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Abstract:

In this research, some probability characteristics functions (probability density,
characteristic, correlation and spectral density) are derived depending upon the
smallest variance of the exact solution of supposing stochastic non-linear Fredholm
integral equation of the second kind found by Adomian decomposition method

(A.D.M)
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Introduction:

In the beginning of 1980's, a new
method for solving linear and non-
linear integral (differential) equations
for various kinds has been proposed by
G.Adomian, the so called Adomian
decomposition method, [1]. After that,
in recent years many researchers had
been wused this method to solve
analytically (numerically) either a
stochastic Fredholm integral equations
or especial kinds of linear (non-linear)
Fredholm integral equations [2,3,4].
Most of those researchers are just
interested as a final goal in finding the
numerical solution on some definite
closed interval to study a unique
comparison between the numerical
solution of a given Fredholm integral
equation and its exact solution.

In this paper, our goal is not only
interesting in the solution of the
supposing stochastic Fredholm integral
equation but we concentrate ourself in
the derivation of many probability
characteristics of this solution (mean,
variance,  characteristic ~ function,
correlation  function and spectral
density function) that is by depending

upon the smallest value of the variance
of this solution as a basis for that.
So, we consider the following one-

dimensional non-linear  stochastic
Fredholm integral equation of the
second kind

Y(w,t) =X(w,t)+ j}‘ k(t,s;w)Y(s,t)ds

(1)
where;
(1) weQ, Q is a sample space
sapporting of the probability

measure space (Q2, F, P).

(if) Y(w,t) is the unknown stochastic
process for the time t > 0.

(iii)X(w,t) is known stochastic process
defined for the time t > 0.

(iv)K(t,s;w) is known stochastic kernel
defined byt>0and s € S, where S
is a compact metric space, d is any
metric defined as S.

(V) Y(s,t) is a scalar function defined
for the time t > 0, seS.
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Preliminaries

In equation (1), we consider as a
especial case, X(w,t) is a standard
process with  E[X(w,it)] = 0,
var[X(w,t)] = t, t > 0, - 0 < W < oo,
(i.e.) X(w,t) ~ N(0,t) and
kitsw)=e WM 0<s<1.

So that (1) becomes,

WZ

1
e 2 +Ie’(w*5’tY(s,t)ds
0

...(2)
The exact solution of (2) by the
Adomian decomposition is [4]

B, 1) = Yo (W, 1)+ Y, (W, 1) ..3)

n=1

Y (w,t) =

2rt

where,

W2

Y, (W, t) = X(w,t) = e 2t .4

1
N2t
and

1
Y., (W, t) = jk(t,s; w)Y,. (s, t)ds,m=0,12,...
0

with

SZ

Y, (s, t) = X(s, 1) =%e-m

...(3)

1
Y, (w,t) = j e Y (s, t)ds

HEEPle

Form=0:
1
Y, (w,t) = j e (WY (s, t)ds

1 1 §?
J‘e (w+s)t _ = e 2t(gs

0 27t

31 (s+t?)?
-1 e_WH?J'ef 2t ds
27t 5
B Lt
e—wt+5 ﬁ _ﬁ
= j' e 2dy
27Z't 12
N
or,
Yl(W’t):{N[lj/thJ_N[\t/zfﬂ efW%,—oo<W<oo,t>0
..(6)
Form=1:

I
g o

Form=2:

1
Y, (w,t) = j e Ity (s, t)ds
0

_ Mmz ]_ N( t H(l_eﬂ ] je<w+s>fe5‘*fds
&) )]
2 2 a2ty
:{N[l}: J—N(t—ﬁﬂ ! 2et ] e _ocw<omt>0 ()
and by repeating form =3, 4, 5, ..., one can get
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Yk(w,t)_{N[ﬁj N(ﬁﬂ( ° j e ™% k=45, )

Therefore, (3) can be written as
1+t ) ]&(1-e?) wt
¢(W,t):Y0(w,t)+[N( N }N[IHZ;( o je

1412 t2 2t e
_ YO(W,t){N[T]_N[ﬁﬂ(iﬁ 2 e

Finally, by substituting (4) into above
function, the exact solution of (3) over
the whole real line will be

W2

d(w,t) =a(t)e 2 +B(t)e™,
...(10)

where
1 1+t2 t? 2t 2
a(t)= ﬁ’ﬁ(t) *[N( N )7 N(fﬂ(e’z‘ +2t71]e

Furthermore, the function ¢(w,t)
can also be considered as a solution
over the interval -1<w<l1
which permit to derive the probability

—o<W<oo,t>0

characteristics of the solution over this
interval and over any division of its ten
equal subintervals each of length 0.2
starting from (- 1 to + 1 ) beside
choosing many suitable different
values for t € T such that
T={0.1,0.4,0.7,1,1.3,1.6,1.9, 2.2,
2.5,2.8}

Calculations of o(t), B(t) and
d(w,t) are tabulated respectively in
tables (1) and (2).

Probability Characteristics:

Moments, Variances

The moments and variances of the
exact solution (10) are derived over — 1
< w < 1 and for t which indicating in
last section, (i.e.) forte T

1% moment:
1 W 1
E[p(w, )] = a(t) j we 2tdw + A(t j e "dw
-1 -1
t
= B(Y) { —(rtje },teT 1)
2" moment:
E[q)(wz,t)]:oe(t)j-lw2 ef%dw+ﬂ(t)j-w2 e ™"dw .(12)
1 a 1.2 2\ (1,2 2 | c
=a(t){t Zﬁt{ZN(ﬁ] 1} 2te }+ﬁ(t)[( t2+t3Je (t+t2+t3Je },t T
where o(t), B(t) are defined in (10). oL 6):&*(1_6)3_%+ 16
while, the variance of the exact o (13

solution can be obtained from the first
and second moments. Table (3) shows
that, the smallest variance of (10) is
when (t = 1.6). Hence, the solution of
the supposing Fredholm integral
equation (1) over the interval -1 <w <
1 that will be adopted in this paper
takes the following form,

=0.3153¢ 32 401067 — 12w =1

Moreover this function has the
following two properties
. ¢(w 1.6)>0

j o(w,1.6)dw [ 1

WhICh means that ¢(w,1.6) is a p.d.f. of
the stochastic process Y (w,t) which is

(*) N(:) is a standard normal distribution.
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defined in (1) just when — 1 <w <1, t f(u;w,1.6) = E[e"™]
= 1.6. (fig. (1) represents the curve of :jeiuw(b(wll_ﬁ)dw
d(w,1.6)). : Z
.. . = [e"™| a(L.6)e 32 + f(1.6)e™™ |d
Characteristic Function of ¢(w,1.6): ,jle {a( e e P }W
The characteristic function of 61wty

:03153e 2 J‘ei 32 dW+01067I (16iu)de

-1

d(w,1.6) can be found as following, [5]

1-1.6iu
. &S Y 1 .
f(u;w,1.6) =0.31531.6e°*" [ e 2dy+0.1067 e “*""dw
—1-1.6iu _
M 1

1-1.6iu , SN2 13
=0.3988e % jj':e {1— (YT) + (%) — (%) +... [dy + 0.1067j 1Y
1 - H

~1-1si 1! 2! 3!
N
1-1.6iu
\/L:(S © n.,2n 1
—0.3988e %" L'y +0.1067 | e """ dw
JoZ e |
~&s
— 0 3988e—0.8u i (_1)” y2n ﬁ _ 01067 e—(l.6—iU)W "
' = (ND2)" |-126u | (1.6—iu) B
N3
or
(Ui W.L6) = 0.3088e °% {i (-1)"[@-1.6iu)™" —(—1—1.6iU)2"+1]} £ 0.1067 {e‘l“—e(”’ }’u So---(14)
i (nH(2n +1)(3.2)" @.6—iu)
Correlation Function of ¢(w,1.6): Spectral  Density  Function  of
Foranyt; >t=16,1=t; - 16> d(w,1.6): _ _
0, the correlation function of ¢(w,1.6) The spectral density function of
with the function ¢(w,1.6+t) depends ¢(w,1.6) for known B(t) (15) can be
only on the difference |t|=|-t|=|t, — found _ by khinchine's formula as
1.6/ and can be found as following, following, [6],
[6]. f,(0) == [ Br)edr |2l <nmn
B(r) = E(¢(w,1.6) (w,1.6+1)) 27 7,
= E(¢(w,1.6+1) $(w,1.6)) =1,2,... ...(16)
=B(-1)
=E(p(wW,1.6)p(w,1.6+1))—E(d(w,1.6) 0. 2887
E(p(w.1.6+1)) f,(4) = I(cos/lr—lsm Ar)dz
=E(¢*(W,1.6))+E(d(W,1.6)p(w,1.6+1))—

E(¢*(W,1.6)) — E(0(w,1.6)) E(d(w,1.6+1))
=E(¢* (W, 1.6))+E($(w,1.6)E(p(W,1.6+1)) _0.2887 jcos arde
(¢(W,1-6()) E E(¢é\)/v,1-(6)() E(¢é\)/;,1(-62rr)) 540
=E(d*(w,1.6)+E(d(wW,1.6)[E(d(w,1.6+1))— _
E(6 (W,1.6))] — E(6(w,1.6)) E(¢(w,1.6+1)) andfort=1,-1.6>0
= E(¢*(w,1.6)) — [E(o(W,1.6)]°
Hence and by table (3)
B(t) = var(¢(w,1.6))=0.2887,-1 <w<1,1t>0
...(15)
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t,-16

0.2887 _[ cosArdr
0

VA
_ 0.2887 sin (A(t, ~1.6))
A
sin (A(t, —1.6)) W
-

f,(1) =

T

=0.0919
Also,

f,(~2) = 0.0919

sin ( lfti 1'6))=f¢(1)
which means that fy(A) is an even
function, [6] and represents the
average power in the solution
(function) ¢(w,1.6) at the angular
frequency A. (Fig.(2) represents the
curve of fy(A) for 0<A < 2m when
t,=2.6, 3.6 and 11.6).

Conclusions:

1.For t > 3, the values of B(t) defined
in the solution (10) tend rapidly to zero
while those for a(t) tend slowly.

2.The solution ¢(w,t) is not a p.d.f. of
(10) for all t € T except for t = 1.6.

<nzn=121t >16

o
@
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Fig. (1): The curve of ¢(W,1.6) ,-1<w<1
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Fig. (2): The curve of fy(A) with three
different values of t;, 0 <A < 2%
- 2 2 t
Table): o= + gy n[12E | (L (eim)
\2rt Jt Jo) e +2t-1
1+t2 t? 2t 2

L] o N[H N[ﬁ] eioo1| ez | PO

0.1 | 1.2614 0.4873 10.6950 1.0005 5.2143

0.4 | 0.6307 0.3676 10.6776 1.0325 4.0458

0.7 | 0.4767 0.2450 3.2086 1.1871 0.9332

1 | 0.3989 0.1359 2.1652 1.6487 0.4851

1.3 | 0.3500 0.0603 1.7616 3.0000 0.3187

1.6 | 0.3153 0.0088 1.5527 7.7524 0.1067

1.9 | 0.2894 0.0024 1.4281 30.6812 | 0.1052

2.2 | 0.2689 0.0002 1.3464 205.2031 | 0.0552

2.5 | 0.2523 0.00005 1.2895 2471.3010 | 0.0381

2.8 | 0.2384 0.000005 1.2479 58454.2690 | 0.0289

WZ
Table (2): d(w,t)=a(t)e 2 +B(t)e™

w t=01 | t=04 | t=07 | t=1 | t=13 [ t=16 | t=19 | t=22 | t=25 | t=2.8
—1 | 57712 | 6.2225 | 2.1126 | 1.5605 | 1.4004 | 0.7545 | 0.6449 | 0.7062 | 0.2467 | 0.2241
—0.8 | 57000 | 5.8550 | 1.9355 | 1.3692 | 1.1752 | 0.6420 | 0.5345 | 0.5533 | 0.2464 | 0.2267
—06 | 57452 | 55453 | 1.7889 | 1.2171 | 0.9998 | 0.5605 | 0.4608 | 0.4544 | 0.2495 | 0.2315
—0.4 | 59939 | 52641 | 1.6599 | 1.0919 | 0.8650 | 0.5024 | 0.4125 | 0.3924 | 0.2533 | 0.2363
—0.2 | 6.4339 | 4.9828 | 1.5367 | 0.9835 | 0.7569 | 0.4583 | 0.3787 | 0.3522 | 0.2557 | 0.2393
0 6.4757 | 4.6765 | 1.4099 | 0.8840 | 0.6685 | 0.4220 | 0.3526 | 0.3241 | 0.2536 | 0.2399
0.2 | 6.2253 | 42510 | 1.2746 | 0.7882 | 0.5902 | 0.3889 | 0.3295 | 0.3020 | 0.2523 | 0.2376
0.4 | 55766 | 4.3346 | 1.1305 | 0.6934 | 0.5184 | 0.3653 | 0.3070 | 0.2822 | 0.2455 | 0.2322
0.6 | 51191 | 3.5847 | 0.9818 | 0.5994 | 0.4507 | 0.3227 | 0.2834 | 0.2625 | 0.2354 | 0.2238
0.8 | 4.8648 | 3.2213 | 0.8349 | 0.5075 | 0.3861 | 0.2879 | 0.2583 | 0.2420 | 0.2225 | 0.2128
1 47266 | 2.8927 | 0.6968 | 0.4204 | 0.3250 | 0.2522 | 0.2319 | 0.2203 | 0.2068 | 0.1995
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Table (3):Mean, Variance of ¢(w,t),

-1l<wx<l1l

t [ E[ow.] | E[owAD] [ Var[ow,)]
0.1 | —0.3129 4.2905 4.1926
0.4 | —1.0954 6.3630 5.1841
0.7 | —0.4572 0.9271 0.7181

1 —0.3569 0.6254 0.4980
1.3 | —0.4073 0.5153 0.3494
16 | —0.1457 0.3099 0.2887
19 | —0.1877 | 0.3267 0.2915
2.2 | —0.1276 1.4507 1.4344
25 | -0.1131 0.8881 0.8753
2.8 | —0.1099 1.2747 1.2626
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