

. .
30| 33| 32[35T36| 31 \3€33 32|35 36|31
35] 34| 37 26 33| 34 EL 37| 36) 33| 34
m | 34| 23|98] 26| 34| 32 m | 34| 33| 36| 36| 24 32
32| 36| 32| 25] 36|35 32| 36) 32| 35) 36| 35
33| 31| 36) 34| 31|32 3313136 34| 31) 32

input
Fig.8 Illustration of the principle of a
3% 3 median filter

output
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Algorithm 7: Median filter algorithm

Median Filter

1. MedianFilter( I, median_extent )
2. begin
3. n = median_extent
4. declare a buffer of size n
5. for (y=image (min_row),
y <image ( max_row),y + +)
6. for ( x = image
(min_column), x <
image ( max_ column)

7. for(i=0,i< n,i++)

8. for(j=0,j< n,j+
+)

9. if x+j—-n/2=

image(min_column) and
X+j-n/2=

mage(max_column) and
y+i-n/2=z=
mage(min_row)
and y+i—-n/2

= [Jimage(max_row) then
buffer ( i0J X0 n

+j)=
I((x+j-n/2,y+
i—n/2)
10. end if
11. end j loop
12. end i loop
13. QuickSort ( buffer)
14. O (x,y)=buffer(n/2
+1)
15. end x loop
16. end y loop

17. end MedianFilter




Baghdad Science Journal

Vol.11(2)2014

Algorithm 8: Parallel Median Filter

Parallel Median Filter Algorithm

1. ParallelMedianFilter( I,
median_extent )
2. begin
3. Create a number of processes P
/I assuming width of the image
multiple number of processes
4. n = median_extent
5. declare a buffer of size n
6. process_id = label ( process)
7. k = process_id
8.for (y=1image (k),y<

image (max_row —k),y++)
9. for ( x =image (min_column), x
<

image ( max_ column)

10. for(i=0,i<n,it++)
11. for(j=0,j<n,j+
+)

12. if Xx+j—-n/2=

image(min_column) and
X+j—-n/2=

image(max_column) and
y+i—-n/2=

image(min_row) and
y+i-n/2

= [Jimage(max_row) then
buffer (i) X[J n

+j)=
I((x+j-n/2,y+
i—n/2)
13. end if
14, end j loop
15. end i loop
16. BubbleSort ( buffer)
17. O (X,y) =buffer (n/2
+1)
18. end x loop
19. k=k+P-1
20. end y loop

21. end MedianFilter
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9. Conclusion

In this work serial algorithms are
presented for bitonic sort and quick
sort. The analysis, operation and
performance are explained for each
type. Then a high performance parallel
sorting algorithms are presented and
compared with the traditional sort
algorithms. The serial algorithm for
median filter has been build using
quick sort, then the presented sorting
methods are applied. The code uses
C++ and MPI standard. In the
implementation of the parallel program
a number of processes are created. The
processes can be connected together
with different topologies. More than
one process can be executed on a
single processor. An important feature
for the MPI is the possibility of using
MPI on virtually any computer, even a
serial one. The parallel platform is
unavailable so it is impossible to
predict the accurate time for the
proposed systems. The time is
computed in terms of the number of
computations steps and
communications steps.
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