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Abstract:

In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical
solutions for some types of fractional order partial differential equations with constant coefficients and
explaining the efficiently of the method by illustrating some numerical examples that are computed by using
Mathcad 15.and graphic in Matlab R2015a.
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Introduction:

Fractional differential equations are effective 1. =1
tools to formulate the physical problems. The oldest 5 J& B =B j& = ja+p
integral transform is Laplace transform by Laplace a,f _ T(1+B) a+p ~
in (1780)(1). Watugala introduced the Sumudu 3 Jt = riFat a >
transform in (1993), which has some advantages 0, >-1,t>0

over the Laplace transform (2,3). The Elzaki
transform, which was introduced by (4) in (2011), is  The Caputo fractional derivative :
a revised form of the two previous transforms. For  pZf () = jmn-@prf(e)

more details and historical review of integral { 1 t Fem(x)

transform(5,6). In (7) double Laplace and double Ton—d ), G —m-an ¥ m-l<a<nm el

Sumudu transform were used to solve wave F£O () @=nn €N.
equation and Poisson equation. In this study double
Sumudu transform and double Elzaki transform are Some properties :

considered to solve some fractional partial 1. DEtF =
differential equations which conclude both the r0+6) p-a  p_1<g<n f>nn—1, BERn EN,
space and time or mixed fractional Caputo rasp-o _ _

0 n—-1<d&<n f<nn-1, ,neN

derivatives, such as parabolic- hyperbolic, wave and ~
heat fractional equations.

Preliminaries
Now some of alimentary concepts of fractional

2.
3. JEDEf®] = f®) - s rO©)
4. DE[pff®]=Df[DEF®)] = DI F(®)

calculus (6) that needed later on. provided that

Definition 1:(8,9) f®@©=0 i=01,..,nn—1,a+p <nn,
The R- L fractional integral of a function f(t) nn € N

with order @ > 0 is defined as The most important function in fractional calculus

5 1 ¢t o is the Mittag-Leffler function which is a generalized
Jof® = F(d)fo (t = )" f(x)dx t>0. for the exponent function and is defined by the

The linear operator R-L fractional integral has the following definition
following properties:
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Definition 2:(10)
The Mittag-Leffler function with two parameters is
defined as:

Z @ p€c,
= F(ak +B)
Rea(&), Rea(ﬁ) >0

Lemma 1:(11)
The Mittag-Leffler function has interesting
properties (11):

1. Ezq1(x) = Ez(x)

2. El,l(x) =e*, XE1,z(x) =e* -1
3. Ey1(x*) = cosh(x)
4

5.

. xEZ 1(x%) = sinh(x)
(tﬂ E, (at“))
tP71E, 5 (at“) 7>0
E; (= x ) = cos(x)
xE, 1(—x?) = sin(x)

n) _ (k+n)1x*
Es (x) Li= 0 kir(@k+an+p)

DE (Ea(at“)) = aBz(at®) @>0, a€R

o

nenN

© © ~N

In order to prove the results, the following
definitions and theorems will be need.

Definition 3: (2) A function f(x) is said to be of
exponent order « > 0 if there exist non-negative
constants M, a and T such that |f(x)| <

Me**  x>T.

Definition 4 (3) The Sumudu transform of the
exponent order function f (t) is defined as

R *1 _t
SLFO ] = j Fpt) et dp = j Lf@e
0 0

=7, tp>0
Table 1 contains Sumudu transform for some
famous function.

Table 1. Sumudu transform of some important
functions

f(x) SIFE] f() SlFel
=T[p] =T[p]
1 1 x® r(1+ &) p®
1 ap
e* 1—ap sin ax 1+ a?p?
cosax 1 sinh ax ap
1+a?p 1- a’p?
pF 1
xP1E 5 () 1—up coshax 11— q?p?

Interesting conditions for existing the inverse of
Sumudu transform are concluded in the next
Theorem.

Theorem 1: (2) Let T (p) be the Sumudu
transform of the function f(t) and

~ .1

1. is) is a meromorphic function , Re(s) <
Aa
2. |@ < br=%,a,b > 0. Then f(t) =
G—1[& a+ioco t s ()
§7HT ] = afa o €5 —=ds =

( )
ZRestdual [e ]

Lemma2: (2) Sumudu transformation of
fractional integral for f (t) is given by

S[IFf® ] =0T ()
Provided definition of fractional Caputo derivatives,
some of important properties of the Sumudu
transformation are listed here.
Some properties of Sumudu transform (2)

1. S[fm]=
p T @) —Zkoop™* f(0)]
2. S[DEf()] =
p [T () - Xk op-k f(")(O)]
3. S”{tﬁ‘lE (At)} o
Definition 5: (3) The double Sumudu transform of

the two variable function f (x,t); x,t € R* is
defined by :

Tlp.ql = Slf 0]
=if f e~ @) f(x, t)dx dt
pq) ) '
Theorem 2: (2) Let
3t f(xb) _ L
ot 9zl i=01,..,n ] = 0,1,2,..,m be of
exponent order, then
& [0 f(x0)] _
Lo S[EEE | = )
p T p, q] - X155 p7i10,q]]
A [0MF(xt _
2 &S[5E7]=amTpal -

St g/ lp, 0]]
3. S = [Tlpal -
n-1pif[0,q] — m‘& q’T;[p, 0] +
ST S P 4 2 f(00)]
Where 7;[0,q9] = S, [ﬁ (0, t)],Ti[P; 0] =

S [2 5@ 0)

-
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For the two variables exponent order function $ [DﬁDaf(x ] =3 [Imm—BDmDaf(x £)
(x,t), the double Sumudu transform of the partial L oS A el
fractional integrals are given by the following = qmmFS, [Dan (Df‘f(x,t))]
theorem

Theorem 3: (2) If f(x) € L,((0,a) x qmmF [gmm (8, [DEf (x, )]

(0,b)),a,b >0, then i
S f(x, 0], [Itﬂf(x. t)] .S, [Ifl,?f(x, t)] exist

m-—1

q’S,[D}] 'DEf(x, 0)]”

and i
L S[Ef@D]=p"T®q9) =
2. S, 1P xt)| = By , 2l —al »
AZ[%f( | =4 N(pf_lv) =qF|q® T(p,q)—Zqu(p,O)
3. 52 [It LEf(x,t) ] =p“qTFT(p,9) ‘
Theorem 4: (2) Let f (x,t) be a function with mm-—1
exponent order and has continuous partial - Z qS, [DJ DEf(x, 0)]
derivatives on R* x R* and these derivatives are =0
in L1((0,a) % (0,b)) then Theorem 5: (12) 1fT'[p, q] is the double Sumudu
1. 52[ D“f(x O] =p T q - transform of the two variables function £ (x, t),
hen
o 470, Q)] b
A [F - So{fx™t™ f(x, t)} =
2. §[pPren| = a0 - e
mel 4i T (p, 0)] P™q" Xk=o Xi=o ax' bI'P q apka —17[p, q], where
5 [ na L ala B alt=1,am=1, a=mm!, a_;, =m?
3. 52 [D Dy f(x, t)] p [T(p' ) similarly for b* forany k =2,3,..,n—2
o p'7(0,9) — Z o /7 (p, 0) + Furthermore, a* = a*7t + (m + k)a]*™?
molyn-lyig] similarly for b}
Z] =0 p q at]xlf(o 0)] l
Lemma 3:

. - Elzaki Transform
Assuming that n—-l<a<nn mm-1< A modification to Sumudu transform is a
p < mm,~a,ﬂ >0, mm,n €N, then new transform 'Elzaki transform’ which is
S, [Df DE f(x, t)] introduced by Tarig Elzaki in 2010, for solving a
class of ordinary differential equations with variable
coefficients under special initial and boundary

=4 g \ Ta) conditions, that cannot be done by the Sumudu
transform or Laplace transform only (13). Thus,

= i Elzaki transform is a more effective than the
Zq Ji(p Sumudu transform. The researcher (3) designed
j=0 some conditions for solving such class of
m-1 differential equations by Elzaki transform method

q’8,{D}] D{"f(x 0)} only, these conditions convert the origin equation
into other with constant coefficients which can be
easy to solve.

But in case of linear ordinary differential
equations with constant coefficients, Elzaki and
Sumudu transforms usually give the same solution
through the duality between the two transforms.

]
=]

J
Proof:
According to Theorem (5), and using properties of
fractional integral and Caputo derivatives, will get:

Definition 5 :(3) Elzaki transform of the exponent
order function f (t) is defined by

Elf(D] = p? f et F(ptydt  Or
0

ot

=pj P F() dt = G(), P
0

>0

511
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If E[f ()] = G(p), then (14):
1. G(p) = p?T(p) duality with Sumudu
transform.
2 E[f™@®] = ‘"[9(1?) Yrzop fR0)].
3 Elt f(©)] = p? —9(29) p-G(®)
4, E[t? f(O)] = p* - g(p)
5 E[t? f(O] = —9(29) dng(p)
6. E[tf®]=p* [g(”) )] -
p[2-ro]

7. B[ fo] =pt S22 )]
Theorem 6: (14) If E[f ™ (¢)] = G, (p), then:

L E[tf™®)] = p* - 62(®) ~ PG )

2. E[t2f™©)]= dngn(p)

Definition 6 :(14)

Let the function f (x, t) be an exponent order, and
x,t > 0, then the double Elzaki transform for f is
given by

E,[f (x,0)] = pq fo ) jo oof(x, £ e 6D dxde

- =ta
Whenever the improper integral is convergent.

The duality of double Elzaki transform with double
Sumudu transform is similar for that single case, i.e

G, q) =p*a*T(p, ).

Some illustrative Examples
The first example is to explain the advantage of the

Elzaki transform over the Sumudu transform,
through the following simple linear fractional
ordinary differential equation with variable
coefficients which is generalized for that in (15).

Example 1: Consider the following variable
coefficients fractional ordinary differential equation

with initial
1)
Solution by Sumudu Transform Method

Operating Sumudu transform for both sides of (1)
and using Theorem (6) to get

atx®+bx=ct, 0<@<l,
condition x(0) =d

aS[txa]+'bS —'CS[]
where T (v) = S[x(t)]

Substitute the initial condition and simplify to get

512

d [T(v)
avi —|—
dv| v*

— adv? a4 [lN] + av=9F (v)
dv Lv®
—advl™® + bT(v) = cv
avl=@ [v T(w) - ﬁf"(v)] +dadv*®
+ av' 8T (v) — adv'~ + bT (v)
=cv
2-8 F(p) — qq v~ T W) —dad vt
+ av' 8T (v) — adv'~% + bT (v)
=cv

av

od

v

C

F0) + g~ ot 1] ) = :
v a2y " T e v
Then for all @ € (0,1], again this equation is the
first order ordinary fractional differential equation
with variable coefficients, so cannot solve it by

Sumudu transform method only.

Solution by Elzaki Transform Method
Operating Elzaki transform for both sides of (1) and
using Theorem (7) to get
aE [tx“] + bE[x
Gw) —v*x(0) (v) -V x(O)
v —
dv

= cE[t
[Q(v) — v?x(0)

+ bg(v) =cv3
av v Gw) — agWw)| - 2 - a)v® %
av'=EG(v) + adv?~® + bG(v)

= cv?3

b
Gw) - [ +;—m]g(v)
_@2- )37 % — adv3¢

au2—a

cv3

~ qp2a
With stander case & = 1, if the initial condition
changed to = 0, then will get

g(v) _ [Za b] cv?

Gw) =—.

So, by letting b = 2a, for example “a =1’
The last equation is converted to  G(v) = cv?

which has the solution G(v) = “;—3 = v3 with

¢ =3, taking inverse Elzaki transform, will have
x(t) =t

Other cases @ # 1, in order to get an equation with

constant coefficients, coefficient of G (v) must be

vanish, i. e [l+5— 2_4 =0=
v v av

a(1l+ a)v'~® = p. So, Elzaki transform alone

failed to solve this fractional ordinary differential

equation with variable coefficients.

Now some of fractional partial differential
equations with Caputo derivatives are given to solve
it by both double Sumudu and Elzaki transforms
methods to get an exact solution for these equations.




Open Access
Published Online First: February 2021

Baghdad Science Journal
2021,18(3):509-521

P-1SSN: 2078-8665
E-ISSN: 2411-7986

In the following example, will generalize example
1in (16) to fractional order time derivatives with
new conditions.

Example 2: Consider the following:

aP o ~

a?f-l_ﬁf-l_f:fxx' 1<ﬁ£

2, 0.5<a<1 (2)
With the conditions

f(x: O) = 0, ft(x: O) = ex, f(O' t)

= tE_o,(—tF%) = £(0,0)

Single Sumudu transform for the conditions yields:

R . 1 .
Jolp, 0] =0, Tl[p,0]=—1_p. 90[0,4]
A q
=7[0,q] = ———
1[0, 4] 1+ P

Now, taking double Sumudu transform for the
equation (2), to get:

o T N4 52 = $2C )
So oz )+ 825z 1)+ 8200 = S2

Using Sumudu
Theorem (4) yeilds

q] Tolp, 01 — q73[p, 01] +
Top,O]]+T[p,q]=

To [0,q] — p7:[0,4]
)+q‘5‘f[p,q] +T[p,q]

transform  properties through

‘mz

q
D
q

[
|71
(f

(p?q% + p?qP +p?qP+% — q¥F)7p,q]
q(pzqa +p2qP + p?qPa — qa+ﬁ)
(1-p(1+qF 9

7p.a] = (1= )( d )
Pal =1 )15 5=
Applying  the  inverse  double  Sumudu

transformation provided with Lemma 1 and
properties of the Sumudu transform, to get

fx 1) = e*tEp_g,(—tF%)

513

For @ =1, f = 2, then the standard equation (2)
has the exact solutionas f(x,t) = e*(1 —e™")
Which is the same as in (16).

lution by Double Elzaki Transform
Single Elzaki transform for the conditions yields:

2
Golp, 0] G1lp, 0] = 1—p Gol0,q]
q3

REET G110,4q]

Now, taking double Elzaki transform for the
equation (2), then get:

=0,

q7[GIp, 4] — a*Golp, 01 — ¢*Ga [p. O]]
+q7%[Glp, q] = p* Golp, 0]]
+G6lp, 4]
=p~2?[Glp, q] — pGolp, 0]
- p3gl[01 Q]]
_ 3p2 N
qF (Q[p.q] -1 p> +q7%G[p,q] + Glp.q]
3,,2
L @
=p (Q[n N=11 e e
q°p®
1+ qﬁ+l~3>
~ 3p2 s
p?q® <9[p,q] -1 p) +p%q“*FGlp, q]
3,,2
_ a+B _qp(1+p)>
q (Q[n Ly e

(?q® + p?aP + p2q®*F — q%*F) Glp, q]
) qspz(pzqa + p2qPf + p?qa+F — qa+ﬁ)
- (1- w+ qoF)
2 3
p q
Glp.al =1 e
And by applying the inverse double Elzaki

transformation, one can obtain the exact solution
as:

fx,t) = e*t Eg_g,(—tF™)
Standard equation (2) has the exact solution when
@a=1, f=2as

fx,t) =e*(1—e7t)

That agrees with that for double Sumudu transform
method.
The absolute error of some of 10 -order
approximate solutions for equation (2) for different
values of &, are included in Table 2. Fig.1
illustrates the solution.
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Fjgyre 1. Exact solution and 10-order approximate solutions of Equation (2) for different values of

o.p.

Table 2. Absolute error of 10-order approximate solutions for equation (2)

(x' t) Uexact U10 app. |EITOI'|
p-a=1
(0.3,0.1) 0.1284560494 0.1284560494 0.9999999998e-20
(0.6, 0.2) 0.3302941027 0.3302940982 1.5350000000e-17
(0.4,0.8) 0.8215046516 0.8215046518 2.0156684416e-10
(0.9, 0.9) 1.4596031111 1.4596031125 1.3559212604e-9
B—-a=0.9
(0.3,0.1) 0.1284560494 0.126125092 2.3309574273e-03
(0.6, 0.2) 0.3302941027 0.3215691316 8.7249711979e-03
(0.4,0.8) 0.8215046516 0.7943540994 2.7150552172e-02
(0.9,0.9 1.4596031112 1.4145467839 4.5056327265e-02
B—@=0.75
(0.3,0.1) 0.1284560494 0.1212593423 7.1967071225e-03
(0.6, 0.2) 0.3302941027 0.305402764 2.4891338769e-02
(0.4,0.8) 0.8215046516 0.7556966072 6.5808044384¢e-02
(0.9, 0.9) 1.4596031112 1.3519946908 1.0760842039%-01

(©)

g —a&=0.75

Example 3: Consider the following fractional
spacg-time telegraph equation:

9B
atf

f+

a ay
g [t =5
05<a<i1

1<E,)7S2, (3)

Subject to the initial and boundary conditions

f(x,0) =Ey (x7) + xE5; (xT’),

ft(xl 0)

= — (ET,(xT’) + XET/,Z(XT/))

(d)pf—a=0.6

514

F0,0)=1— th?-a,z(—tE_a) = £.(0,0)

Solution by Double Sumudu Transform
By applying the single Sumudu transform for the

conditions, and using Mittag Leffler function

properties, to have
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- 1+p -
‘To[p,0]=1_p7, J1[p, 0]
-1+ .
22D fi0q)
1-pY
-1
1+ gP-@

Therefo~re as above
¢~ (7lp.q] - %olp. 0] - q%1[p, 0])
+q7%(T[p, q1 — Tolp, 01)

+71p.al ]
=p77 (Tlp.ql - %[0.q]
— p7:(0,4])
il = (1+p)(1—q)
a _Q+pa-9
q (T[p, q] 1= p7
_a(~ 1+7p
+q [p,q]—l_py)
+7[p,q]
=p77 (T[p,q] -1+ p
q
1+ qN‘ﬁ)>
(p7a +p7qP +p?q%*F — q%*F)1(p, )
_p"+p-q)
_1-p
p'af(L+p) .3
Ty q“"P(1+p)(
q
T 34
1+gP-@ B
B PP Q- +p'e" .z
={1+p) 1=p7 q“"" (1
q
- —~_~)]
1+qP-@
By simplify, .
" 1+p(A—-q+ ¢
Tlp.ql=

(- pH(A + BT
And by applying the inverse double Sumudu
transformation one can obtain the exact solution as:

flx,t) = [ET,(xT’) + xET,'Z(xT’)] [1

- tEE_a,Z(—tB_“)]
When @ = 1, f = # = 2, then have the standard
telegraph equation (3) which has f(x,t) = e*~t as
an exact solution.
Table 3 contain the absolute error for some
approximated solutions for equation (2) and some
of solutions with different values of @, B and 7 are
illustrated graphically in Fig. 2

515

By applying the single Elzaki transform for the
conditions, and using Mittag-Leffler function
properties

21+
G, 0 = L2, Gl 0]
—p*(1+
= pl (_ pT,p) ) QO[OJQ]
q3
= QZ—TW:QJO;Q]

Operating double Elzaki transform and using
Lemma(2), gives
a7 (GIp, q1 = p* Golp, 0] — ¢°Gy[p, 01)
+q~%(GIp, q] — % Golp, 0D
+Glp, ql
=p~7 (GIp,q] — p? GolO,
- p3g1 [0' CID
q’r’ (1 +p)(1—q)
1—p?

+q7°® (9[p,q] - >
+Glp.ql
=p77 <9[p.q] - p*(1 +p)(q®

q_ﬁ

<g[p' CI] -

q*p*(1+q)
1-q7

+#)glp, q]

1+p)(A—q)
1—p?

- ¢ P +p)1
q
T )

1+qP-@
q“p’(1 - q) +q"p? 4
1—p¥

B(1

=p?q*(1+p)

B
1+qP-@
By simplifying
p?*(1+p)(1-q +qP%)
(1 -p")(L+qF7)
_p*(1+p) ¢*(1-q+q"®)
(1-p") (1+ qf-%)
So, by applying the inverse double Elzaki

transform, to get the exact solution of equation (2)
as

Glp.ql =

flx,t) = [E7(x7) + xET,,Z(xT/)] [1

- tEZ;_»d,z(—tB_a)]
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The exact solution of equation(2) is f(x,t) = e*¢ Fig. 2 contains3D-plotted of some numerical
when@ =1, f =7 = 2. solutions of Eq. (3) with different fractional orders
That agrees with that for Sumudu transform B —daand 7.

method. Also, Table 3 shows the results of absolutely error

for some 10- order approximate solutions.

Table 3. Absolutely error for some 10-order approximate solutions of Equation(3)

(x, t) Uexact U10 app. |EI’I’OI‘|
a=1 y=2, B=2

(0.3,0.1) 1.2214027582 1.2214027582 0

(0.6, 0.2) 1.4918246976 1.4918246976 0

(0.4, 0.8) 0.670320046 0.670320046 2.0156684415¢-10

(0.9, 0.9) 1 0.9999999986 1.3559212604¢-09
a=06 y=14 =17

(0.3,0.1) 1.2214027582 1.333583977 0.1121812189

(0.6,0.2) 1.4918246976 1.756165669 0.2643409714

(0.4, 0.8) 0.670320046 0.7230798396 0.052759793574

(0.9, 0.9) 1 1.1914250601 0.19142506011
a=08 y=18 p=13

(0.3,0.1) 1.2214027582 1.2659789239 0.0445761658

(0.6,0.2) 1.4918246976 1.6201566392 0.1283319416

(0.4, 0.8) 0.670320046 0.816733713 0.1464136670

(0.9, 0.9) 1 1.2747644448 0.2747644448

Exact. v = =2 and a=1 v = B#=2 and ao=1 v =1.8, =13 and a=.8

Figure 2. 10-order approximate solutions and the exact solution of Equation (3) for different values of
@, pand¥.

Next example is a generalized to space and time P 9P

fractional order for that in (14 ) (F - a_ﬁ> f(x,t) = 6t + 2x, 1 (@)
Example 4: Consider  the  following x _

inhomogeneous fractional wave equation <ap<2

With conditions
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f(,0)=0, f(x,0) = xEg,(-xF),  f(0,)

Operating single Elzaki transform for our conditions

- F(CY + 2), fx(o: t) QO[P; 0] = 0, gl[pl 0] = 1+ pﬁ’ 90[01 q]
2t% _ a
=+ tEy,(—t® = 6q%*3, 0,
ra+a az(=t) v 9153 1
lution by Double Sumudu Transform =2q“+2+Tqa
ﬁ)pn%li)::(r)lgsthe single Sumudu transform for the Double Elzaki transform for both sides of equation
R R p (3) yields
:Tb[p' 0] = 0' Tl[p' 0] = —B: —u p3q3
) 1+p7 a7 (Glp.al - ——
500,91 = 6¢™*%, 71[0,q] 1+p
& q . _
=2¢"+ p =pF [Q[p,q] — 6q%*3p?
~ q3
By operating double Sumudu transform for both -p? <2qa+2 + m)]
sides of equation (4) and simplifying the results, 2 9 1
produce o +2p°q°(p +3q)
_a( pq (PB - CI“)Q[P,CI]
qa*(Tlpq]l — = 147
1+ pP 22|14
=p B (T[p.q] — 6¢'*% — p(2¢® N Py
p [p.q] - 6q p(2q p -
q " (6qa+1 + 2pq® + N)
+1+qa))+6q+2p 1+ g%
(pﬁ - qa)f[p, a +2pPq%p + 39)
148
P "q = "
= — ﬁ P 04
1+pﬁ 2.2 pq(q q) +2 a(
B ~ ~ pq pq N q-(p
_ 4 (6ql+a+zpqa+ ) (1 +pP)(1+q%)
1+ g%

+2pPq%(p + 39) +3)(p? - ¢7)

pq(F — q%) : 5 a
= 3 — +2¢%(p + 39)(p? — ¢%) s s
gy Glp.q] = ———T— + 2q%*2p? + 64%+3p?
“Tpal =7 @t 20" +30) 1+pPl+q®

Applying  the inverse  double  Sumudu  And by applying the inverse double Elzaki
transformation, one can obtain the exact solution  transformation, one can obtain the exact solution for

for equation (4) as: equation (4) ) as:
- ~ 2xt? f(x,t) = xEz (—xﬁ)tE~ (—t%) + 2t
= xFs (—=xBVtFe (—t®) 4+ ’ B.2 @2 T(a+1
f(x,t) xEB_Z( x )tEa,Z( t )+F(d+1) o (@+1)
6t1*a r(@+2)
+F(@+2) Which agrees with that for double Sumudu

transform method.
Standard wave equation (4) has  f(x,t) = xt2 +  Fig. 3 contains3D-plotted of some numerical
t3 +sin(x)sin(t) as an exact solution when  Solutions of Eq. (3) with different fractional orders
@& = B = 2, which agree with that for (14). p—aand 7.

Also, Table 4 shows the results of absolutely error

for some 10- order approximate solutions.
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Table 4. Exact and 10-order approximate solutions of Equation (4) for various values of o ,f .

(x' t) Uexact U10 app. |EITOI'|
a=p=2
(0.3,0.1) 0.0335027919 0.0335027919 0
(0.6, 0.2) 0.1441771423 0.1441771423 0
(0.4,0.8) 1.0473516198 1.0473516198 0
(0.9, 0.9) 2.0716010473 2.0716010473 0
@=16 B=195
(0.3,0.1) 0.0335027919 0.0438920618 0.0103892699
(0.6,0.2) 0.1441771423 0.1985157432 0.0543386009
(0.4,0.8) 1.0473516198 1.5517716698 0.5044200500
(0.9, 0.9) 2.0716010473 2.8451114067 0.7735103593
@a=17, pB=13
(0.3,0.1) 0.0335027919 0.0421679509 0.0086651590
(0.6, 0.2) 0.1441771423 0.185687181 0.0415100387
(0.4,0.8) 1.0473516198 1.5313726976 0.4840210779
(0.9, 0.9) 2.0716010473 2.7576361375 0.6860350901

(c)B=185 @&=15
Figure 3. Exact solutions and some of 10-order approximate solutions of equation (4), with various

values of B, @.

(a) Exact o =p =2

X

(b) Approx. & = 8 = 2

05
t

0.5

X

(d =13 a=2
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Example 4:  Consider the nonhomogeneous q@B)T[p, ql — p~Pq~%Tp, q]
parabolic-hyperbolic fractional partial differential _ p‘ﬁq‘ﬁf"[p ql
equatign . . . . —ZE(T[ ,]
9% 9f \(aF oF p p.q
—_— T = —_— T = t ~ > a+6.. B
2@ 927 )\oc8 w3 TP —r(@+p +1)q*+#pF)
- 5 % =T(a+3 g B
—r(@+5+1) (xﬁ NG r(a++1)(r(8 + Dp?
04) -1+ )0 1 + 1))
_ P @) Thus,
r1+a)

0<a<1l 1<f<2 (piﬁ‘PEqE—P~Eqﬁ+qa~+ﬁ~)7£p,q]= )
With conditions r(g+1)r(a+p+ 1)q2(¢x+ﬁ)pﬁ +r(@+f+
f0,0)=0, £(0,8) = fexx(0,0) =0, fix(0.)  1)(T(F+1)pP —T(F +1)gP —T(F +1) ¢°
= ta+B, £,(x,0) =0 )( (B+1)p (f+1)q (B+1)q )

Solution by Double Sumudu Transform, 5 BF Bou . u+d
Single Sumudu transform of the conditions yields (P F—pPaf —pPa®+ q“+5):]"[p, q]

7(0,0)=0, 7[0,q]=%[0,q]=0, 70,q] =r(g+1r(@@+p
=T(a+pF+1)q**¥, +1) q&+F pﬁ’(pZB — pFqF
Filp,0] =0 Bo& . G+
From Theorem (6), and Lemma (2) ~_p q +q~ ) o
5, [paDf 1] Tlp,q]l = T(F+1)r(@+p+1) q*F pF
e o Tnanf By applying the inverse double Sumudu transform
= q~@F)Tp,q], S, [Df‘Dx f] of the last equation o
=q %p~FT[p,q] Ay xﬁtﬁi 3
& [nBnB 5. -F & [nBnB Equation (5), has ,t) = x“t° as an exact
52 [Dfo f] =a" " TIp.al, 52 [D’ED’E f] sc?lution w%e)n a=1 %(i 2) .
= p‘zf”(T[p, q] In the same manner of previous examples, the

solution by applying double Elzaki transform can be

—r(ag+@ a+B,B
F(a B+ 1)q p ) done for this example to have the same solution of

Consequently, after operating double Sumudu the equation (5)
transform for both sides of (5) and simplify, get Some plotting of approximate solutions are given in
Fig.4.

Also, Table 5 shows the results of absolutely error
for some 10- order approximate solutions.

Table 5. Absolutely error for some approximate solutions of equation (5) for different values of f,a .

(x,t) Uexact Uapp. |Error| U app. |Error|

a=f=2 a=16p=13 @=1.8,F=12
(0.30.1) 9x107° 2.6318287761e-6  2.5418287761e-4  0.0002358009 2.2680092568¢-4
(0.60.2) 5.76x 10~¢ 4.8370838172e-3  4.2610838172e-3  0.0043338262 3.7578261669¢-3
(040.8) 0.065536  0.1590885601 9.355256007e-2  0.1705068969 1.0497089688e-1
(0.9,0.9) 0.531441  0.6424192405 1.1097824055e-1  0.6424192405 1.1097824055¢-1
(0.7,0.3) 0.003969  0.0191548648 1.5185864788e-2  0.0175987334 1.3629733395¢-2
(04,0.3) 0.001296  0.0092540028 7.958002818e-3  0.0089915746 7.6955746399¢-3
(0.6,0.7) 0.086436  0.1829704438 9.6534443829¢-2  0.1858127969 9.9376796908e-2
(0.2,0.6) 0.005184  0.0280528908 2.2868890756e-2  0.0313104815 2.6126481471e-2
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Exact. =1, (=2

a=5, (=15

=2, p=1.8

10

NoOo o

Figure 4. Numerical solution with different values of [ ,a. of equation (5) converge to the exact

solution.

Discussion:

In this paper used the double Sumudu and
Elzaki transformations to compute some  of
fractional partial differential equations which are
proposed as a new approach in this research for
these equations to show that the two
transformations efficient and accurate by applying
these methods and showing perfect results in
numerical tables and graphics of the illustrative
numerical examples from the increasing of the
fractional order convergent to the numerical
solution in positive integer through the absolute
error goes to zero.

The Sumudu transformation may be used to
solve problem without resorting to a new frequency
domain and having scale and unit-preserving
properties. The Sumudu transform is used to solve
PDE by transforming to algebraic equation and after
using some mathematical algebra technique using
inverse Sumudu transformation to get up the
solution. Also the Elzaki transformation is used
when the Sumudu transformation cannot solve some
of fractional ordinary differential equation when the
coefficients are variable, on the other hand the
Elzaki transform only can solve such of such
equations with changes of the initial conditions of
the problem, this is the only advantage of Elzaki
transform over the Sumudu one.

Usually, both Sumudu and Elzaki transforms
are used to solve some of FPDE with constant
coefficients to get the analytic solution. So in this
case, need not to study the stability or convergence
of the solution and the tables and figures explain the
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numerical values of the solution with different
values of @ and 3.

Conclusion:

In this paper, introduced the double
Sumudu and double Elzaki transforms to find the
solution for several types of linear partial
differential equations with constant coefficients that
include space, time and space-time or mixed
fractional Caputo derivatives, in this case both
transforms give the same solution. All problems
which are argued proved the efficiency of this
methods throughout the plotting and numerical
calculus of approximated solutions.
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