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Abstract: 
Sequence covering array (SCA) generation is an active research area in recent years. Unlike the 

sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This 

paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of 

a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA 

generation have a high order of complexity due to the generation of all combinatorial interactions by 

adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA 

generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength 

of coverage. Motivated by such challenge, this paper proposes a novel SCA strategy called Dynamic Event 

Order (DEO), in which the test case generation is done using one-parameter-at-a-time fashion. The details of 

the DEO are presented with a step-by-step example to demonstrate the behavior and show the correctness of 

the proposed strategy. In addition, this paper makes a comparison with existing computational strategies. The 

practical results demonstrate that the proposed DEO strategy outperforms the existing strategies in term of 

minimal test size in most cases. Moreover, the significance of the DEO increases as the number of sequences 

increases and/ or the strength of coverage increases. Furthermore, the proposed DEO strategy succeeds to 

generate SCAs up to t=7. Finally, the DEO strategy succeeds to find new upper bounds for SCA. In fact, the 

proposed strategy can act as a research vehicle for variants future implementation. 
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Introduction: 
T-way test case generation (also, termed 

combinatorial testing) strategies have been adopted 

as effective black-box testing strategies for many 

systems under test (SUT). In which, a subset of 

exhaustive test cases is generated to cover the 

interaction between parameters for certain strength 

(termed t-way strength) at least one. Combinatorial 

test case generation can be either sequence-less or 

sequence based process, the resulting test suites are 

called either Covering Array (CA) or Sequence 

(Event) Covering Array (SCA), respectively (1(. 

Earlier works in combinatorial testing have 

been reported that the generation of test cases is 

considered both NP-Complete (i.e., there is no 

unique solution for covering tuples) and NP-Hard 

problems (there is no unique solution that always 

generates minimal test size) (2,3). 
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 Thus, many strategies exist in the 

literature. Some of these strategies are based on 

algebraic algorithms in which the test size is near 

minimal (2, 3). Nevertheless, search based 

computational strategies are also considered as 

competitive strategies and can produce minimal test 

suite for some configurations (1, 3). 

The test suite generation of computational 

strategies involves two approaches: one-test-at-a-

time and one-parameter-at-a-time. In the first 

approach, the generation of all t-way interaction 

elements (tuples) is followed by a search algorithm 

that generates a test case that maximizes the 

covered tuples. The generated test case is added to 

the test suite. This process is repeated for each test 

case until all tuples are covered. This approach is 

adopted for both CAs and SCAs generation. In 

contrast, in one-parameter-at-a-time approach, the 

interaction elements are subdivided in the 

generation for each input parameter. The test suite 

starts from t parameters covered. Then through 

horizontal extension, a new parameter is considered 

to be added at the pre-generated test case. Next, a 
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vertical expansion is followed to cover the 

remaining tuples like the one-test-at-a-time 

approach. Thus, one-parameter- at-a-time achieves 

a lower order of complexity than that of one-test-at-

a-time (3-6). For this reason, this paper proposes a 

strategy based on one-parameter-at-a-time method. 

The remaining sections of this paper give a 

literature review on combinatorial test data 

generation strategies and focus on SCA notations 

and applications. Followed by the proposed strategy 

with a step-by-step example. Next, an evaluation, 

comparison with the existing works, and critical 

analysis of the results are discussed. The final 

section states the conclusion and future directions. 

 

Related Works: 

The CAs are well studied in the literature 

(7), examples for one-test-at-a-time approach 

involve: Automatic Efficient Test Generator 

(AETG) (8), IBM’s Intelligent Test Case Handler 

(ITCH) (9), Jenny (10), simulated annealing (SA) 

(8), genetic algorithm (GA) (9), ant colony 

algorithm (ACA) (10), Hill climbing (HC) (11), 

GTWAY (12), particle swarm optimization (PSO) 

(13), harmony search (HS) (14), cuckoo search (CS) 

(15), high level hyper-heuristic (HHH) (16), 

adaptive teaching learning-based optimization 

(ALTBO) (17), flower pollination algorithm (FPA) 

(18), elitist flower pollination algorithm (eFPA) (1). 

Examples for one-parameter-at-a-time involve: 

Input Parameter Order-Generalized (IPOG) (4, 5), 

the modified IPOG (MIPOG), IPOD, Forbes’ IPOG 

(IPOG-F) (6), and OPAT-HS (19). Another 

classification of t-way test data generation strategies 

is whether it is deterministic or non-deterministic. 

Deterministic means running the algorithm 

several times yield the same test suite. Although 

deterministic nature is more preferred for a tester, 

Non-deterministic some-times generate different 

test size; thus it may generate a minimal test suite 

(1, 6, 7). 

SCAs unlike CAs in history; CAs research 

started in the last 20 years for t=2 (pairwise testing) 

then some algorithms are generalized for t-way 

testing in the last decade. Whilst, SCAs is first 

identified as a combinatorial explosion problem by 

National Institute of Standards and Technology (NIST) 

research group in 2012 (20).  

SCA (N, t, n) as an N x n matrix where 

entries are from a finite Sequence Set SS of n 

events, such that every t-length permutation of 

symbols from SS occurs in at least one row (21). 

The test size is N.  

To understand the effectiveness of SCA 

combinatorial test case generation, for a system 

with 10 events, the exhaustive testing generates 10! 

=3,628,800 test cases. By relaxing the strength of 

coverage, 7-way SCA generates 12946 test cases, 6-

way SCA generates 1987 test cases, 5-way SCA 

generates 324 test cases, 4-way SCA generates 60 

test cases, 3-way SCA generates 12 test cases, and 

2-way SCA generates merely 2 test cases. 

In 2012, Kuhn et al. presented a strategy 

called t-way Sequence (TSEQ). In TSEQ a greedy 

algorithm is adopted to facilitate the selection 

among candidate test cases to select the highest 

score test case that covers the maximum number of 

t-way sequence combination until all combinations 

are covered in a deterministic one-test-at-a-time 

fashion (21). In addition, Kuhn et al. proved that an 

optimal solution for t=2 is quite simple by 

considering the sequence in order and reverse the 

sequence as a second test case which always 

generates a lower bound SCA of size 2 (i.e., SCA 

(2, 2, n), where n ≥2).  

In 2012, Zabil et al. proposed a non-

deterministic strategy based on the population Bee 

Algorithm (BA) (22). In BA, the t-way tuples 

present the food and the bees search the best source 

in one-test-at-a- time fashion. 

In 2013, Chee et al. presented two 

deterministic algorithms namely: upper bound 

algorithm (U) and its reversal (Ur) (2). The U 

algorithm is based on a greedy method that selects 

one permutation set from t-way sets covering the 

most uncovered tuples. The Ur algorithm like U 

algorithm but a reverse order of the generated test 

case is also appended at the end of the test set (2). 

In 2014, Rahman et al. adopted the SA 

algorithm for generation non-deterministic SCA 

called EDIST-SA (23). However, EDIST-SA is a 

conceptual strategy that reported a lower bound 

SCA for t=3 and merely four input sequence to 

generate a SCA of size 6 (i.e., SCA (6, 3, 4)). 

In 2016, Ahmad et al. proposed sequence 

covering array testing generator (SCAT). SCAT 

selects one of the best candidates from candidates’ 

pool deterministically in greedy one-test-at-a-time 

fashion (24). 

In 2017, Rabbi proposed a swarm 

intelligence sequence generator (SISEQ). The 

SISEQ selects the particles, which in turn, identify 

the search domain. Next, the SISEQ determines the 

global velocity to maximize the tuples covered in a 

greedy one-test-at-a- time manner (25). Later, Rabbi 

proposed a modification to SISEQ (mSISEQ) to 

tackle the complexity of the search space for t=4. In 

some results, mSISEQ outperforms the original 

SISEQ as generates minimal test size. 

In 2018, Nasser et al. proposed an enhanced 

exploration capability via elitism (eFPA) (1) for its 

counterpart FPA. Unlike all existing works, both 
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strategies can generate CAs and SCAs in the same 

implementation. Moreover, these non-deterministic 

strategies are reported SCAs up to t=6.  

SCAs are used so far for testing graphical 

user interfaces (26-28), testing a factory automation 

system (21, 29), and combined with CAs to handle 

multi-values sequence covering array (30). 

DEO Strategy: 

DEO strategy adopts the one-parameter-at-

a-time approach. Unlike the one-parameter-at-a-

time family that takes the parameter-values in order 

for CAs generation, the proposed DEO search the 

order dynamically for both horizontal extension and 

vertical expansion. The DEO strategy is illustrated 

in Fig. 1. In order to demonstrate the proposed DEO 

strategy and demonstrate the correctness. an 

illustrative example is to be considered for sequence 

set= (0,1,2,3,4), t=3. The example uses the symbols 

defined in Fig. 1. The DEO starts with empty π and 

ts, t=3, n=5. The DEO denotes E1E2E3= [0,1,2], 

then generates 3! combinations, appends them to ts, 

as tabulated in Table 1. Next, i=4, and the Π set 

consists of 3! combinations of sequences E1E2E3= 

[1,2,3], [0,2,3] and [0,1,3]. Here, it should be 

mentioned that there is no need to generate the 

previously generated sequences (i.e., for E1E2E3= 

[0,1,2]) since these combinations are already 

covered in previous steps. Thus, the Π set for 3-way 

combinations is listed in Fig.  2. 

 

 
Figure 1. The proposed DEO strategy. 

 

Table 1. The SCA (6, 3, 3) generated by DEO 

strategy. 
Test Case Number Test Case Tuples Covered 

1 0, 1, 2 [0, 1, 2] 

2 0, 2, 1 [0, 2, 1] 

3 1, 0, 2 [1, 0, 2] 

4 1, 2, 0 [1, 2, 0] 

5 2, 0, 1 [2, 0, 1] 

6 2, 1, 0 [2, 1, 0] 

 

 

 
Figure 2. The Π set for 3-way combinations 

when i=4. 

 

Now, the horizontal extension starts. For 

the first test case, the candidate positions for event 

Algorithm DEO Test Case Generation (int t, SequenceSet ss) let ts be the test set;  
1. { 
2.    initialize ts as an empty set; 
3.    let n be the size of ss; 
4.    let E1, E2, …, and En be the events in ss in an arbitrary order; 
5.    generate t! permutation (t-way combination of events) of the first t events; 
6.    append the generated tuples in step 4 to ts; 
7.    for (index i = t+1 .. n, step 1)  
8.     { 
9.       let π be t-way permutations of sequences set involving the event Ei  

                     and the t–1 events among the previous i–1 events; 
10.       // horizontal process for event Ei 
11.        for (each test case (τ) in ts)  
12.         {  
13.           starts from the end to the first position; 
14.           select a sequence position of Ei; 
15.           append Ei to τ (τ') such that τ' maximizes the number of tuples covered in π; 
16.           remove the t-way tuples included in τ' from π; 
17.           }// horizontal process 
18.         // vertical process for event Ei 
19.        while (π contains tuples)  
20.          { 
21.            choose the first tuple from π and do the exhaustive search for missing events 

           such that the combined test case (τ) covers the maximum number of tuples   
           in π set; 

22.            remove the t-way tuples included in τ from π; 
23.            append τ to ts; 

24.            } // vertical expansion process 

25.        } // for 

26.   return ts; 

27.  } //DEO 

 

Π= [ 
 [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]], 
 [[0, 2, 3], [0, 3, 2], [2, 0, 3], [2, 3, 0], [3, 0, 2], [3, 2, 0]], 
 [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]]  

] 
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(3) are 3,2,1, and 0 respectively (i.e., τ = 0, 1, 2, 3, τ 

= 0, 1, 3, 2, τ = 0, 3,1, 2; and τ =3, 0, 1, 2 

respectively). Since, the test case τ =0, 1, 2, 3 

covers three tuples (i.e., [1,2,3], [0,2,3] and [0,1,3]), 

this implies that τ’=0, 1, 2, 3. The remaining 

candidate test cases also cover three tuples, thus, the 

extension for the first test case is done due to fact 

that the proposed DEO takes the first solution. Next, 

the tuples covered by this test case are deleted from 

the Π list. Similarly, for the second test case, the 

candidate test cases are: τ =0, 2, 1, 3, τ =0, 2, 3, 1, 

τ=0, 3, 2, 1, and τ =3, 0, 2, 1 respectively. The test 

case “0, 2, 1, 3” covers only one tuple (i.e., [2, 0, 3]) 

in the remaining Π set. The test case “0, 2, 3, 1” 

covers two tuples (i.e., [0,3,1] and [2,3,1]). The test 

case “0, 3, 2, 1” covers three tuples (i.e., [0, 3, 1], 

[0, 3, 2], and [3, 2,1]). Finally, the test case “3, 0, 2, 

1” also covers three tuples (i.e., [3, 0, 1], [3, 0, 2], 

and [3, 2, 1]). Thus, τ’=0, 3, 2, 1. Next, the tuples 

covered by this test case are deleted from the Π list. 

In similar way, the horizontal extension is continued 

for the remaining test cases in the test set list (ts) 

and the resulted SCA is tabulated in Table 2.  

 

Table 2. The SCA (6, 3, 4) generated by DEO 

strategy. 

Test Case 

Number 

Test Case Tuples Covered 

1 0, 1, 2, 3 [0 ,1 ,3], [0, 2, 3], [1, 2, 3] 

2 0, 3, 2, 1 [0, 3, 1], [0, 3, 2], [3, 2, 1] 

3 1, 3, 0, 2 [1, 3, 0], [1, 3, 2], [3, 0,2] 

4 3, 1, 2, 0 [3, 1, 2], [3, 1, 0], [3, 2, 0] 

5 2, 3, 0, 1 [2, 3, 0], [2, 3, 1], [3, 0, 1] 

6 2, 1, 0, 3 [2, 1, 3], [2, 0, 3], [1, 0, 3] 

 

After the horizontal extension, the Π set is 

empty which implies that there is no vertical 

expansion.     Finally, for the last iteration (i.e., i=5), 

and the Π set consists of 3! combinations of 

sequences E1E2E3= [2, 3, 4], [1, 3, 4], [1, 2, 4], [0, 

3, 4], [0, 2, 4], and [0,1,4]. The Π set for 3-way 

combinations is listed in Fig. 3. 

 
Figure 3. The Π set for 3-way combinations 

when i=5. 

 

The horizontal extension for the first six 

test cases is tabulated in Table 3, in the same 

manner, described previously. When the horizontal 

extension has been finished, there are four 

uncovered tuples in the Π set, namely: [[[1, 4, 3], 

[3, 4, 1]], [[2, 1, 4], [4, 1, 2]]].  

The vertical expansion starts with tuple [1, 

4, 3] and does an exhaustive search for this missing 

sequences (i.e., 0 and 2 in this case).  This yields a 

test case “0, 2, 1, 4, 3” which covers two tuples (i.e., 

[1, 4, 3], and [2, 1, 4]). Next, this test case is 

appended to the test case list (i.e., test case number 

7), and the tuples covered are deleted from the Π 

set. By the same way, the final test case “3, 4, 1, 0, 

2” which covers the remaining two tuples are 

appended to the test case list (i.e., test case number 

8), and the Π set is empty. Thus, during the vertical 

expansion, the test cases are expanded to cover the 

uncovered tuples in horizontal extension. The SCA 

(8, 3, 5) is tabulated in Table 3. 

 

Table 3. The SCA (8, 3, 5) generated by DEO strategy. 

Test Case Number Test Case Tuples Covered 

1 01234 [2, 3, 4], [1, 3, 4], [1, 2, 4],[0, 3, 4], [0, 2, 4], [0, 1, 4] 

2 04321 [4, 3, 2], [4, 3, 1], [4, 2, 1],[0, 4, 3], [0, 4, 2], [0, 4, 1] 

3 13402 [3, 4, 2], [1, 4, 2], [3, 4, 0],[4, 0, 2], [1, 4, 0] 
4 31204 [3, 2, 4], [3, 1, 4], [3, 0, 4],[2, 0, 4], [1, 0, 4] 

5 24301 [2, 4, 3], [2, 4, 1], [4, 3, 0],[2, 4, 0], [4, 0, 1] 

6 42103 [4, 2, 3], [4, 1, 3], [4, 0, 3],[4, 2, 0], [4, 1, 0] 

7 02143 [1, 4, 3], [2, 1, 4] 

8 34102 [3, 4, 1], [4, 1, 2] 

 

Results and Discussions: 
In order to evaluate the performance of 

DEO and make a comparison with existing works, it 

is desired to adopt evaluation experiments. These 

experiments are done partially in (22, 24, 25) and 

extended in (1) to include the results of PA and ePA 

strategies. This paper also extends the experiments 

to make an evaluation of DEO and to facilitate the 

comparison against existing works. As such, five 

experiments are conducted to generate SCA (N, t, 

n). In the first experiment, t=3 and n vary from 4 to 

20. In the second experiment, t=4 and n vary from 5 

to 20. In the third experiments, t=5 and n vary from 

6 to 10. In the fourth experiment, t=6 and n vary 

from 7 to 10. In the fifth experiment, t=7 and n vary 

from 8 to 10. All these results are tabulated in 

Π=[  
[[2, 3, 4], [2, 4, 3], [3, 2, 4], [3, 4, 2], [4, 2, 3], [4, 3, 2]], 
[[1, 3, 4], [1, 4, 3], [3, 1, 4], [3, 4, 1], [4, 1, 3], [4, 3, 1]], 
[[1, 2, 4], [1, 4, 2], [2, 1, 4], [2, 4, 1], [4, 1, 2], [4, 2, 1]], 
[[0, 3, 4], [0, 4, 3], [3, 0, 4], [3, 4, 0], [4, 0, 3], [4, 3, 0]], 
[[0, 2, 4], [0, 4, 2], [2, 0, 4], [2, 4, 0], [4, 0, 2], [4, 2, 0]], 
[[0, 1, 4], [0, 4, 1], [1, 0, 4], [1, 4, 0], [4, 0, 1], [4, 1, 0]]  
   ] 
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Tables 4 till 8, respectively. In these tables for each 

strategy, a shaded cell means the best size. The 

unavailable results in the literature are marked as 

NA. For non-deterministic strategies, the best (i.e., 

minimal size) is taken from the literature. As shown 

in tabulated results, the size of SCA in DEO can be 

started by t! and expanded logarithmically as the 

number of events increases. In fact, when DEO 

generates t! test cases it is considered absolute 

minimal (i.e., lower bound). Moreover, the test 

suites size for DEO is less than the half of the U and 

Ur algorithms. There is no mathematical expression 

to determine the upper bound due to NP-hardness 

problem. Thus, finding an upper bound is done by 

comparing existing strategies on a one-by-one basis. 

In order to tackle the significant of DEO as a 

minimization test case generation, we introduce the 

delta (∆) as the difference in size between the 

DEO’s result (NDEO) and the best-known result 

(NBest) as given in Eq. 1. Thus, when ∆=0 this 

means that DEO generates the same upper bound of 

well-known results. When ∆ has a positive value, it 

means that there is a diverging from a minimal 

solution. Similarly, when ∆ has a negative value, it 

means that DEO contributes to finding a new upper 

bound for a minimal solution, the significant 

increased as the value increased. 

∆ = NDEO – NBest   Equation (1) 
Referring to Table 4 when t=3, BA, FPA, 

eFPA, and DEO starts with lower boundary when 

n=4; which is identical to the best solution of 

EDIST-SA.  Both FPA and eFPA outperforms 

existing strategies when n=5. eFPA outperforms 

existing strategies when n=8. Nevertheless, DEO 

outperforms the other strategies for higher number 

of events and produces new upper bounds for SCA 

when n= 13, 14, 15, 16, 18, 19, and 20. 

 

Table 4. Comparison between the state-of-the-art strategies for SCA (N, 3, 4≤n≤20). 

SUT 
U 

(2) 

Ur 

(2) 

BA 

(22) 

SCAT 

(24) 

TSEQ 

(21) 

SISEQ 

(25) 

mSISEQ 

(25) 

FPA 

(1) 

eFPA 

(1) 
DEO 

Δ 

 

SCA ( N, 3, 4) 12 12 6 8 NA NA NA 6 6 6 0 

SCA ( N, 3, 5) 17 16 8 10 8 8 NA 7 7 8 +1 

SCA ( N, 3, 6) 20 18 9 12 10 10 NA 9 8 8 0 

SCA ( N, 3, 7) 23 22 10 12 12 10 NA 10 10 10 0 

SCA ( N, 3, 8) 26 24 11 12 12 12 NA 11 10 11 +1 

SCA ( N, 3, 9) 28 26 13 14 14 12 NA 12 11 11 0 

SCA ( N, 3, 10) 30 28 14 16 14 NA NA 13 12 12 0 

SCA ( N, 3, 11) 32 30 NA 16 14 NA NA 13 13 13 0 

SCA ( N, 3, 12) 33 30 NA 16 16 NA NA 14 13 13 0 

SCA ( N, 3, 13) 35 32 NA 18 16 NA NA 15 15 14 -1 

SCA ( N, 3, 14) 36 34 NA 18 16 NA NA 16 16 15 -1 

SCA ( N, 3, 15) 37 34 NA 20 18 NA NA 16 16 15 -1 

SCA ( N, 3, 16) 39 36 NA 18 18 NA NA 17 17 16 -1 

SCA ( N, 3, 17) 40 36 NA 20 20 NA NA 18 17 17 0 

SCA ( N, 3, 18) 41 38 NA 20 20 NA NA 18 18 17 -1 

SCA ( N, 3, 19) 42 38 NA 20 22 NA NA 19 19 18 -1 

SCA ( N, 3, 20) 42 38 NA 22 22 NA NA 20 20 19 -1 

 

Referring to Table 5 when t=4, SCAT, 

SISEQ, and DEO start with lower bound size when 

n=5. BA, SCAT, TSEQ, FPA, and eFPA 

outperforms DEO when n=6. mSISEQ outperforms 

existing strategies when n=7and n=9. SISEQ, 

mSISEQ, and eFPA outperform existing strategies 

when n=8. Whilst, DEO outperforms the existing 

strategies when 10≤n≤20. It should be mentioned 

that the significant of DEO increases as the number 

of events increased. Referring to Table 6 when t=5, 

eFPA outperforms DEO when n=7. Whilst, DEO 

outperforms the existing strategies and generates 

new upper bound for SCA when n=6, 8, 9, and 10. 

Referring to Table 7 when t=6, DEO 

outperforms the existing strategies when 7≤n≤10 

significantly and produces new upper bound for 

SCA. There is a little attention for providing higher 

degree of interaction for SCA in the literature (i.e., 

t>=7). For this reason, only DEO generates SCAs as 

tabulated in Table 8. Thus, ∆ is kept empty when 

t=7. 

Unlike the previous works on CA, the 

proposed DEO strategy makes the position of the 

incoming sequence dynamically whilst the one-

parameter-at-time makes the position static.  

Regarding the previous works on SCA, the DEO 

strategy is the first implementation that adopts the 

one-parameter-at-time approach. The adopting of 

DEO for SCA generation not just reduced the 

complexity but also contribute to find new upper 

bounds of SCAs, namely: SCA (14, 3, 13), SCA 

(15, 3, 14), SCA (15, 3, 15), SCA (15, 3, 16), SCA 

(17,3, 18), SCA (18, 3, 19), SCA (19, 3, 20), SCA 

(60, 4, 10), SCA (66, 4, 11), SCA (72, 4, 12), SCA 
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(78, 4, 13), SCA (83, 4, 14), SCA (86, 4, 15), SCA 

(91, 4, 16), SCA (95, 4,17), SCA (99, 4, 18), SCA 

(103, 4, 19), SCA (106, 4, 20), SCA (138, 5, 6), 

SCA (234, 5, 8), SCA (280, 5, 9), SCA (324, 5, 10), 

SCA (903, 6, 7), SCA (1265, 6, 8), SCA (1555, 6, 

9), SCA (1987, 6, 10), SCA (6936, 7, 8), 

SCA(9965, 7, 9), and SCA (12946, 7, 10). 

 

Table 5. Comparison between the state-of-the-art strategies for SCA (N, 4, 5≤n≤20). 

SUT 
U 

(2) 

Ur 

(2) 

BA 

(22) 

SCAT 

(24) 

TSEQ 

(21) 

SISEQ 

(25) 

mSISEQ 

(25) 

FPA 

(1) 

eFPA 

(1) 
DEO 

Δ 

 

SCA ( N, 4, 5) 54 54 28 24 26 24 39 29 28 24 0 

SCA ( N, 4, 6) 79 78 36 36 36 37 38 36 36 37 +1 

SCA ( N, 4, 7) 98 96 45 46 46 42 41 43 42 44 +3 

SCA ( N, 4, 8) 114 112 55 54 50 48 48 50 48 50 +2 

SCA ( N, 4, 9) 128 126 62 62 58 53 52 57 54 56 +4 

SCA ( N, 4, 10) 140 138 71 64 66 NA NA 63 61 60 -1 

SCA ( N, 4, 11) 151 148 NA 72 70 NA NA 67 68 66 -1 

SCA ( N, 4, 12) 160 158 NA 82 78 NA NA 74 74 72 -2 

SCA ( N, 4, 13) 169 166 NA 86 86 NA NA 79 79 78 -1 

SCA ( N, 4, 14) 177 174 NA 90 90 NA NA 84 84 83 -1 

SCA ( N, 4, 15) 184 180 NA 90 96 NA NA 90 89 86 -3 

SCA ( N, 4, 16) 191 188 NA 96 100 NA NA 97 97 91 -6 

SCA ( N, 4, 17) 197 194 NA 104 108 NA NA 101 103 95 -6 

SCA ( N, 4, 18) 203 200 NA 106 112 NA NA 106 105 99 -7 

SCA ( N, 4, 19) 209 204 NA 114 114 NA NA 109 110 103 -6 

SCA ( N, 4, 20) 214 210 NA 112 120 NA NA 114 115 106 -8 

 

Table 6. Comparison between the state-of-the-art strategies for SCA (N, 5, 6 ≤n≤10). 

SUT U 

(2) 

Ur 

(2) 

BA 

(22) 

SCAT 

(24) 

TSEQ 

(21) 

SISEQ 

(25) 

mSISEQ 

(25) 

FPA 

(1) 

eFPA 

(1) 

DEO Δ 

 

SCA ( N, 5, 6) 294  294  159  154 NA NA NA 148 152 138 -10 

SCA ( N, 5, 7) 437    436 212 212 NA NA NA 199 194 196 +2 

SCA ( N, 5, 8) 552   550 271 264 NA NA NA 247 240 234 -6 

SCA ( N, 5, 9) 648  646 329 324 NA NA NA 295 283 280 -3 

SCA ( N, 5, 10) 731  728   383 368 NA NA NA 344 344 324 -20 

 

Table 7. Comparison between the state-of-the-art strategies for SCA (N, 6, 7 ≤n≤ 10). 

SUT U 

(2) 

Ur 

(2) 

BA 

(22) 

SCAT 

(24) 

TSEQ 

(21) 

SISEQ 

(25) 

mSISEQ 

(25) 

FPA 

(1) 

eFPA 

(1) 

DEO Δ 

 

SCA ( N, 6, 7) NA NA NA NA NA NA NA 980   960 903 -57 

SCA ( N, 6, 8) NA NA NA NA NA NA NA 1301   1274 1265 -9 

SCA ( N, 6, 9) NA NA NA NA NA NA NA 1636   1628 1555 -73 

SCA ( N, 6, 10) NA NA NA NA NA NA NA 1998   2161 1987  -174 

 

Table 8. Comparison between the state-of-the-art strategies for SCA (N, 7, 8≤n≤10). 

 
Conclusions: 

This paper proposed a strategy called DEO 

based on one-event-at-a-time for t-way SCA test 

data generation. The proposed strategy outperforms 

most of the existing works as far as minimal test 

size is concerned. In addition, unlike the existing 

works, DEO can generate SCAs up to 

t=7.Moreover, the significant of DEO increases as 

the number of sequences (n) increases as well as the 

strength of coverage (t) increases.  Furthermore, 

new upper bounds of SCAs are reported. Apart 

from future works, we are currently studying some 

variants for both horizontal extension and vertical 

expansion which may lead to further minimization 

to the test suite. Another direction for future work is 

to make a hybrid strategy based on pre-generated 

SCA and MVSCA. 

SUT U 

(2) 

Ur 

(2) 

BA 

(22) 

SCAT 

(24) 

TSEQ 

(21) 

SISEQ 

(25) 

mSISEQ 

(25) 

FPA 

(1) 

eFPA 

(1) 

DEO Δ 

 

SCA ( N, 7, 8) NA NA NA NA NA NA NA NA NA 6936 - 

SCA ( N, 7, 9) NA NA NA NA NA NA NA NA NA 9965 - 

SCA ( N, 7, 10) NA NA NA NA NA NA NA NA NA 12946 - 
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 استراتيجية ترتيب الأحداث الديناميكية لتوليد بيانات فحص مصفوفة التغطية المتسلسلة

 
 محمد عصام يونس

 
 العراق ،بغداد ،جامعة بغداد ،كلية الهندسة ،الحاسباتقسم هندسة 

 
 :الخلاصة

من مجالات البحث النشطة في السنوات الأخيرة. بخلاف مصفوفة التغطية الاعتيادية  (SCA) تعد مصفوفة التغطية المتسلسلة              

(CA) الأعمال السابقة،   في الورقة بمراجعة أحدث الاستراتيجيات ، يختلف ترتيب تسلسل العوامل في عملية إنشاء حالة الاختبار. تقوم هذه

بالإضافة إلى ذلك ، تتمتع معظم الاستراتيجيات الحالية  NP-Hard. حيث أن العثور على الحد الأدنى لحجم مجموعة الاختبار يعتبر مشكلة

ية من خلال تبني أسلوب اختبار واحد في كل مرة. يعد الحد بترتيب عالٍ من التعقيد نظرًا لتوليد جميع التفاعلات التوافق SCA الخاصة بتوليد

عملية صعبة. بالإضافة إلى ذلك، يوفر هذا الحد من التعقيد دعما للحصول  SCA واحد في وقت واحد لتوليد عاملمن التعقيد من خلال تبني 

 Dynamic Eventتسمى ترتيب الاحداث الديناميكة جديدة SCA على قوة تغطية أعلى. وبمواجهة هذا التحدي، تقترح هذه الورقة استراتيجية

Order (DEO) والتي يتم فيها إنشاء حالة الاختبار باستخدام عامل واحد في وقت واحد. يقدم هذا البحث  تفاصيل ، DEO  مع مثال خطوة

راء مقارنة مع الاستراتيجيات الحسابية بخطوة لإظهار السلوك وإظهار صحة الاستراتيجية المقترحة. بالإضافة إلى ذلك، تقوم هذه الورقة بإج

المقترحة تتفوق على الاستراتيجيات الحالية من حيث الحد الأدنى لحجم الاختبار في معظم  DEO الحالية. توضح النتائج العملية أن استراتيجية

المقترحة في  DEO حيث نجحت استراتيجيةمع زيادة عدد التتابعات و / أو زيادة قوة التغطية.  DEO الحالات. علاوة على ذلك، تزداد أهمية

في الواقع، أن الإستراتيجية المقترحة تعد  SCA. في إيجاد حدود عليا جديدة ل DEO أخيرًا، نجحت إستراتيجية t = 7. حتى SCAs إنشاء

 واحد في الوقت الواحد المنفذة.  عاملمستقبلية باعتماد فكرة ال وتطوير خوارزمياتقاعدة بحثية لتنفيذ 

 

 .فحص ترابط_الترتيب ، التسلسل اختبار ،، اختبار متعدد طرق الترتيب  اختبار الحدثالاندماجي ، الفحص  لكلمات المفتاحية:ا

 

 


