
 Baghdad Science Journal Vol.11(2)2014

292

Parallel Computing for Sorting Algorithms

Zainab T. Baqer*

Received 20, December, 2012

Accepted 11, March, 2014

Abstract:
The expanding use of multi-processor supercomputers has made a significant impact

on the speed and size of many problems. The adaptation of standard Message Passing

Interface protocol (MPI) has enabled programmers to write portable and efficient

codes across a wide variety of parallel architectures. Sorting is one of the most

common operations performed by a computer. Because sorted data are easier to

manipulate than randomly ordered data, many algorithms require sorted data. Sorting

is of additional importance to parallel computing because of its close relation to the

task of routing data among processes, which is an essential part of many parallel

algorithms.

In this paper, sequential sorting algorithms, the parallel implementation of many

sorting methods in a variety of ways using MPICH.NT.1.2.3 library under C++

programming language and comparisons between the parallel and sequential

implementations are presented. Then, these methods are used in the image processing

field. It have been built a median filter based on these submitted algorithms. As the

parallel platform is unavailable, the time is computed in terms of a number of

computations steps and communications steps.

Key words: parallel, sorting and median filter.

1. Introduction
A parallel computer is a set of

processors that are able to work

cooperatively to solve a computational

problem. This definition is broad

enough to include parallel

supercomputers that have hundreds or

thousands of processors (fig.1) [1],

networks of workstations, multiple-

processor workstations, and embedded

systems. The performance of

microprocessors, memories and

networks has been improved over 25 to

40 years [2]. Parallel computing has

been considered to be "the high end of

computing", and has been used to

model difficult problems

Fig.1 One example of Parallel System,

IBM Blue Gene / Q Super Computer

[1]

*Electrical Engineering Dept. /Baghdad University, IEEE member

http://regmedia.co.uk/2011/08/21/ibm_bluegene_q_hierarchy.jpg

 Baghdad Science Journal Vol.11(2)2014

292

in many areas of science and

engineering such as: Atmosphere,

Earth, Environment, Physics-applied,

nuclear, particle, condensed matter,

Bioscience, Biotechnology, Genetics,

Chemistry, Molecular Sciences,

Geology, Seismology, Mechanical

Engineering-from prosthetics to

spacecraft, Electrical Engineering,

Circuit Design, Microelectronics,

Computer Science, Mathematics,

Image Processing and so on. In this

paper, the parallelism is used in sorting

algorithms and as an application in

median filter.

2. Related Work
There exist large bodies of research on

parallelizing the sorting algorithms

such as [3… 7]. In [3] the dual core

Window-based platform was used to

study the effect of parallel processes

number and also the number of cores

on the performance of some sorting

algorithms. The authors [4] presented a

2D median filter. It had

been implemented in three parallel

programming models. The authors [5]

used field-programmable gate arrays in

sorting networks. In [6] the histogram

sort, sample sort and radix sort were

implemented using two modern

supercomputers. In [7] a novel merge-

based external sorting algorithm for

one or more CUDA- enabled GPUs

had been presented.

3. Bitonic Sort
A bitonic sorting network sorts n

elements in (n) time [8]. A

bitonic sequence has two tones

increasing and decreasing, or vice

versa. Any cyclic rotation of such

networks is also considered bitonic.

<1; 2; 4; 7; 6; 0> is a bitonic sequence,

because it first increases and then

decreases. To sort any random

sequence using bitonic sort, the

sequence first is converted to a bitonic

sequence. The functions sort_up and

sort_down sort the sequences into an

increasing and decreasing order

respectively using any type of sorting

as shown in algorithm1.

Algorithm 1: Bitonic Sort

Bitonic Sort // Sort the sequence A

1. begin

2. i=0

 // first A is converted to length of

3. no. of element= length (A)

4. while (no. of element >)

5. i + +

6. for(x=0;x<2
i
 --no. of elemen; x + +)

7. A[no. of element + x] = 0

8. y = 0

9. x = length (A) / 4

10. while (x 1)

 {

11. for (i = x; i < 0 ; i - -)

 {

12. sort_up (A, index, index +

13. sort_down(

 A,index+ -1)

14. =

 }

15. y + +

16. x = x / 2

 }

17. x = 1

18. n = length (A)

19. while (n / 2)

 {

20. index = 0

21. for (i = 0, i < x , i + +)

22. for (j = 0, j < x , j + +)

23. if A[index + j] > A [index + n / 2 +

j]

 {

24. temp = A[index + j]

25. A[index + j] = A [index + n / 2 +

j]

26. A [index + n / 2 + j] = temp

 }

27. index = index + n

28. x = x * 2

29. n = n / 2

 }

30. end Bitonic Sort

 Baghdad Science Journal Vol.11(2)2014

292

4. Mapping Bitonic Sort to a

Hypercube
In the implementation of the parallel

program a number of processes

(process is a set of executable

instructions (program)) are created.

More than one process can be executed

on a single processor. An important

feature for the MPI is the possibility of

using MPI on virtually any computer,

even a serial one. Message passing

systems generally associate only one

process per processor. The basis of the

MPI parallel model is that each

processor has its own private memory

and private arrays. This is true for both

shared and distributed memory

architectures. It is possible to test the

parallel algorithms which are presented

in this work on a single processor

using MPI. It is possible to execute

these programs using different number

of processors. Algorithm 2 shows the

implementation of bitonic sort using

hypercube interconnection system.

Figure (2) illustrates the

communication during the last stage of

the bitonic sort algorithm. More

information on bitonic sort can be

found in [9].

Algorithm 2: Parallel formulation of

bitonic sort on a hypercube with n = 2d

processes. In this algorithm, label is

the process's label and d is the

dimension of the hypercube.

Parallel Bitonic_ Sort(sequence)

1.PARALLEL BITONIC_SORT(label, d)

 // sort a sequence on process with id =

label in a d-dimensional hypercube

2. begin

3.Get the information about the

Communicator

4.Compute the number of processes and

determine the process label

5.Set up the Topology

6. Get process label in the new topology

7.Get the coordinates

8. Save row, column,…. coordinate

9. for i = 0 ; i < d ; i + +

10. for j = i ; j > 0; j - -

11. if (i + 1)st bit of label jth bit of label

then

12. comp_exchange max(j);

13. else comp_exchange min(j);

15. end Parallel Bitonic_Sort

During each step of the algorithm,

every process performs a compare-

exchange operation. The algorithm

performs a total steps of:

 (1+logn) (logn) /2 (1)

thus,

the parallel run time

is (2)

This parallel formulation of bitonic

sort is cost optimal with respect to the

sequential implementation of bitonic

sort (that is, the process-time product is

 (3)

but it is not cost-optimal [9] with

respect to an optimal comparison-

based sorting algorithm, which has a

serial time complexity of

(nlogn). (4)

 Baghdad Science Journal Vol.11(2)2014

292

Fig.2 Communication during the last

stage of bitonic sort. Each wire is

mapped to a hypercube process; each

connection represents a compare-

exchange between processes.

Mesh

There are several ways for mapping the

sequence onto the mesh processes

(Fig.3):

 (a) row-major mapping,

 (b) row-major snakelike mapping, and

 (c) row-major shuffled mapping.

P3 P7 P11 P15

P8 P6 P10 P14

P1 P5 P9 P13

P0 P4 P8 P12

Fig.3 2-D Mesh Processes (16 nodes).

For row-major shuffled mapping, the

parallel run time is:

)()(log2 nnTP   (5)

More information on this subject can

be found in [8]. This is not a cost-

optimal formulation, because the

process-time product is: but

the sequential complexity of sorting is

 (n log n) (4)

5. A Block of Elements per

Process
In the parallel formulations of the

bitonic sort algorithm presented so far,

it was assumed that there were as many

processes as elements to be sorted. In

this part it is considered that the case in

which the number of elements to be

sorted is greater than the number of

processes.

Let p be the number of processes and n

be the number of elements to be sorted,

such that p < n. Each process is

assigned a block of n/p elements and

cooperates with the other processes to

sort them. One way to obtain a parallel

formulation is to think of each process

as consisting of n/p smaller processes.

In other words, imagine emulating n/p

processes by using a single process.

The run time of this formulation will

be greater by a factor of n/p because

each process is doing the work of n/p

processes. This virtual process

approach leads to a poor parallel

implementation of bitonic sort for the

reason that for the case of a hypercube

with p processes. Its run time will be

 (6)

which is not cost-optimal because the

process-time product is explained in

equation 3 as). An alternate

way of dealing with blocks of elements

is to use the compare-split operation.

(n/p)-element blocks are being sorted

using compare-split operations. The

problem of sorting the p blocks is

identical to that of performing a bitonic

sort on the p blocks using compare-

split operations instead of compare-

exchange operations. Since the total

number of blocks is p, the bitonic sort

algorithm has a total of

 Baghdad Science Journal Vol.11(2)2014

292

 (1 + log p) (log p) / 2 steps (7)

Because compare-split operations

preserve the initial sorted order of the

elements in each block, at the end of

these steps the n elements will be

sorted. The main difference between

this formulation and the one that uses

virtual processes is that the n/p

elements assigned to each process are

initially sorted locally, using a fast

sequential sorting algorithm. This

initial local sort makes the new

formulation more efficient and cost-

optimal.

5.1 Hypercube
The block-based algorithm for a

hypercube with p processes is similar

to the one-element-per-process case,

but now there are p blocks of size n/p,

instead of p elements.

The parallel run time of this

formulation is:

 +

+ (8)

Because the sequential complexity of

the best sorting algorithm is (n log

n), the speedup and efficiency are as

follows:

 (9)

(10)

5.2 Mesh The block-based mesh

formulation is also similar to the one-

element-per-process case. The parallel

run time of this formulation is:

 +

+ (11)

The efficiency and speedup as follows:

 (12)

(13)

(13)

By comparing the communication

overhead of this mesh-based parallel

bitonic sort to the communication

overhead of the hypercube-based

formulation, it can be seen that it is

higher by a factor of

) (14)

From the analysis for hypercube and

mesh, it can be seen that the parallel

formulations of bitonic sort are neither

very efficient nor very scalable. This is

because the sequential algorithm is

suboptimal. Good speedups are

possible on a large number of

processes only if the number of

elements to be sorted is very large.

6. Quicksort
Quicksort is one of the most common

sorting algorithms for sequential

computers because of its simplicity,

low overhead and optimal average

complexity.

Algorithm 3 has an average complexity

of: (n log n). (15)

 Baghdad Science Journal Vol.11(2)2014

292

Algorithm 3: Quick Sort

 QuickSort (A,q,r)

1. begin

2. if (q > = r) end

3. Partition (A, q, r +1, pivot)

4. QuickSort (A, q, pivot -1)

5. QuickSort (A, pivot + 1, r)

6. end QuickSort

Algorithm 4 describes the partition

algorithm. The operation of quicksort

is illustrated in Fig.4. The complexity

of partitioning a sequence of size k is

 (k). (16)

More information on quick sort can be

shown in [9].

Algorithm 4: Partition

 Partition (A)

1. Partition (A, left, right, pivot)

2. begin

3. pivot = A[left]

4. LeftToRight = left +1

5. RightToLeft = right -1

6. notCrossed = true

7. while (notCrossed) {

8. while (A [LeftToRight] < pivot

)

9. LeftToRight + +

10. while (A [RightToLeft] >

pivot)

11. RightToLeft - -

12. If (LeftToRight < =

RightToLeft) {

13. temp = A[RightToLeft]

14. A [RightToLeft] = A [

LeftToRight]

15. A [LeftToRight] = temp

16. LeftToRight + +

17. RightToLeft - -

 }

18. Else notCrossed = false

 }

19. A [left] = A [RightToLeft]

20. end Partition Algorithm

Fig.4 Example of the quicksort

algorithm sorting a sequence of size n

= 8.

7. Parallelizing Quicksort
There are different techniques to

parallelize the quicksort method. The

following sections describe several of

them.

7.1 Shared Address Space

Formulation

The implementation of this algorithm

is shown in Algorithm 5. Fig. 5 and

Fig.6 describe the operation of this

algorithm [9].

Algorithm 5 : Parallel QuickSort

Algorithm

 Parallel QuickSort (A)

1. ParallelQuickSort (A, q, r)

 // Sort the sequence A[q….r] on a

number of processes

2.begin

3. Create a number of processes P

 // The formulation is a shared address

type

4. Partition the sequence A into blocks of

size n/p

5. block Ai assigns to process Pi

6. Master Process select a pivot element

7. Master Process broadcast pivot to all

the processes

8. Rearrange (Ai, Si, Li, pivot)

 // each process arrange its block into two

sub blocks Si with elements smaller

than the pivot and Li with elements

greater than pivot

9. Store the Si block at the beginning of

 Baghdad Science Journal Vol.11(2)2014

292

A and the Li at the end of A

10. Master Process divide the processes

into two groups

11. If the process in the 1
st
 group

 ParallelQuickSort (S, left of S, right

of S)

12. If the process in the 2
nd

 group

 ParallelQuickSort (L, left of L, right

of L)

13. end ParallelQuickSort

The overall complexity of the parallel

algorithm is:

 +

7.2 QuickSort on a Hypercube
This parallel quicksort algorithm takes

advantage of the topology of a p-

process hypercube connected parallel

computer. If n be the number of

elements to be sorted and p = be the

number of processes in a d-

dimensional hypercube. Each process

is assigned a block of n/p elements,

and the labels of the processes define

the global order of the sorted sequence.

This formulation is shown in

Algorithm 6. Median filter is one of

the applications that use sorting

algorithms in its implementation. The

following section describes it briefly.

The parallel implementations of this

filter are described in the following

sections.

Fig.5 An example of the execution of

an efficient shared-address-space

quicksort algorithm.

 Baghdad Science Journal Vol.11(2)2014

299

Fig.6 Efficient global rearrangement of

the array.

Algorithm 6: QuickSort on a

Hypercube

Parallel QuickSort Hypercube (B,n)

1.ParallelQuickSortHyperCube (B, n)

 // sort sequence B of size n on d dimensional

hypercube

2. begin

3. id := process's label;

4. for i = 1 to d do

5. {

6. x = pivot

7. partition B into B1 and B2 such that

 B1 x < B2

8. if ith bit is 0 then {

9. send B2 to the process along

 the i th communication link

10. C = subsequence received along

 the i th communication link

11. B = B1

 }

12. else {

13. send B1 to the process along

 the ith communication link

14. C = subsequence received along the

 ith communication link

15. B = B2

 }

16. }

20. sort B using sequential quicksort //

described in Algorithm 5

21. end ParallelQuickSortHyperCube

8. Median Filter
In image processing it is usually

necessary to perform a high degree of

noise reduction in an image before

performing higher-level processing

steps. The median filter is a non-linear

digital filtering technique, often used to

remove noise from images or other

signals. Median filters are particularly

effective in the presence of impulse

noise [10] [11], also called salt-and-

pepper noise because of its appearance

as white and black dots superimposed

on an image (Fig.7).

The operation of the filter is shown in

Fig.8. The implemented algorithm is

shown in Algorithm 16. Any other

sorting method like quick-sort can also

be used.

The sorting operation has to be done

for each pixel; the median operation is

a bit slower than other algorithms.

Higher the value of n (or

median_extent), more values would

have to be sorted (n²) and so slower

will be the operation. The median filter

algorithms can be implemented in

parallel. There are two choices: one

can use the parallel implementation for

sorting algorithms described

previously. The other choice is: since

the window of the filter slides on the

entire image and in each step the

computations is performed

independently, this computations can

be parallelized using more than one

processor (Algorithm 8). In this work a

number of processes are created in

order to simulate the processors.

http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Noise_reduction
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Signal_noise

 Baghdad Science Journal Vol.11(2)2014

233

(a) original image

(b) image corrupted by

pepper noise

(c) image corrupted by

salt noise
Fig.7 An image corrupted by salt-and-

pepper noise by pepper noise

Fig.8 Illustration of the principle of a

3 3 median filter

Algorithm 7: Median filter algorithm

 Median Filter

1. MedianFilter(I, median_extent)

2. begin

3. n = median_extent

4. declare a buffer of size n

5. for (y = image (min_row) ,

 y < image (max_row), y + +)

6. for (x = image

(min_column), x <

 image (max_ column)

7. for (i = 0, i < n, i + +)

8. for (j = 0, j < n, j +

+)

9. if x + j – n / 2

image(min_column) and

 x + j – n / 2

mage(max_column) and

 y + i – n / 2

mage(min_row)

 and y + i – n / 2

image(max_row) then

 buffer (i n

+ j) =

 I(x + j –n / 2, y +

i – n / 2)

10. end if

11. end j loop

12. end i loop

13. QuickSort (buffer)

14. O (x, y) = buffer (n / 2

+ 1)

15. end x loop

16. end y loop

17. end MedianFilter

 Baghdad Science Journal Vol.11(2)2014

233

Algorithm 8: Parallel Median Filter

 Parallel Median Filter Algorithm

1. ParallelMedianFilter(I,

median_extent)

2. begin

3. Create a number of processes P

// assuming width of the image

multiple number of processes

4. n = median_extent

5. declare a buffer of size n

6. process_id = label (process)

7. k = process_id

8. for (y = image (k) , y <

 image (max_row – k), y + +)

9. for (x = image (min_column), x

<

 image (max_ column)

10. for (i = 0, i < n, i + +)

11. for (j = 0, j < n, j +

+)

12. if x + j – n / 2

image(min_column) and

 x + j – n / 2

image(max_column) and

 y + i – n / 2

image(min_row) and

 y + i – n / 2

image(max_row) then

 buffer (i n

+ j) =

 I(x + j –n / 2, y +

i – n / 2)

13. end if

14. end j loop

15. end i loop

16. BubbleSort (buffer)

17. O (x, y) = buffer (n / 2

+ 1)

18. end x loop

19. k = k + P - 1

20. end y loop

21. end MedianFilter

9. Conclusion
In this work serial algorithms are

presented for bitonic sort and quick

sort. The analysis, operation and

performance are explained for each

type. Then a high performance parallel

sorting algorithms are presented and

compared with the traditional sort

algorithms. The serial algorithm for

median filter has been build using

quick sort, then the presented sorting

methods are applied. The code uses

C++ and MPI standard. In the

implementation of the parallel program

a number of processes are created. The

processes can be connected together

with different topologies. More than

one process can be executed on a

single processor. An important feature

for the MPI is the possibility of using

MPI on virtually any computer, even a

serial one. The parallel platform is

unavailable so it is impossible to

predict the accurate time for the

proposed systems. The time is

computed in terms of the number of

computations steps and

communications steps.

References:
1. Megan Gilge 2013. IBM System

Blue Gene Solution. Blue Gene/Q

Application Development.

2. John L. and David A. 2011.

Computer Architecture A

Quantative Approach. Fifth edition.

3. Alaa I. El-Nashar. Parallel

Performance of MPI Sorting

Algorithms on Dual-Core Processor

Window Based Systems.

International Journal of Distributed

and Parallel Systems (IJDPS) Vol.2,

No.3, May 2011.

4. Ricardo M. Sánchez and Paul A.

Rodríguez. Highly Parallelable

Bidimensional Median Filter for

Modern Parallel Programming

Models. Journal of Signal

Processing Systems. June

http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Ricardo+M.+S%C3%A1nchez%22
http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Paul+A.+Rodr%C3%ADguez%22
http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Paul+A.+Rodr%C3%ADguez%22
http://link.springer.com.tiger.sempertool.dk/journal/11265
http://link.springer.com.tiger.sempertool.dk/journal/11265

 Baghdad Science Journal Vol.11(2)2014

232

2013, Volume 71, Issue 3, pp 221-

235

5. Rene M., Jens T. Sorting networks

on FPGAs. The VLDB Journal.

February 2012, Volume 21, Issue

1, pp 1-23.

6. Solomonik, E., L.V. Highly

Scalable Sorting. 2010 IEEE

International Symposium on

Parallel and Distributed Processing.

PP 1-12.

7. Peters, H. --- Schulz-Hildebrandt,

O. --- Luttenberger, N. Parallel

external sorting for CUDA-enabled

GPUs with load balancing and low

transfer overhead. 2010 IEEE

International Symposium on

Parallel and Distributed Processing,

Workshops and Phd Forum.

2010 Pages: 1-8.

8. Behrooz Parhami Introduction to

Parallel Processing, Algorithms and

Architectures. Kluwer Academic

Publishers 2002.

9. A.Grama, A. Gupta, G. Karypis and

V. Kumar Introduction to Parallel

Computing, 2003.

10. William K. Pratt. Digital Image

Processing: PIKS Inside, Third

Edition. Copyright © 2001 John

Wiley & Sons, Inc. ISBNs: 0-471-

37407-5 (Hardback); 0-471-22132-

5 (Electronic)

11. Rafael C. Gonzalez Richard E.

Woods Digital Image Processing

Second Edition University of

Tennessee Prentice Hall Upper

Saddle River, New Jersey 07458

2002

 الحساب المتوازي لخوارزميات التصنيف

 زينب توفيق باقر*

 *كلية الهندسة/ قسم الكهرباء / جامعة بغداد

 الخلاصة:
 .ان التوسع في استخدام الحاسبات العملاقة متعددة المعالجات أحدث نقلة كبيرة في سرعة حل و حجم المسائل

ية مكن المبرمجين من كتابة برامج متنقلة و كفؤة خلال فتبني بروتوكول الواجهة البينية لامرار الرسالة القياس

التصنيف احدى العمليات التي تقام بواسطة الحاسبة. لأن البياتات المنسقة . تشكيلات توازي متعددة وواسعة

ة من البيانات العشوائية, الكثير من الخوارزميات تحتاج البيانات المنسقة. التنسيق له أهمية أسهل في المعالج

أخرى للحساب المتوازي. في هذا البحث خوارزميات التصنيف التسلسل, البناء المتوازي لكثير من طرق

Cوبلغة البرمجة MPICH.NTوبأستعمال التصنيف
++

لمتوازي قدمت. ثم والمقارنة بين البناء التسلسل وا

استخدمت هذه الطرق في مجال معالجة الصور. لقد تم بناء المرشح المتوسط اعتمادا على هذه الخوارزميات

المقدمة. ولأن المنصة المتوازية غير متوفرة, تم حساب الوقت من حيث عدد خطوات الحسابات وخطوات

 الاتصالات.

http://link.springer.com.tiger.sempertool.dk/journal/11265/71/3/page/1
http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Rene+Mueller%22
http://link.springer.com.tiger.sempertool.dk/search?facet-author=%22Jens+Teubner%22
http://link.springer.com.tiger.sempertool.dk/journal/778
http://link.springer.com.tiger.sempertool.dk/journal/778/21/1/page/1
http://link.springer.com.tiger.sempertool.dk/journal/778/21/1/page/1
http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Peters,%20H.%22&language=en
http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Schulz-Hildebrandt,%20O.%22&language=en
http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Schulz-Hildebrandt,%20O.%22&language=en
http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Luttenberger,%20N.%22&language=en
http://libhub.sempertool.dk.tiger.sempertool.dk/gmt/ivsl/ieee/_2010___1-8/5465895/5470678/5470833/5/10.1109/IPDPSW.2010.5470833
http://libhub.sempertool.dk.tiger.sempertool.dk/gmt/ivsl/ieee/_2010___1-8/5465895/5470678/5470833/5/10.1109/IPDPSW.2010.5470833
http://libhub.sempertool.dk.tiger.sempertool.dk/gmt/ivsl/ieee/_2010___1-8/5465895/5470678/5470833/5/10.1109/IPDPSW.2010.5470833
http://libhub.sempertool.dk.tiger.sempertool.dk/gmt/ivsl/ieee/_2010___1-8/5465895/5470678/5470833/5/10.1109/IPDPSW.2010.5470833

