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Abstract

In this paper the centralizing and commuting concerning skew left n-derivations and skew left 7-
derivations associated with antiautomorphism on prime and semiprime rings were studied and the
commutativity of Lie ideal under certain conditions were proved.
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Introduction:

Throughout this paper R represents an
associative ring with center Z(R) anda® an
antiautomorphism of R. A ring R is said to be n-
torsion free if na=0 with a€R then a=0, where n
is nonzero integer (1). For anywv,yeR, the
commutator vy-yv is denoted by [v,y] (2). Recall
that a ring R is said to be prime if aRb=0 implies
that either a=0 or b=0 for all a,beR (3) and it is
semiprime if aRa=0 implies that =0 for all a € R
(1). An additive mapping é:R - R is called a
derivation ifé(vy)=&@)y +vé(y) for allv,yeER
(4), and it is called a skew derivation (a*-
derivation) of R  associated with the
antiautomorphism a* if &(uy)=¢&m)a"(¥)+vE&(y)
for all v, yeR (5). An additive mapping &:R — R is
called a left derivation if &(vy)=yE&(v)+v &(y) for
all v, yER (6), and it is called a skew left derivation
of R associated with antiautomorphism a*
if E(y)=a*(y)Em)+v &(y) for allv,yeR (7), it is
clear that the concepts of derivation and left
derivation are identical whenever R s
commutative. A map F:R—R is said to be
commuting (resp. centralizing) on R if [F(v),v] =0
(resp. [F(v),v]eZ(R)) for allveR (2). An
additive subgroup U of R is called Lie ideal if
whenever «w € U, r€ R then [U, ] €U (1). A Lie
ideal U of R is called a square closed Lie ideal of R
if u?el, for allw € U (6). A square closed Lie
ideal U of R such that UZ Z(R) is called an
admissible Lie ideal of R (4). In 2009, Park
introduced the concept of symmetric n-derivation
and he studied the concept as centralizing and
commuting (2). The history of centralizing and
commuting mapping is due to Divinsky in 1955 (8).
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Several authors have studied the concept as
commuting and centralizing derivations like J.
Vukman who investigated symmetric bi-derivations
on prime and semiprime rings (9). We obtain the
similar results of Jung and Park ones for permuting
3-derivations on prime and semiprime rings (10)
and more results in (11, 12, 13, 14, 15). In the
present paper, we have introduced the notion of
skew left n-derivation and skew left n-derivationn
associated with the antiautomorphism «* and
studied the commuting and centralizing of this
notion and commutativity of Lie ideal under certain
conditions.

Throughout this paper n is considered as a fixed
positive integer.

Preliminaries

Definition (2.1) (2)

A mapé:R™* >R is called permuting (or
symmetric) if the equation &(vq, vy, ..., Up)
=& (VUr(1)Vr(2)- - - Vr(ny) NOIdS, for all v;ER and for
every permutation {n(1),n(2),...,m(n)}.

Definition (2.2) (2)

An n-additive mapping &:R"™—R is said to be a
symmetric n-derivation if the following equations
are identical:
a(vﬂ’: U2, ey v/rl,):a(vl' U2,y ) Un)V+U1§
v, vg, ..., 0,)

‘:(ULUZY' rv/n):‘:(vllUZ' ---;UM,)V"'
UZE(Uli Vs 'U/n)

a(ULUz: LR Uny):f(vlr Uy, ---rvﬂ)y+
vnf(vllUZJ ry)
Forall vy, y, vy, ..., u,ER.
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Definition (2.3) (2)

A map §:R—R is defined as §(v)=Q(v,v, ...,v)
for all veR, where Q:R™—R is called the trace of
the symmetric mapping Q.

It is clear that the trace function 6 is an odd function
if n is an odd number and is an even function if n
is an even number.

Note (2.4) (2)

Let § be a trace of an =m-additive symmetric
mapD : R™ - R, then § satisfies the relation
S(oty)= 8+ s(M+XRZ1 () b0, 1) for
allv,y€R such that hy(v,y)=Q(,v,...,0,¥,7, ..., V)
where v appears (n — k)-times and y appear k-

. n!
timesand (}}) = e

Now, we introduce new concept which is called
skew left n-derivation is defined as follows.
Definition (2.5):

An mn-additive symmetric mapping &R"™—R is
said to be a skew left n-derivation if
é(vﬂ/l U2y weey Un): Yf;(Up Uy ey Un)+ Ulé
(¥, V2, s )
E1,V2Y) o, Up)=YE (U1, Vg, oo, U )+ 058
(vll Vi vn)

E.!(Ull Uy, ""U’n]/): Vf(vp U2, ey U/n)+ U/né
(UIIUZ) IV)

For all vyy,v,,..., v, ER, it is clear that the concepts
of derivation and left derivation are identical
whenever R is commutative

Example (2.6):

Let R={(8 :

of integer numbers. A map £&: R”™ — R is defined by

é<(0 al)’(o az)’m’(o an)>

(0 0)’(0 0)’---,(0 O)ER.

Then it easy to check that & is skew left n-
derivation.
Example (2.7):

Letﬂe:{(g g)|a,bE]R{}, where Ra ring of

real numbers and R is a non-commutative ring
under addition and multiplication of matrices. A
map é:R"—R is defined by

)|an} be a ring, and Z be a ring

0 aiay...a,
(0 0 ) for all
0 a;\(0 a, 0 a,

{6 D 9 %)
0 byb,..b,

(

), for all

0 0
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a; b a, b a, b

(01 01),(02 02)( o gt)ejz.

Then & is an #m-derivation but it’s not a left 7-
derivation.

Example (2.8):

Let R be a non-commutative ring. Define a map
ER™ >R by &1, V2, .., V)= E(V1) E(V2)...E(V),
for allvy,vy,..,v,ER. Then & is a skew left n-
derivation but it’s not #-derivation.

Lemma (2.9) (4): Let R be a prime ring and
&R—R be a derivation such that aeR. If a&(v)=0
holds for all v €R, then either a=0 or £=0.

Lemma (2.10) (3): Let R be a n!-torsion free ring
and Ay, +A%y,+...+1"y,,=0 where y;,¥z,.... ¥n € R
with A=1,2,...,n. Then y,=0, for all i=1,2,...,n.
Lemma (2.11) (2): Let R be a n!-torsion free ring
and Ay, +A%y,+...+A"y, €Z(R)wherey, ¥2,..., ¥, €
R with A=1,2,...,n. Theny,€Z, for
all i=1.2,...,n.

The Main Results

In 2009, K.H. Park (2) studied the concept
of symmetric n-derivation as centralizing and
commuting, we have studied the concept of skew
left n-derivations in rings and introduced the term
of skew left =n-derivation associated with an
antiautomorphism a*.
In the following results, U is considered as a non-
central Lie ideal of n!-torsion free prime ring R.
Theorem3.1: Let Q:U"—R be a skew left n-
derivation such that the trace & of Q is commuting
onU. Then Q=0.

Proof:

[6(v),v]=0, Vv € U.

... (D)

Substituting v=v+uy in equation (1) and using it
and let u(1<u < n) be any integer, then
0=[8(vtpy), v+uy]

=[S+ +ERct Cehie (v, ), v + uyl
=pu{[6(v),v] +

[Cl hl (U' )/)' U]} +.u2{[c2 hZ (U, y)' U] +

[Cl hl (U' )/)' Y]}+

---+éﬂ)‘{[5 ), vl+[en-1hpn-1(, ¥), 7]

.. (2

From lemma (2.10) and equation (2), to have

[6?;3' Y] m [hl (U, Y)' U]:O

Replacing y=2vy in equation (3) and using it, then
0=[8(v), Zvy]+n[hy (v, 2vy), V]

ZZ{U{[6(U)' Y] + /n’[hl (U, y)' U]} + 4’1/[]/, U] 6(0)}
=2n[y,v]6(v), and by using n!-torsion to have
[y,0]6(v)=0. . (d

From equation (4) and Lemma (2.9), to get

A map y—[y,v] is a derivation on U. Then &(v)=0

.. (5
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For each k=1,2,...n let

Pk W)=QV,...,V, U1, Vks2,--3Us) where v

appears k-timesand v,v,€EU, 4 = k+1,k+2,...,n

Let 7 (1<t<m — 1) be any integer. By equation (5)

the relation

0=6(tv+v,,)=pp (Tv+V,)

=TS+ (W) + Xkt T ki (V)

=it T ckpi(v)

... (6)

By lemma (2.10) and equation (6), to have

Cn—lpn—l(v):pn—l(v)zo

- (1)

Let ¢ (1={<n — 2) be any integer. By equation (7)

the relation

Pn-1 (ZU+U4L—1)=01 vV, Un—leu

f”_lpn—1(v)+29n—1(Un—1)+2?=_12 Ckckpk (U):O
w2t ¢ erp()=0

.. (8)

Using lemma (2.10) and equation (8) to get

Cn-2Pn—2(0)7Py—2(v)=0, hence ¢;p;(v)=0 and

then p1(v)=0, which means

Q(vq,v,, ...,0,)=0,Vv,EU, Where i=1,2,..., n.

Theorem3.2: Let Q: U™ - R be a skew left n-
derivation such that the trace & of Q is centralizing
onU. Then d is commuting on non-zero ideal |
of U.

Proof:

[6(v),v]€EZ(R), Vv € U.

(1)

Substituting v=v+py in equation (1) and using it
and let u(1<u<n) be any integer, to obtain
Z(R)3[6(v + uy), v + py]

=[B)+S(uy)+X7=] Cohy (v, uy), v + py]
=u{[6(v),y] +

[c1hy (@, ¥),v]} +u*{[c2hy (v, 7), V] +

[Clhl(v' V); y]} + 4+

,Lln({z[)é‘ (Y)J U]+[Cn—1hn—1 (U, Y): Y]}

From lemma (2.11) and equation (2), to have

[6 (U), Y] m [hl (U, y)' U]EZ(:R), Vv, YEU
.. (3)

Taking y=2v? in equation (3) and using it, to get
Z(R)3[6(v), 2v2]+n[h, (v, 2v?),v]

=(2n + 2)[8(v),v]v

G

Commuting equation (4) with §(v) gives

0=2n + 2)[6(v),v]?

.. (5)

Substituting y = 2vy in equation (3) to have
Z(R)3[6 (), 2y]+n[hy (v, 2vy),v]

=(Tl + 1)[6(1})' U]]/+U{[5(U), V] + /n’[hl (U, V); U]} +
nly,v]é6(v)

Commuting the last equation withwv, and using
equation (3) then
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[(n+D)[S(v),0]y+n[y,v]6(v),0]+[v{[8 (), ¥] +

/n’[hl (U, )/)r U]}' U]:O o (6)

It follows equation (6) that

0=(n + D[[§W),v],v]y+(n +

D), v]ly, vI+nlly,0],0]18 W)+nly, v][6(v), v]
=(?74)1 + D6, v]ly,v] + n[[y,v]0]6(v)

Since U is a non-central Lie ideal then there exists a
non-zero ideal | of U. Replacing y=6(v)y in
equation (7) for allv €U, yeland by using
equation (1), to have:

0=2n +

DI @), vy, vI+n[[8 )y, v], v]6(v)

=(2n +)[6 (), v]2y+6 (W) {2+ D[3(v)v1[y,0]+n[[y
OLIdW)}+ 21 [8(), v][y, vl ()

According to equation (7), to get

2n + D), v]*y+2n[8(v), v][y,0]8(v)=0

... (8)

Taking v=[6(2), z]
where z€1, to have
0=2n +

D[8(2), z]°+2n[8(2), 2][[6(2), 2], 215(2)

=2n +1)[6(2),2z]3=0, vzel and so we
have(2n + 1)[6(2), z)?U(2n + 1)[5(2), z]?>=0. By
the semiprimeness of R, to get

2n + D[6(2),2]*=0

.. (9)

Combining equation (9) with (5) then
[6(2),z]?=0,vz€E I

As the center of a semiprime ring contains no non-
zero nilpotent elements, then we conclude that
[6(2),z],vz el

and v=z in equation (8)

Theorem 3.3: Let Q: U™ —» R be a non-zero skew
left n-derivation such that the trace & of Q is
centralizing U.Then U is commutative.

Proof:

Suppose that U is a non-commutative prime ring.
Then from theorem (3.2) we have § which is
commuting on U. And from theorem (3.1) we have
Q=0, which is contradiction hence, U must be
commutative prime ring.

Now, the pervious results can be generalized by
introducing the concept of skew left #-derivation
associated with antiautomorphism as follows:
Definition 3.4:

An n-additive mapping &:R"*—R is called a skew
left n-derivation associated with an
antiautomorphism a*if
a(vﬂ’: U2y e ,vn):a*(y)f(vl,vz, ""v/}’l,)+
V18 (¥, V2, e, V)

‘:(ULUZY' 'U/n)za*(y)g(vllvb '"IUM,)+
UZf(Ull Vs Un)
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E(W1, V2, o, VoY) =" (¥)E(U1, V2, o, U ) HU,E
(v,vp, ..., v), forall vy, y,v,, ...,v,E R.

Examples 3.5:
(1) Let F be a field and let a* be an
antiautomorphism of F. Assume that
2=

Z 8)|a,be}"}, where R is a non-

commutative ring under addition and multiplication
of matrices. Define a map a“:R->R as

(a 0) (0 0 ) for all a,b€F. Now let us

0
0

0
0

0
0

a;
by

a;
b,

b 0/ \0 a*(d)
define a map &:R"™—R as
an
(e 0062 0o o)
(@t 0)
a*(al)a*(aoz) ...a*(ag) 0 .
a a 2%
for all <b1 0)’<b2 0), ""<bn 0>EIR.
This means that & is a skew left n-derivation
associated with antiautomorphism «a*, but it is not
n-derivation.
(2) Let C be a complex field and let a* be an
antiautomorphism of C . Assume
a 0

thatﬁz{(b -0)|a,b E(C}-,-Where R |.s (?1 n(-)n—
commutative ring under addition and multiplication

of matrices. Define a map a“:R->R as
a 0\_ 0 0
(b 0)_<0 a*(a)) for all a,b € C. Now let us
define a map ER" SR as
£ <a1 0) (az 0) (an 0) _

b, 0/)'\b, 0)’"’\b, O
(0 0 ) for all
0 a(;(al)a*((c)lz) ...a*(an% ’
a, a an
(o o)z o)~ o)e®

This means that & is a skew left n-derivation
associated with antiautomorphism a*.

In the following results, U is assumed as an
admissible Lie ideal of n!-torsion free ring R with
n =2.

Theorem 3.6: Let R be a prime ring and Q: U™ —
R be a skew left n-derivation associated with an
antiautomorphism a*. If the trace § of Q satisfies

[3(v), a*(v)]=0, for all vEU then
Q(vq,vy,...,0,)=0, for all wv,€U where
i=1,2,....n.

Proof:

[6(),a*()]=0,Vv EU

()

Substituting v=v+uy in equation (1) and using it
and let u(1<u<n) be any integer, to obtain
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0=[8(v+wy), a” (vtuy)]=[6 (W) +6 (uy) +
Y Cofsopy), @ (V) + pa (y)]
=pu{[6(W), a* ()] +
[lel (U! V)’ a*(v)]} +.u2{[c2f2 (U! )/); (Z*(U)] +
[e1i V), D+ A {[6(), a” (V)] +
[Cn—lfn—l(v; )/),a*(]/)]} (2)
Applying lemma (2.10) to equation (2)
[6 (é)), a1+ [erfi(w,y), a* (v)]=0
Replacing y=2yv in equation (3), to get
0=[6(v), a”(Zyv)]+ [c1f1 (v, 2yv), a” (V)]
=2[8(v), a” (V) ]a* (V) +2a*W)[6(), a” (W] +
2¢[a* (W) fi (v, y),a" (V)] +2¢1[y6 (v), a* (V)]
=2a”W{[6(), a*N]+ei [f1(,v), @ (W)]}+2
¢y, a"(@)]6()
By using equation (3), the above equation becomes
2¢, [y, a*(v)]6(v)=0, using n!-torsion free, to have
ly, a*(v)]6(v)=0, vu,y €U
... (4
Replacing y=2yw in equation (4), for all w € U to
have
0=[2yw, a"(v)]6(v)
=2[y, a* () Iws()+2y [w, a* (v)]5(v)
By using equation (4) the above equation becomes
[y, a* () ]wé(v)=0
... (5
By using lemma (2.9), y—[y, a*(v)] is a derivation
onU. Then 6(v)=0 ... (6)
Now, for each value [=1,2,..., 7, let us denote
T,(v)=0@,v, ..., V41, V142, -, U,), Wherev,v; €
U, i=l+1,1+2,..,n.T,(v)=6(v)=0 ... (7)
Let n(1 <n <mn) be any positive integer. From
equation (7) to have
0=T,, (nv+v,,)=T,, (v, )+T, (V) +
SintaT()=8(,) +n™8(v) +
St nta T W)=Xi5 ' o Ti(w)=n"c, Ty (v)+
n?cT,()+.. 40" ey 1 Ty (V) - (8)
Applying lemma (2.10) to equation (8) then
If ¢;T;(v)=0 then T;(v)=0 which implies that
Q,v,,v3,...,0,)=0
If ¢,T,(v)=0 then T,(v)=0 which implies that
Q,v,vs, ...,0,)=0
If ¢,,_1T,—1(v)=0 then T,_;(v)=0 which implies
that Q(v,v,v, ...,v,,)=0
Hence from above,
...9)
Again let 7(1<t < n — 1) be any positive integer.
Then from equation (9) to get
0=T,—1(7v + v, 1)=T_1 (W) + T 1 (V1) +
ZL=_12 T'C, T, (v)

we have T,_;()=0

=l Ty (V) + t2¢, T, (V) + -+ 1" %¢,,_,T,_, (V)
... (10)

Again applying lemma (2.10) to equation (10) then
Q,v,...,v,0,_1,V,)=T,_,(v) = 0. .. (11)
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Continuing the above process, finally we obtain
T; (v)=0, then

Q(vq,V2,V3, ., Upy_1,0,)=0

.. (12)

Replacing v,=2v,p,, Where p; €U in equation (12)
to get

0=Q(2v1P1,V32, V3, e, Upp1, Uy )=

a(p1) QVy,03,V3, ., Vy1, Up )+

V1Q(P1, V2, V3, ey U1, Up )=

U1Q(P1, V2,3, s Un1, Up) . (13)
Applying lemma (2.9) to equation (13) to have
Q(py,U,V3, e, Uy1,V,)=0,Vp;,v; € U.
Replacing v,=v,p, , p, € U in equation (13) to
obtain

0=Q(p1,V2P2, V3, ) Up—1, Up)=

a(p2) Q(P1,V2,V3, ) Vpmq, Up)+

UZQ(plr D2, s Up—1, Un):UZ'Q(pll P2,y Up—1, U/n)z
Q@1 D2, -+ Vp—1,Un), YP1, 02,0, EU

Repeating the above process we finally obtain
Q(p1, P2 ) Pr-1,Pn)=0, VD, EU.

Theorem 3.7: Let R be a semiprime ring and
Q: U™ - R be a skew left n-derivation associated
with an antiautomorphism a*. If the trace 6 of Q &
is commuting on U and [ (v), a* (V)] € Z(R), then
[6(v),a*(v)]=0forallv € U.

Proof:

[6(v), a*(v)]EZ(R), VVEU.

.. (D)

Substituting v=v+uy in equation (1) and using it
and let p(l<pu<n) be any integer, then
Z(R) 3[6(vtwy), a” (Utuy)]

=[6W)+S(uy)+Xi= Cofsw py), a* () +
pa*(¥)]

=[6(), a*W)]+u{[6 (W), a* ()]+

[lel (U, Y)' a’ (U)]}+M2{[C2f2 (U' Y)' (Z*(U)]"'

[cifiw, ), @D+ +u™{[6(), " (W)]+
[ch-1fn-1 V), @+ W), a* ()] ... (2)
Commuting equation (2) with 8(v), to have
[[6), a* )], 6@)]+ u{[[§@), a* ()] +

[lel ('U, V)' a*(U)], 5(1))]} +

HZ{[[CZfZ (U' V); a*(U)] +

[lel (U, Y)' a*(]/)]! 6(”)]} + ot

p™{[[6(), a* ()] +

[Cfn—lf/n—l(UJ ]/),CZ*(]/)],(s(U)]}

+u" IS (), a* (1)), 6()]=0 )
Applying lemma (2.10) to equation (3), then

0=([£<)5 ), a* ()], 6] + [[e1f1 (W, ¥), a* ()], 6(v)]
Replacing y=2v? in equation (4), to obtain
0=[[6(v), a* (2v*)], 6 (V)]
[[lel(U,2U2),CZ*(U)],5(U)]
=[[6(v), a*(v)], 6()]a" (v)+

[6(v), a"()][a"(v), 6(v)]+
[a*(v),8)][6(), a™(v)]+
a*W)[[6@), a* )], )]+

ala* @), 6IEW), a* )]+
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ca*W[[6W), a* )], s )]+

€1 [[Ur a*(v)], 6(U)]8(U)+C1 [U' a*(v)] [6(1})' 5(U)]+
¢1[v, sW][6(V), a” (W)]+eyv[[6(v), a* ()], 6 (V)]
—(c1 + 2)[6(), " )P +eq[[v, a* ()], ()] §(v)
(c1 + 2)[8), a* W)]*+ci[{va” () —
a*(v)v}, 6(v)] 6(v)

=—(c1 + 2)[6(), @* W) ]*+c1[v, [a” (), 5 ()] (v)
=(C(15)+ 2)[6W), a*)]?

Commuting equation (2) with a*(v) and by using
lemma (2.10), then

0=

[[6 ((v)) a*(N] a*W)]te fi(w, 1), a* )], a* (V)]
... (6

Replacing y=2yv in equation (6), to obtain
0=[[6(v), a" (Zyv)]+[c1 f1 (v, 2yv), a” (V)] @™ (V)]
=[[6@), a*@)], " W) ]a* )+

[6(), a"()][a" (), a” )]+

[a* (), a" )] [6Q), a*(N]+

a*(v) [[6(), a* (], a* )]+

¢la* (), a*WIlf1 (v, y), a*(W)]+

aa* )i y) a* )], a" )]+

ally,a*)] a*@)]6()+

aly,a*]6@), a* )]+

aly,a*]6@), a* )]+

ay[[6(), a* ()], a* (V)]

=[6 ), a*)][a"(y), a*()]+
a*){[[6W), a* W], a* )] +

allfiwy) a*@)] a" @)+

ally, a*@)] a*@)]6 )+

2¢1[y, a*W)][6(v), a" (v)]

By using equation (6), the last equation becomes

[6(), a*W)][a" (), a* (v)]+

cilly, a* )], a* ()]s )+

2¢1[y, a@)][6(v), a*()]=0 ...(7)

Replacing y= 6(v)[6(v), a*(v)] in equation (7), to
get

0=[6(v), a*(W)][a" ()8 (), a" (W)]), a” (v)]+
c1[[6@I[s), a* )], a* )], a* ()] (w)+
2¢[6(W)[6(), a” ()], a*W)][6(v), a*(v)]

=[6 (), a*W)][a"[6(V), a* ()]a" (6 (v)), a" (v)]+
¢;[[6(), a*@)]* +

SW)[[6(), a* ()], a" ()], a* ()]s (v)+

2¢1[6(v), a* ()]*+

2¢,6)[[6(W), a* ()], a* (@)][6(W), a* (v)]

=[6(), a*()]a"[[6(v), a" (V)] v]a™(§(v))+
[6(), a*@)]a*[6(v), a*()]+a"[6(v), v]+
2¢1[6(v), a*()]?

=2¢1[6(), a*()]?

.. (8)

Then 2¢,[6(v), a*(@)]? U 2¢4[6 (W), a* (v)]?=0
Since R is a semiprime, then 2¢;[6(v), a*(v)]?=0,
forallveU ...9

Combining equation (5) and (9), we have
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[6(v), a*(v)]?=0, forallv € U

As the center of the semiprime ring contains no
non-zero nilpotent  elements, then  we
have [6(v), a*(v)]=0, Vv € U.

Theorem 3.8: Let R be a prime ring and Q: U™ —
R be a non-zero skew left n-derivation associated
with an antiautomorphism a*. If the trace & of Q is
commuting on U and [§(v),a*(v)] € Z(R) for all
v € U, then U must be commutative.

Proof:

Suppose that U is anon commutative prime ring.
From theorem (3.7), we have [§(v),a*(v)]=0 for
allv € U. And from theorem (3.6) we have Q=0
which is contradiction hence, U is commutative
prime ring.
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