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Abstract 
In this paper the centralizing and commuting concerning skew left 𝓃-derivations and skew left 𝓃-

derivations associated with antiautomorphism on prime and semiprime rings were studied and  the 

commutativity of Lie ideal under certain conditions were proved. 
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Introduction: 
Throughout this paper ℛ  represents an 

associative ring with center 𝒵(ℛ) and 𝛼∗ an 

antiautomorphism of ℛ. A ring ℛ is said to be 𝓃-

torsion free if 𝓃𝒶=0 with 𝒶∈ℛ then 𝒶=0, where 𝓃 

is nonzero integer (1). For any 𝜐,𝛾∈ℛ, the 

commutator 𝜐𝛾-𝛾𝜐 is denoted by [𝜐, 𝛾] (2). Recall 

that a ring ℛ is said to be prime if  𝒶ℛ𝑏=0 implies 

that either 𝒶=0 or 𝑏=0 for all 𝒶, 𝑏∈ℛ (3) and it is 

semiprime if 𝒶ℛ𝒶=0 implies that 𝒶=0 for all 𝒶 ∈ ℛ 

(1). An additive mapping 𝜉:ℛ → ℛ is called a 

derivation if 𝜉(υγ)= 𝜉(𝜐)γ + 𝜐 ξ(γ) for all 𝜐, 𝛾∈ℛ 

(4), and it is called a skew derivation (𝛼∗-

derivation) of ℛ associated with the 

antiautomorphism 𝛼∗ if 𝜉(𝜐𝛾)= ξ(υ)𝛼∗(𝛾)+ υ 𝜉(𝛾) 

for all 𝜐, 𝛾∈ℛ (5). An additive mapping 𝜉:ℛ → ℛ is 

called a left derivation if 𝜉(𝜐𝛾)= 𝛾ξ(υ)+ υ 𝜉(𝛾) for 

all 𝜐, 𝛾∈ℛ (6), and it is called a skew left derivation 

of ℛ associated with antiautomorphism 𝛼∗ 

if 𝜉(𝜐𝛾)=𝛼∗(𝛾)ξ(υ)+ υ 𝜉(𝛾) for all 𝜐, 𝛾∈ℛ (7), it is 

clear that the concepts of derivation and left 

derivation are identical whenever ℛ is 

commutative. A map ℱ: ℛ→ℛ is said to be 

commuting (resp. centralizing) on ℛ if [ℱ(𝜐),𝜐] =0 

(resp. [ℱ(𝜐), 𝜐]∈𝒵(ℛ)) for all 𝜐 ∈ℛ (2). An 

additive subgroup 𝒰 of ℛ is called Lie ideal if 

whenever 𝓊 ∈ 𝒰, 𝔯 ∈ ℛ then [𝒰, 𝔯] ∈ 𝒰 (1). A Lie 

ideal 𝒰 of ℛ is called a square closed Lie ideal of ℛ 

if 𝓊2∈𝒰, for all 𝓊 ∈  𝒰 (6). A square closed Lie 

ideal 𝒰 of ℛ such that 𝒰⊈ 𝒵(ℛ) is called an 

admissible Lie ideal of ℛ (4). In 2009, Park 

introduced the concept of symmetric 𝓃-derivation 

and he studied the concept as centralizing and 

commuting (2). The history of centralizing and 

commuting mapping is due to Divinsky in 1955 (8). 
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 Several authors have studied the concept as 

commuting and centralizing derivations like J. 

Vukman who investigated symmetric bi-derivations 

on prime and semiprime rings (9). We obtain the 

similar results of Jung and Park ones for permuting 

3-derivations on prime and semiprime rings (10) 

and more results in (11, 12, 13, 14, 15). In the 

present paper, we have introduced the notion of 

skew left 𝓃-derivation and skew left 𝓃-derivationn 

associated with the antiautomorphism 𝛼∗ and 

studied the commuting and centralizing of this 

notion and commutativity of Lie ideal under certain 

conditions. 

Throughout this paper 𝑛 is considered as a fixed 

positive integer. 

 

Preliminaries 

 

Definition (2.1) (2) 

   A map 𝜉: ℛ𝓃 → ℛ is called permuting (or 

symmetric) if the equation ξ(𝜐1, 𝜐2, … , 𝜐𝑛) 

= 𝜉(𝜐𝜋(1),𝜐𝜋(2),…,𝜐𝜋(𝓃)) holds, for all 𝜐𝑖∈ℛ and for 

every permutation {π(1),π(2),…,π(n)}.  

Definition (2.2) (2) 

   An n-additive mapping 𝜉:ℛ𝓃→ℛ is said to be a 

symmetric 𝓃-derivation if the following equations 

are identical: 

ξ(𝜐1𝛾, 𝜐2, … , 𝜐𝓃)=ξ(𝜐1, 𝜐2, … , 𝜐𝓃)𝛾+𝜐1ξ

(𝛾, 𝜐2, … , 𝜐𝓃) 

ξ(𝜐1, 𝜐2𝛾, … , 𝜐𝓃)=ξ(𝜐1, 𝜐2, … , 𝜐𝓃)𝛾+

𝜐2𝜉(𝜐1, 𝛾, … , 𝜐𝓃)    
      

   

  

ξ(𝜐1, 𝜐2, … , 𝜐𝓃𝛾)=𝜉(𝜐1, 𝜐2, … , 𝜐𝓃)γ+

𝜐𝓃𝜉(𝜐1, 𝜐2, … , 𝛾) 

For all 𝜐1, 𝛾, 𝜐2, … , 𝜐𝓃∈ℛ. 
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Definition (2.3) (2) 

   A map 𝛿:ℛ→ℛ is defined as 𝛿(𝜐)=Ω(𝜐, 𝜐, … , 𝜐) 

for all 𝜐∈ℛ, where Ω:ℛ𝓃→ℛ is called the trace of 

the symmetric mapping Ω. 

It is clear that the trace function 𝛿 is an odd function 

if 𝓃 is an odd number and is an even function if 𝓃 

is an even number. 

 

Note (2.4) (2) 

   Let 𝛿 be a trace of an 𝓃-additive symmetric 

map 𝒟 ∶ ℛ𝑛 → ℛ, then 𝛿 satisfies the relation 

𝛿(υ+γ)= 𝛿(𝜐)+ 𝛿(𝛾)+∑ (𝓃
𝑘

)𝓃−1
𝑘=1 ℎ𝑘(υ, 𝛾) for 

all 𝜐, 𝛾∈ℛ such that ℎ𝑘(υ,γ)= Ω(υ,υ,…,υ,𝛾, 𝛾, … , 𝛾) 

where 𝜐 appears (𝓃 − 𝑘)-times and 𝛾 appear 𝑘-

times and (𝓃
𝑘

) =
𝓃!

𝑘!(𝓃−𝑘)!
 . 

Now, we introduce new concept which is called 

skew left 𝓃-derivation is defined as follows. 

Definition (2.5):  

   An 𝓃-additive symmetric mapping ξ:ℛ𝓃→ℛ is 

said to be a skew left 𝓃-derivation if 

ξ(𝜐1𝛾, 𝜐2, … , 𝜐𝓃)= γξ(𝜐1, 𝜐2, … , 𝜐𝓃)+ 𝜐1ξ

(𝛾, 𝜐2, … , 𝜐𝓃) 

ξ(𝜐1, 𝜐2𝛾, … , 𝜐𝓃)=𝛾𝜉(𝜐1, 𝜐2, … , 𝜐𝓃)+ 𝜐2ξ

(𝜐1, 𝛾, … , 𝜐𝓃) 
      

   

  

ξ(𝜐1, 𝜐2, … , 𝜐𝓃𝛾)= γξ(𝜐1, 𝜐2, … , 𝜐𝓃)+ 𝜐𝓃ξ

(𝜐1, 𝜐2, … , 𝛾) 
 

For all 𝜐1𝛾, 𝜐2,…, 𝜐𝓃∈ℛ, it is clear that the concepts 

of derivation and left derivation are identical 

whenever ℛ is commutative 

Example (2.6): 

Let ℛ={(
0 𝑎
0 0

) | 𝑎 ∈ ℤ} be a ring, and ℤ be a ring 

of integer numbers. A map 𝜉: ℛ𝓃 → ℛ is defined by 

ξ((
0 𝑎1

0 0
) , (

0 𝑎2

0 0
) , … , (

0 𝑎𝓃

0 0
))=

(
0 𝑎1𝑎2 … 𝑎𝓃

0 0
), for all  

(
0 𝑎1

0 0
),(

0 𝑎2

0 0
),…,(

0 𝑎𝓃

0 0
)∈ℛ. 

Then it easy to check that ξ is skew left 𝓃-

derivation.  

Example (2.7): 

   Let ℛ={(
𝑎 𝑏
0 0

) | 𝑎, 𝑏 ∈ ℝ}, where ℝ a ring of 

real numbers and ℛ is a non-commutative ring 

under addition and multiplication of matrices. A 

map 𝜉:ℛ𝓃→ℛ is defined by 

ξ((
𝑎1 𝑏1

0 0
) , (

𝑎2 𝑏2

0 0
) , … , (

𝑎𝓃 𝑏𝓃

0 0
)) =

(
0 𝑏1𝑏2 … 𝑏𝓃

0 0
), for all  

(
𝑎1 𝑏1

0 0
) , (

𝑎2 𝑏2

0 0
) , … , (

𝑎𝓃 𝑏𝓃

0 0
)∈ℛ. 

Then ξ is an 𝓃-derivation but it’s not a left 𝓃-

derivation.  

Example (2.8): 

   Let ℛ be a non-commutative ring. Define a map 

ξ:ℛ𝓃→ℛ by ξ(𝜐1, 𝜐2, … , 𝜐𝓃)= ξ(𝜐1) ξ(𝜐2)…ξ(𝜐𝓃), 

for all 𝜐1, 𝜐2,..., 𝜐𝓃∈ℛ. Then ξ is a skew left 𝓃-

derivation but it’s not 𝓃-derivation. 

Lemma (2.9) (4): Let ℛ be a prime ring and 

ξ:ℛ→ℛ be a derivation such that 𝑎∈ℛ. If 𝑎ξ(𝜐)=0 

holds for all 𝜐 ∈ℛ, then either 𝑎=0 or 𝜉=0. 

Lemma (2.10) (3): Let ℛ be a 𝑛!-torsion free ring 

and 𝜆𝛾1+𝜆2𝛾2+…+𝜆𝓃𝛾𝓃=0 where 𝛾1, 𝛾2,..., 𝛾𝓃 ∈ ℛ 

with 𝜆=1,2,…, 𝓃. Then 𝛾𝒾=0, for all 𝒾=1,2,…,𝓃. 

Lemma (2.11) (2): Let ℛ be a 𝑛!-torsion free ring 

and 𝜆𝛾1+𝜆2𝛾2+…+𝜆𝓃𝛾𝓃∈𝒵(ℛ)where𝛾1, 𝛾2,..., 𝛾𝓃 ∈
ℛ with   𝜆=1,2,…, 𝓃. Then 𝛾𝒾∈𝒵, for 

all 𝒾=1,2,…,𝓃. 

The Main Results 

In 2009, K.H. Park (2) studied the concept 

of symmetric 𝓃-derivation as centralizing and 

commuting, we have studied the concept of skew 

left 𝓃-derivations in rings and introduced the term 

of skew left 𝓃-derivation associated with an 

antiautomorphism 𝛼∗. 

In the following results, 𝒰 is considered as a non-

central Lie ideal of 𝓃!-torsion free prime ring ℛ. 

Theorem3.1: Let Ω:𝒰𝓃→ℛ be a skew left 𝓃-

derivation such that the trace 𝛿 of Ω is commuting 

on𝒰. Then Ω=0. 

 

Proof:  

[𝛿(𝜐), 𝜐]=0, ∀𝜐 ∈ 𝒰.                                                                             
… (1) 

Substituting υ=υ+𝜇𝛾 in equation (1) and using it 

and let 𝜇(1≤𝜇 ≤ 𝑛) be any integer, then  

0=[𝛿(υ+μγ), 𝜐+𝜇𝛾] 
 =[𝛿(𝜐)+δ(𝜇𝛾)+∑ 𝐶𝑘ℎ𝑘(𝜐, 𝜇𝛾), 𝜐 + 𝜇𝛾𝓃−1

𝑘=1 ]  

=𝜇{[𝛿(𝜐), 𝛾] +
[𝑐1ℎ1(𝜐, 𝛾), 𝜐]} +𝜇2{[𝑐2ℎ2(𝜐, 𝛾), 𝜐] +
[𝑐1ℎ1(𝜐, 𝛾), 𝛾]}+ 

...+𝜇𝓃{[𝛿(𝛾), 𝜐]+[𝑐𝑛−1ℎ𝓃−1(𝜐, 𝛾), 𝛾]                                                   

… (2) 

From lemma (2.10) and equation (2), to have 
[𝛿(𝜐), 𝛾]+𝑛[ℎ1(𝜐, 𝛾), 𝜐]=0                                                                     

... (3) 

Replacing 𝛾=2𝜐𝛾 in equation (3) and using it, then  

0=[𝛿(𝜐), 2𝜐𝛾]+𝓃[ℎ1(𝜐, 2𝜐𝛾), 𝜐] 
=2{𝜐{[𝛿(𝜐), 𝛾] + 𝓃[ℎ1(𝜐, 𝛾), 𝜐]} + 𝓃[𝛾, 𝜐]𝛿(υ)} 

=2𝓃[𝛾, 𝜐]𝛿(υ), and by using 𝓃!-torsion to have 

[γ,υ]δ(υ)=0.              … (4) 

From equation (4) and Lemma (2.9), to get 

A map 𝛾→[γ,υ] is a derivation on 𝒰. Then 𝛿(υ)=0                             

… (5) 
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For each 𝑘=1,2,…, 𝓃 let 

𝑝𝑘(𝜐)=Ω(𝜐,…,𝜐, 𝜐𝑘+1, 𝜐𝑘+2,…,𝜐𝓃) where 𝜐 

appears k-times and   𝜐, 𝜐𝒾∈𝒰,  𝒾 = 𝑘+1, 𝑘+2, … , 𝓃  
Let  𝜏 (1≤𝜏≤𝓃 − 1)  be any integer. By equation (5) 

the relation  

0=𝛿(𝜏𝜐+𝜐𝓃)=𝑝𝑛(𝜏𝜐+𝜐𝓃) 

 =𝜏𝑛𝛿(𝜐)+𝛿(𝜐𝓃)+∑ 𝜏𝑘𝑐𝑘𝑝𝑘(𝜐)𝓃−1
𝑘=1  

 =∑ 𝜏𝑘𝑐𝑘𝑝𝑘(𝜐)𝓃−1
𝑘=1                                                                                  

... (6) 

By lemma (2.10) and equation (6), to have 

𝑐𝑛−1𝑝𝓃−1(𝜐)=𝑝𝓃−1(𝜐)=0                                                                     

... (7) 

Let  𝜁 (1≤𝜁≤𝓃 − 2)  be any integer. By equation (7) 

the relation  

𝑝𝓃−1(𝜁𝜐+𝜐𝓃−1)=0, ∀ 𝜐, 𝜐𝓃−1∈𝒰 

𝜁𝓃−1𝑝𝓃−1(𝜐)+𝑝𝓃−1(𝜐𝓃−1)+∑ 𝜁𝑘𝑐𝑘𝑝𝑘(𝜐)𝓃−2
𝑘=1 =0  

∑ 𝜁𝑘𝑐𝑘𝑝𝑘(𝜐)𝓃−2
𝑘=1 =0                                                                                

... (8) 

Using lemma (2.10) and equation (8) to get 

𝑐𝓃−2𝑝𝓃−2(υ)=𝑝𝓃−2(𝜐)=0, hence 𝑐1𝑝1(𝜐)=0 and 

then 𝑝1(𝜐)=0, which means 

Ω(𝜐1, 𝜐2, … , 𝜐𝓃)=0, ∀𝜐𝒾∈𝒰, where 𝒾=1,2,…, 𝓃. 

Theorem3.2: Let Ω: 𝒰𝓃 → ℛ be a skew left 𝓃-

derivation such that the trace 𝛿 of Ω is centralizing 

on 𝒰. Then δ is commuting on non-zero ideal I 

of 𝒰. 

Proof:  

[𝛿(𝜐),υ]∈𝒵(ℛ), ∀𝜐 ∈ 𝒰.                                                                      
… (1) 

Substituting 𝜐=𝜐+μ𝛾 in equation (1) and using it 

and let 𝜇(1≤𝜇≤𝑛) be any integer, to obtain      

𝒵(ℛ)∋[𝛿(𝜐 + 𝜇𝛾), 𝜐 + 𝜇𝛾] 
=[𝛿(𝜐)+𝛿(𝜇𝛾)+∑ 𝐶𝑟ℎ𝑟(𝜐, 𝜇𝛾), 𝜐 + 𝜇𝛾]𝓃−1

𝑟=1   

=𝜇{[𝛿(𝜐), 𝛾] +
[𝑐1ℎ1(𝜐, 𝛾), 𝜐]} +𝜇2{[𝑐2ℎ2(𝜐, 𝛾), 𝜐] +
[𝑐1ℎ1(𝜐, 𝛾), 𝛾]} + ⋯ + 

𝜇𝓃{[𝛿(𝛾), 𝜐]+[𝑐𝓃−1ℎ𝓃−1(𝜐, 𝛾), 𝛾]}                                                       

... (2) 

From lemma (2.11) and equation (2), to have 
[𝛿(𝜐), 𝛾]+𝑛[ℎ1(𝜐, 𝛾), 𝜐]∈𝒵(ℛ), ∀𝜐, 𝛾∈𝒰                                             

... (3)  

Taking γ=2𝜐2 in equation (3) and using it, to get 

𝒵(ℛ)∋[𝛿(𝜐), 2𝜐2]+𝑛[ℎ1(𝜐, 2𝜐2), 𝜐] 
=(2𝓃 + 2)[δ(υ),υ]υ                                                                              

… (4) 

Commuting equation (4) with 𝛿(𝜐) gives  

0=(2𝓃 + 2)[𝛿(𝜐), 𝜐]2                                                                           

... (5) 

Substituting 𝛾 = 2𝜐𝛾 in equation (3) to have 

𝒵(ℛ)∋[𝛿(𝜐), 2𝑦]+𝓃[ℎ1(𝜐, 2𝜐𝑦), 𝜐] 
=(𝑛 + 1)[𝛿(𝜐), 𝜐]𝛾+υ{[𝛿(𝜐), 𝛾] + 𝓃[ℎ1(𝜐, 𝛾), 𝜐]} +
𝓃[𝛾, 𝜐]𝛿(𝜐) 

Commuting the last equation with 𝜐, and using 

equation (3) then 

[(n+1)[δ(υ),υ]γ+n[γ,υ]δ(υ),υ]+[𝜐{[𝛿(𝜐), 𝛾] +
𝓃[ℎ1(𝜐, 𝛾), 𝜐]}, 𝜐]=0   … (6)     

It follows equation (6) that  

0=(𝓃 + 1)[[𝛿(𝜐), 𝜐], 𝜐]𝛾+(𝓃 +
1)[𝛿(𝜐), 𝜐][𝛾, 𝜐]+𝓃[[γ,υ],υ]𝛿(𝜐)+𝓃[𝛾, 𝜐][𝛿(𝜐), 𝜐] 

=(2𝓃 + 1)[𝛿(𝜐), 𝜐][𝛾, 𝜐] + 𝓃[[γ,υ],υ]δ(𝜐)                                          

... (7) 

Since 𝒰 is a non-central Lie ideal then there exists a 

non-zero ideal I of 𝒰. Replacing 𝛾=δ(𝜐)𝛾 in 

equation (7) for all 𝜐 ∈𝒰, 𝛾∈𝐼 and by using 

equation (1), to have: 

0=(2𝓃 +
1)[𝛿(𝜐), 𝜐][𝛿(𝜐)𝛾, 𝜐]+𝓃[[𝛿(𝜐)𝛾, 𝜐], 𝜐]𝛿(𝜐) 

=(2𝓃 +)[𝛿(𝜐), 𝜐]2𝛾+𝛿(𝜐){(2n+1)[δ(υ),υ][γ,υ]+n[[γ

,υ],υ]δ(υ)}+  2𝓃[𝛿(𝜐), 𝜐][𝛾, 𝜐]𝛿(𝜐) 

According to equation (7), to get 

(2𝓃 + 1)[𝛿(𝜐), 𝜐]2𝛾+2𝓃[𝛿(𝜐), 𝜐][γ,υ]𝛿(𝜐)=0                                   

… (8) 

Taking γ=[𝛿(𝑧), 𝑧] and 𝜐=𝑧 in equation (8) 

where 𝑧∈𝐼, to have 

0=(2𝓃 +
1)[𝛿(𝑧), 𝑧]3+2𝓃[𝛿(𝑧), 𝑧][[𝛿(𝑧), 𝑧], 𝑧]δ(𝑧) 

 =(2𝓃 + 1)[𝛿(𝑧), 𝑧]3=0, ∀ 𝑧∈𝐼 and so we 

have(2𝓃 + 1)[𝛿(𝑧), 𝑧]2𝑈(2𝓃 + 1)[𝛿(𝑧), 𝑧]2=0. By 

the semiprimeness of ℛ, to get 

(2𝓃 + 1)[𝛿(𝑧), 𝑧]2=0                                                                            

... (9) 

Combining equation (9) with (5) then 

[𝛿(𝑧), 𝑧]2 = 0, ∀𝑧 ∈ 𝐼. 

As the center of a semiprime ring contains no non-

zero nilpotent elements, then we conclude that 
[𝛿(𝑧), 𝑧], ∀𝑧 ∈ 𝐼. 

Theorem 3.3: Let Ω: 𝒰𝓃 → ℛ be a non-zero skew 

left 𝓃-derivation such that the trace 𝛿 of Ω is 

centralizing 𝒰.Then 𝒰 is commutative. 

Proof:  

Suppose that 𝒰 is a non-commutative prime ring. 

Then from theorem (3.2) we have 𝛿 which is 

commuting on 𝒰. And from theorem (3.1) we have 

Ω=0, which is contradiction hence, 𝒰 must be 

commutative prime ring. 

Now, the pervious results can be generalized by 

introducing the concept of skew left 𝓃-derivation 

associated with antiautomorphism as follows:  

Definition 3.4: 

  An 𝓃-additive mapping ξ:ℛ𝓃→ℛ is called a skew 

left 𝓃-derivation associated with an 

antiautomorphism 𝛼∗if 

ξ(𝜐1𝛾, 𝜐2, … , 𝜐𝓃)=𝛼∗(𝛾)𝜉(𝜐1, 𝜐2, … , 𝜐𝓃)+

𝜐1𝜉(𝛾, 𝜐2, … , 𝜐𝓃) 

ξ(𝜐1, 𝜐2𝛾, … , 𝜐𝓃)=𝛼∗(𝛾)𝜉(𝜐1, 𝜐2, … , 𝜐𝓃)+

𝜐2𝜉(𝜐1, 𝛾, … , 𝜐𝓃)    
      

   

  
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ξ(𝜐1, 𝜐2, … , 𝜐𝓃𝛾)=𝛼∗(𝛾)ξ(𝜐1, 𝜐2, … , 𝜐𝓃)+𝜐𝓃ξ

(𝜐1, 𝜐2, … , 𝛾), for all 𝜐1, 𝛾, 𝜐2, … , 𝜐𝓃∈ ℛ. 
 

Examples 3.5: 

(1)  Let ℱ be a field and let 𝛼∗ be an 

antiautomorphism of ℱ. Assume that  

ℛ={(
𝑎 0
𝑏 0

) | 𝑎, 𝑏 ∈ ℱ}, where ℛ is a non-

commutative ring under addition and multiplication 

of matrices. Define a map 𝛼∗: ℛ → ℛ as 

(
𝑎 0
𝑏 0

)=(
0 0
0 𝛼∗(a) 

) for all 𝑎, 𝑏∈ℱ. Now let us 

define a map ξ:ℛ𝓃→ℛ as 

 

𝜉 ((
𝑎1 0
𝑏1 0

) , (
𝑎2 0
𝑏2 0

) , … , (
𝑎𝓃 0
𝑏𝓃 0

))=

(
0 0

𝛼∗(𝑎1)𝛼∗(𝑎2) … 𝛼∗(𝑎𝓃) 0
)  

for all (
𝑎1 0
𝑏1 0

) , (
𝑎2 0
𝑏2 0

) , … , (
𝑎𝓃 0
𝑏𝓃 0

)∈ℛ. 

This means that ξ is a skew left 𝓃-derivation 

associated with antiautomorphism 𝛼∗, but it is not 

𝓃-derivation. 

(2) Let ℂ be a complex field and let 𝛼∗ be an 

antiautomorphism of ℂ . Assume 

that ℛ = {(
𝑎 0
𝑏 0

) | 𝑎, 𝑏 ∈ ℂ}, where ℛ is a non-

commutative ring under addition and multiplication 

of matrices. Define a map 𝛼∗: ℛ → ℛ as 

(
𝑎 0
𝑏 0

)=(
0 0
0 𝛼∗(a) 

) for all 𝑎, 𝑏 ∈ ℂ. Now let us 

define a map ξ:ℛ𝓃→ℛ as 

𝜉 ((
𝑎1 0
𝑏1 0

) , (
𝑎2 0
𝑏2 0

) , … , (
𝑎𝓃 0
𝑏𝓃 0

))=

(
0 0
0 𝛼∗(𝑎1)𝛼∗(𝑎2) … 𝛼∗(𝑎𝓃)

), for all  

(
𝑎1 0
𝑏1 0

),(
𝑎2 0
𝑏2 0

),…,(
𝑎𝓃 0
𝑏𝓃 0

)∈ℛ. 

This means that ξ is a skew left 𝓃-derivation 

associated with antiautomorphism 𝛼∗.  

In the following results, 𝒰 is assumed as an 

admissible Lie ideal of 𝓃!-torsion free ring ℛ with 

𝓃 ≥ 2. 

Theorem 3.6: Let ℛ be a prime ring and Ω: 𝒰𝓃 →
ℛ be a skew left 𝓃-derivation associated with an 

antiautomorphism 𝛼∗. If the trace 𝛿 of Ω satisfies 

[δ(υ), 𝛼∗(𝜐)]=0, for all 𝜐∈𝒰 then 

Ω(𝜐1, 𝜐2, … , 𝜐𝓃)=0, for all 𝜐𝒾 ∈ 𝒰 where  

𝒾=1,2,…,𝓃. 

  

Proof:  

[𝛿(𝜐), 𝛼∗(𝜐)]=0, ∀𝜐 ∈ 𝒰                                                                          

… (1) 

Substituting 𝜐=𝜐+𝜇𝛾 in equation (1) and using it 

and let 𝜇(1≤𝜇≤𝑛) be any integer, to obtain 

0=[𝛿(υ+μγ), 𝛼∗(𝜐+𝜇𝛾)]=[𝛿(𝜐)+𝛿(𝜇𝛾) +
∑ 𝐶𝑠𝑓𝑠(𝜐, 𝜇𝛾), 𝛼∗(𝜐) + 𝜇𝛼∗(𝛾)𝓃−1

𝑠=1 ] 

=𝜇{[𝛿(𝜐), 𝛼∗(𝛾)] +
[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)]} +𝜇2{[𝑐2𝑓2(𝜐, 𝛾), 𝛼∗(𝜐)] +
[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝛾)]}+...+𝜇𝓃{[𝛿(𝛾), 𝛼∗(𝜐)] +
[𝑐𝑛−1𝑓𝓃−1(𝜐, 𝛾), 𝛼∗(𝛾)]}  … (2)                                

Applying lemma (2.10) to equation (2) 

[𝛿(𝜐), 𝛼∗(𝛾)]+ [𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)]=0                                                       

… (3) 

Replacing 𝛾=2𝛾𝜐 in equation (3), to get 

0= [𝛿(𝜐), 𝛼∗(2𝛾𝜐)]+ [𝑐1𝑓1(𝜐, 2𝛾𝜐), 𝛼∗(𝜐)] 
=2[𝛿(𝜐), 𝛼∗(𝜐)]𝛼∗(𝛾)+2𝛼∗(𝜐)[𝛿(𝜐), 𝛼∗(𝑦)] +
2𝑐1[𝛼∗(𝜐)𝑓1(𝜐, 𝛾),𝛼∗(𝜐)] +2𝑐1[𝛾𝛿(𝜐), 𝛼∗(𝜐)] 
=2𝛼∗(𝜐){[𝛿(𝜐), 𝛼∗(𝛾)]+𝑐1[𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)]}+2

𝑐1[𝛾, 𝛼∗(𝜐)]𝛿(𝜐)  
By using equation (3), the above equation becomes  

2𝑐1[𝛾, 𝛼∗(𝜐)]𝛿(𝜐)=0, using 𝓃!-torsion free, to have 
[𝛾, 𝛼∗(𝜐)]𝛿(𝜐)=0,  ∀𝜐, 𝛾 ∈ 𝒰                                                                  

… (4) 

Replacing 𝛾=2𝛾𝑤 in equation (4), for all 𝑤 ∈ 𝒰 to 

have 

0=[2𝛾𝑤, 𝛼∗(𝜐)]𝛿(𝜐) 

=2[𝛾, 𝛼∗(𝜐)]𝑤𝛿(𝜐)+2𝛾[𝑤, 𝛼∗(𝜐)]𝛿(υ) 

By using equation (4) the above equation becomes 
[𝛾, 𝛼∗(𝜐)]𝑤𝛿(υ)=0                                                                                   

… (5) 

By using lemma (2.9), 𝛾→[𝛾, 𝛼∗(𝜐)] is a derivation 

on 𝒰. Then 𝛿(𝜐)=0                       … (6)                                                                        

Now, for each value 𝑙=1,2,…, 𝓃 , let us denote  

 𝑇𝑙(𝜐)=Ω(𝜐, 𝜐, … , 𝜐𝑙+1, 𝜐𝑙+2, … , 𝜐𝓃), where 𝜐, 𝜐𝒾 ∈
𝒰, 𝒾=𝑙 + 1, 𝑙 + 2, … , 𝓃. 𝑇𝓃(𝜐)=δ(υ)=0  … (7)                                                                                       

Let 𝜂(1 ≤ 𝜂 ≤ 𝓃) be any positive integer. From 

equation (7) to have 

0=𝑇𝓃(𝜂𝜐+𝜐𝓃)=𝑇𝓃(𝜐𝓃)+𝑇𝓃(𝜂𝜐) +
∑ 𝜂𝑙𝑐𝑙𝑇𝑙(𝜐)𝓃−1

𝑙=1 =𝛿(𝜐𝓃) + 𝜂𝓃𝛿(𝜐) +
∑ 𝜂𝑙𝑐𝑙𝑇𝑙(𝜐)𝓃−1

𝑙=1 =∑ 𝜂𝑙𝑐𝑙𝑇𝑙(𝜐)𝓃−1
𝑙=1 =𝜂1𝑐1𝑇1(𝜐)+

𝜂2𝑐2𝑇2(𝜐)+…+𝜂𝑛−1𝑐𝓃−1𝑇𝓃−1(𝜐)                   … (8) 

Applying lemma (2.10) to equation (8) then 

If 𝑐1𝑇1(𝜐)=0 then 𝑇1(𝜐)=0 which implies that 

Ω(𝜐, 𝜐2, 𝜐3, … , 𝜐𝓃)=0 

If 𝑐2𝑇2(𝜐)=0 then 𝑇2(𝜐)=0 which implies that 

Ω(𝜐, 𝜐, 𝜐3, … , 𝜐𝓃)=0 

If 𝑐𝓃−1𝑇𝓃−1(𝜐)=0 then 𝑇𝓃−1(𝜐)=0 which implies 

that Ω(𝜐, 𝜐, 𝜐, … , 𝜐𝓃)=0 

Hence from above, we have 𝑇𝓃−1(𝜐)=0                                                

… (9) 

Again let 𝜏(1≤𝜏 ≤ 𝓃 − 1) be any positive integer. 

Then from equation (9) to get 

0=𝑇𝓃−1(𝜏𝜐 + 𝜐𝓃−1)=𝑇𝓃−1(𝜏𝜐) + 𝑇𝓃−1(𝜐𝓃−1) +
∑ 𝜏𝑡𝐶𝑡𝑇𝑡(𝜐)𝓃−2

𝑡=1  

  

=𝜏1𝑐1𝑇1(𝜐) + 𝜏2𝑐2𝑇2(𝜐) + ⋯ + 𝜏𝓃−2𝑐𝓃−2𝑇𝓃−2(𝜐)                        

… (10) 

Again applying lemma (2.10) to equation (10) then 

Ω(𝜐, 𝜐, … , 𝜐, 𝜐𝓃−1, 𝜐𝓃)=𝑇𝓃−2(𝜐) = 0.          … (11) 
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Continuing the above process, finally we obtain 

𝑇1(𝜐)=0, then 

Ω(𝜐1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)=0                                                                

… (12) 

Replacing 𝜐1=2𝜐1𝑝1, where 𝑝1∈𝒰 in equation (12) 

to get 

0=Ω(2𝜐1𝑝1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)=

𝛼(𝑝1) Ω(𝜐1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)+

𝜐1Ω(𝑝1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)=

𝜐1Ω(𝑝1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)               … (13) 

Applying lemma (2.9) to equation (13) to have  

Ω(𝑝1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)=0, ∀𝑝1, 𝜐𝒾 ∈ 𝒰. 
Replacing  𝜐2=𝜐2𝑝2 , 𝑝2 ∈ 𝒰 in equation (13) to 

obtain 

0=Ω(𝑝1, 𝜐2𝑝2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)=

𝛼(𝑝2) Ω(𝑝1, 𝜐2, 𝜐3, … , 𝜐𝓃−1, 𝜐𝓃)+

𝜐2Ω(𝑝1, 𝑝2, … , 𝜐𝓃−1, 𝜐𝓃)=𝜐2Ω(𝑝1, 𝑝2, … , 𝜐𝓃−1, 𝜐𝓃)=

Ω(𝑝1, 𝑝2, … , 𝜐𝓃−1, 𝜐𝓃), ∀𝑝1, 𝑝2, 𝜐𝒾 ∈ 𝒰 

Repeating the above process we finally obtain 

Ω(𝑝1, 𝑝2, … , 𝑝𝓃−1, 𝑝𝓃)=0, ∀𝑝𝒾∈𝒰. 
Theorem 3.7: Let ℛ be a semiprime ring and 

Ω: 𝒰𝓃 → ℛ be a skew left 𝓃-derivation associated 

with an antiautomorphism 𝛼∗. If the trace 𝛿 of Ω 𝛿 

is commuting on 𝒰 and [𝛿(𝜐), 𝛼∗(𝜐)] ∈ 𝒵(ℛ), then 

[𝛿(𝜐), 𝛼∗(𝜐)]=0 for all 𝜐 ∈ 𝒰. 

Proof:  

[𝛿(𝜐), 𝛼∗(𝜐)]∈𝒵(ℛ), ∀𝜐∈𝒰.                                                        
… (1) 

Substituting 𝜐=𝜐+𝜇𝛾 in equation (1) and using it 

and let  𝜇(1 ≤ 𝜇 ≤ 𝑛) be any integer, then 

𝒵(ℛ) ∋[𝛿(υ+μγ), 𝛼∗(𝜐+𝜇𝛾)] 
=[𝛿(𝜐)+𝛿(𝜇𝛾)+∑ 𝐶𝑠𝑓𝑠(𝜐, 𝜇𝛾), 𝛼∗(𝜐) +𝓃−1

𝑠=1

𝜇𝛼∗(𝛾)] 
=[𝛿(𝜐), 𝛼∗(𝜐)]+𝜇{[𝛿(𝜐), 𝛼∗(𝛾)]+
[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)]}+𝜇2{[𝑐2𝑓2(𝜐, 𝛾), 𝛼∗(𝜐)]+
[𝑐1𝑓1(𝜐 , 𝛾), 𝛼∗(𝛾)]}+…+𝜇𝓃{[𝛿(𝛾), 𝛼∗(𝜐)]+
[𝑐𝓃−1𝑓𝓃−1(𝜐, 𝛾), 𝛼∗(𝛾)]}+𝜇𝓃+1[𝛿(𝛾), 𝛼∗(𝛾)] … (2)                                           

Commuting equation (2) with δ(υ), to have  

[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛿(𝜐)]+ 𝜇{[[𝛿(𝜐), 𝛼∗(𝛾)] +
[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)], 𝛿(𝜐)]} +
𝜇2{[[𝑐2𝑓2(𝜐, 𝛾), 𝛼∗(𝜐)] +
[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝛾)], 𝛿(𝜐)]} + ⋯ +
𝜇𝓃{[[𝛿(𝛾), 𝛼∗(𝜐)] +
[𝑐𝓃−1𝑓𝓃−1(𝜐, 𝛾), 𝛼∗(𝛾)], 𝛿(𝜐)]} 

+𝜇𝓃+1[[𝛿(𝛾), 𝛼∗(𝛾)], 𝛿(𝜐)]=0           … (3)                                                                                      

Applying lemma (2.10) to equation (3), then  

0=[[𝛿(𝜐), 𝛼∗(𝛾)], 𝛿(𝜐)] + [[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)], 𝛿(𝜐)]                            

... (4) 

Replacing 𝛾=2𝜐2 in equation (4), to obtain  

0=[[𝛿(𝜐), 𝛼∗(2𝜐2)], 𝛿(𝜐)] + 

[[𝑐1𝑓1(𝜐, 2𝜐2), 𝛼∗(𝜐)], 𝛿(𝜐)] 
=[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛿(𝜐)]𝛼∗(𝜐)+

 [𝛿(𝜐), 𝛼∗(𝜐)][𝛼∗(𝜐), 𝛿(𝜐)]+
 [𝛼∗(𝜐), 𝛿(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)]+

𝛼∗(𝜐)[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛿(𝜐)]+
𝑐1[𝛼∗(𝜐), 𝛿(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)]+

𝑐1𝛼∗(𝜐)[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛿(𝜐)]+

𝑐1[[𝜐, 𝛼∗(𝜐)], 𝛿(𝜐)]𝛿(𝜐)+𝑐1[𝜐, 𝛼∗(𝜐)][𝛿(𝜐), 𝛿(𝜐)]+
𝑐1[𝜐, 𝛿(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)]+𝑐1𝜐[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛿(𝜐)] 
= 

−(𝑐1 + 2)[𝛿(𝜐), 𝛼∗(𝜐)]2+𝑐1[[𝜐, 𝛼∗(𝜐)], 𝛿(𝜐)] 𝛿(𝜐) 

=−(𝑐1 + 2)[𝛿(𝜐), 𝛼∗(𝜐)]2+𝑐1[{𝜐𝛼∗(𝜐) −
𝛼∗(𝜐)𝜐}, 𝛿(𝜐)] 𝛿(𝜐) 

=−(𝑐1 + 2)[𝛿(𝜐), 𝛼∗(𝜐)]2+𝑐1[𝜐, [𝛼∗(𝜐), 𝛿(𝜐)]]𝛿(𝜐) 

=(𝑐1 + 2)[𝛿(𝜐), 𝛼∗(𝜐)]2                                                                       

...  (5) 

Commuting equation (2) with 𝛼∗(𝜐) and by using 

lemma (2.10), then  

0= 

[[𝛿(𝜐), 𝛼∗(𝛾)], 𝛼∗(𝜐)]+[𝑐1𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)], 𝛼∗(𝜐)]                         
… (6)  

Replacing 𝛾=2𝛾𝜐 in equation (6), to obtain 

0=[[𝛿(𝜐), 𝛼∗(2𝛾𝜐)]+[𝑐1𝑓1(𝜐, 2𝛾𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)] 

= [[𝛿(𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)]𝛼∗(𝛾)+

[𝛿(𝜐), 𝛼∗(𝜐)][𝛼∗(𝛾), 𝛼∗(𝜐)]+
[𝛼∗(𝜐), 𝛼∗(𝜐)] [𝛿(𝜐), 𝛼∗(𝛾)]+

𝛼∗(𝜐) [[𝛿(𝜐), 𝛼∗(𝛾)], 𝛼∗(𝜐)]+

𝑐1[𝛼∗(𝜐), 𝛼∗(𝜐)][𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)]+
𝑐1𝛼∗(𝜐)[[𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)], 𝛼∗(𝜐)]+
𝑐1[[𝛾, 𝛼∗(𝜐)], 𝛼∗(𝜐)]𝛿(𝜐)+

 𝑐1[𝛾, 𝛼∗(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)]+
 𝑐1[𝛾, 𝛼∗(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)]+
𝑐1𝛾[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)] 
=[𝛿(𝜐), 𝛼∗(𝜐)][𝛼∗(𝛾), 𝛼∗(𝜐)]+

 𝛼∗(𝜐){[[𝛿(𝜐), 𝛼∗(𝛾)], 𝛼∗(𝜐)] +

𝑐1[[𝑓1(𝜐, 𝛾), 𝛼∗(𝜐)], 𝛼∗(𝜐)]+
 𝑐1[[𝛾, 𝛼∗(𝜐)], 𝛼∗(𝜐)]𝛿(𝜐)+

2𝑐1[𝛾, 𝛼∗(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)] 
By using equation (6), the last equation becomes 
[𝛿(𝜐), 𝛼∗(𝜐)][𝛼∗(𝛾), 𝛼∗(𝜐)]+

 𝑐1[[𝛾, 𝛼∗(𝜐)], 𝛼∗(𝜐)]𝛿(𝜐)+

 2𝑐1[𝛾, 𝛼∗(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)]=0 …(7)                                                                     

Replacing 𝛾= δ(υ)[𝛿(𝜐), 𝛼∗(𝜐)] in equation (7), to 

get 

0=[𝛿(𝜐), 𝛼∗(𝜐)][𝛼∗(𝛿(𝜐)[𝛿(𝜐), 𝛼∗(𝜐)]), 𝛼∗(𝜐)]+

𝑐1[[𝛿(𝜐)[𝛿(𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)], 𝛼∗(𝜐)]𝛿(𝜐)+

2𝑐1[𝛿(𝜐)[𝛿(𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)] 
=[𝛿(𝜐), 𝛼∗(𝜐)][𝛼∗[𝛿(𝜐), 𝛼∗(𝜐)]𝛼∗(𝛿(𝜐)), 𝛼∗(𝜐)]+
𝑐1[[𝛿(𝜐), 𝛼∗(𝜐)]2 +
𝛿(𝜐)[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)], 𝛼∗(𝜐)]𝛿(𝜐)+

2𝑐1[𝛿(𝜐), 𝛼∗(𝜐)]3+

2𝑐1𝛿(𝜐)[[𝛿(𝜐), 𝛼∗(𝜐)], 𝛼∗(𝜐)][𝛿(𝜐), 𝛼∗(𝜐)] 

=[𝛿(𝜐), 𝛼∗(𝜐)]𝛼∗[[𝛿(𝜐), 𝛼∗(𝜐)], 𝜐]𝛼∗(𝛿(𝜐))+

 [𝛿(𝜐), 𝛼∗(𝜐)]𝛼∗[𝛿(𝜐), 𝛼∗(𝜐)]+𝛼∗[𝛿(𝜐), 𝜐]+
2𝑐1[𝛿(𝜐), 𝛼∗(𝜐)]3 

=2𝑐1[𝛿(𝜐), 𝛼∗(𝜐)]3                                                                                

... (8) 

Then 2𝑐1[𝛿(𝜐), 𝛼∗(𝜐)]2 𝒰 2𝑐1[𝛿(𝜐), 𝛼∗(𝜐)]2=0   

Since ℛ is a semiprime, then 2𝑐1[𝛿(𝜐), 𝛼∗(𝜐)]2=0, 

for all 𝜐 ∈ 𝒰       … (9)                                                         

Combining equation (5) and (9), we have 
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[𝛿(𝜐), 𝛼∗(𝜐)]2=0, for all 𝜐 ∈ 𝒰     

As the center of the semiprime ring contains no 

non-zero nilpotent elements, then we 

have [𝛿(𝜐), 𝛼∗(𝜐)]=0, ∀𝜐 ∈ 𝒰. 

Theorem 3.8: Let ℛ be a prime ring and Ω: 𝒰𝓃 →
ℛ be a non-zero skew left 𝓃-derivation associated 

with an antiautomorphism 𝛼∗. If the trace 𝛿 of Ω is 

commuting on 𝒰 and [𝛿(𝜐), 𝛼∗(𝜐)] ∈ 𝒵(ℛ) for all 

𝜐 ∈ 𝒰, then 𝒰 must be commutative. 

Proof: 

Suppose that 𝒰 is anon commutative prime ring. 

From theorem (3.7), we have [𝛿(𝜐),𝛼∗(𝜐)]=0 for 

all 𝜐 ∈ 𝒰. And from theorem (3.6) we have Ω=0 

which is contradiction hence, 𝒰 is commutative 

prime ring. 
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 :الخلاصة
 nو كذلك مشتقات الالتواء اليسارية من النمط  nفي هذا البحث درست التمركزات و التباديل لمشتقات الالتواء اليسارية من النمط 

 المرتبطة  مع ضد التشاكلات التقابلية للحلقات الاولية وتم برهنة ابدالية مثالي لي تحت شروط معينة.
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