
Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

575

DOI: http://dx.doi.org/10.21123/bsj.2020.17.2.0575

DEO: A Dynamic Event Order Strategy for t-way Sequence Covering Array

Test Data Generation

Mohammed Issam Younis

Received 14/6/2019, Accepted 5/10/2019, Published 1/6/2020

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
Sequence covering array (SCA) generation is an active research area in recent years. Unlike the

sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This

paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of

a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA

generation have a high order of complexity due to the generation of all combinatorial interactions by

adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA

generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength

of coverage. Motivated by such challenge, this paper proposes a novel SCA strategy called Dynamic Event

Order (DEO), in which the test case generation is done using one-parameter-at-a-time fashion. The details of

the DEO are presented with a step-by-step example to demonstrate the behavior and show the correctness of

the proposed strategy. In addition, this paper makes a comparison with existing computational strategies. The

practical results demonstrate that the proposed DEO strategy outperforms the existing strategies in term of

minimal test size in most cases. Moreover, the significance of the DEO increases as the number of sequences

increases and/ or the strength of coverage increases. Furthermore, the proposed DEO strategy succeeds to

generate SCAs up to t=7. Finally, the DEO strategy succeeds to find new upper bounds for SCA. In fact, the

proposed strategy can act as a research vehicle for variants future implementation.

Key words: Combinatorial testing, Event testing, Multi-way testing, Sequence testing, T-way testing.

Introduction:
T-way test case generation (also, termed

combinatorial testing) strategies have been adopted

as effective black-box testing strategies for many

systems under test (SUT). In which, a subset of

exhaustive test cases is generated to cover the

interaction between parameters for certain strength

(termed t-way strength) at least one. Combinatorial

test case generation can be either sequence-less or

sequence based process, the resulting test suites are

called either Covering Array (CA) or Sequence

(Event) Covering Array (SCA), respectively (1(.

Earlier works in combinatorial testing have

been reported that the generation of test cases is

considered both NP-Complete (i.e., there is no

unique solution for covering tuples) and NP-Hard

problems (there is no unique solution that always

generates minimal test size) (2,3).

Department of Computer Engineering, College of

Engineering, University of Baghdad, Baghdad, Iraq.

E-mail: younismi@coeng.uobaghdad.edu.iq
*
ORCID ID: 0000-0003-4884-3747

 Thus, many strategies exist in the

literature. Some of these strategies are based on

algebraic algorithms in which the test size is near

minimal (2, 3). Nevertheless, search based

computational strategies are also considered as

competitive strategies and can produce minimal test

suite for some configurations (1, 3).

The test suite generation of computational

strategies involves two approaches: one-test-at-a-

time and one-parameter-at-a-time. In the first

approach, the generation of all t-way interaction

elements (tuples) is followed by a search algorithm

that generates a test case that maximizes the

covered tuples. The generated test case is added to

the test suite. This process is repeated for each test

case until all tuples are covered. This approach is

adopted for both CAs and SCAs generation. In

contrast, in one-parameter-at-a-time approach, the

interaction elements are subdivided in the

generation for each input parameter. The test suite

starts from t parameters covered. Then through

horizontal extension, a new parameter is considered

to be added at the pre-generated test case. Next, a

http://dx.doi.org/10.21123/bsj.2020.17.2.0575
https://creativecommons.org/licenses/by/4.0/
mailto:younismi@coeng.uobaghdad.edu.iq

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

576

vertical expansion is followed to cover the

remaining tuples like the one-test-at-a-time

approach. Thus, one-parameter- at-a-time achieves

a lower order of complexity than that of one-test-at-

a-time (3-6). For this reason, this paper proposes a

strategy based on one-parameter-at-a-time method.

The remaining sections of this paper give a

literature review on combinatorial test data

generation strategies and focus on SCA notations

and applications. Followed by the proposed strategy

with a step-by-step example. Next, an evaluation,

comparison with the existing works, and critical

analysis of the results are discussed. The final

section states the conclusion and future directions.

Related Works:

The CAs are well studied in the literature

(7), examples for one-test-at-a-time approach

involve: Automatic Efficient Test Generator

(AETG) (8), IBM’s Intelligent Test Case Handler

(ITCH) (9), Jenny (10), simulated annealing (SA)

(8), genetic algorithm (GA) (9), ant colony

algorithm (ACA) (10), Hill climbing (HC) (11),

GTWAY (12), particle swarm optimization (PSO)

(13), harmony search (HS) (14), cuckoo search (CS)

(15), high level hyper-heuristic (HHH) (16),

adaptive teaching learning-based optimization

(ALTBO) (17), flower pollination algorithm (FPA)

(18), elitist flower pollination algorithm (eFPA) (1).

Examples for one-parameter-at-a-time involve:

Input Parameter Order-Generalized (IPOG) (4, 5),

the modified IPOG (MIPOG), IPOD, Forbes’ IPOG

(IPOG-F) (6), and OPAT-HS (19). Another

classification of t-way test data generation strategies

is whether it is deterministic or non-deterministic.

Deterministic means running the algorithm

several times yield the same test suite. Although

deterministic nature is more preferred for a tester,

Non-deterministic some-times generate different

test size; thus it may generate a minimal test suite

(1, 6, 7).

SCAs unlike CAs in history; CAs research

started in the last 20 years for t=2 (pairwise testing)

then some algorithms are generalized for t-way

testing in the last decade. Whilst, SCAs is first

identified as a combinatorial explosion problem by

National Institute of Standards and Technology (NIST)

research group in 2012 (20).

SCA (N, t, n) as an N x n matrix where

entries are from a finite Sequence Set SS of n

events, such that every t-length permutation of

symbols from SS occurs in at least one row (21).

The test size is N.

To understand the effectiveness of SCA

combinatorial test case generation, for a system

with 10 events, the exhaustive testing generates 10!

=3,628,800 test cases. By relaxing the strength of

coverage, 7-way SCA generates 12946 test cases, 6-

way SCA generates 1987 test cases, 5-way SCA

generates 324 test cases, 4-way SCA generates 60

test cases, 3-way SCA generates 12 test cases, and

2-way SCA generates merely 2 test cases.

In 2012, Kuhn et al. presented a strategy

called t-way Sequence (TSEQ). In TSEQ a greedy

algorithm is adopted to facilitate the selection

among candidate test cases to select the highest

score test case that covers the maximum number of

t-way sequence combination until all combinations

are covered in a deterministic one-test-at-a-time

fashion (21). In addition, Kuhn et al. proved that an

optimal solution for t=2 is quite simple by

considering the sequence in order and reverse the

sequence as a second test case which always

generates a lower bound SCA of size 2 (i.e., SCA

(2, 2, n), where n ≥2).

In 2012, Zabil et al. proposed a non-

deterministic strategy based on the population Bee

Algorithm (BA) (22). In BA, the t-way tuples

present the food and the bees search the best source

in one-test-at-a- time fashion.

In 2013, Chee et al. presented two

deterministic algorithms namely: upper bound

algorithm (U) and its reversal (Ur) (2). The U

algorithm is based on a greedy method that selects

one permutation set from t-way sets covering the

most uncovered tuples. The Ur algorithm like U

algorithm but a reverse order of the generated test

case is also appended at the end of the test set (2).

In 2014, Rahman et al. adopted the SA

algorithm for generation non-deterministic SCA

called EDIST-SA (23). However, EDIST-SA is a

conceptual strategy that reported a lower bound

SCA for t=3 and merely four input sequence to

generate a SCA of size 6 (i.e., SCA (6, 3, 4)).

In 2016, Ahmad et al. proposed sequence

covering array testing generator (SCAT). SCAT

selects one of the best candidates from candidates’

pool deterministically in greedy one-test-at-a-time

fashion (24).

In 2017, Rabbi proposed a swarm

intelligence sequence generator (SISEQ). The

SISEQ selects the particles, which in turn, identify

the search domain. Next, the SISEQ determines the

global velocity to maximize the tuples covered in a

greedy one-test-at-a- time manner (25). Later, Rabbi

proposed a modification to SISEQ (mSISEQ) to

tackle the complexity of the search space for t=4. In

some results, mSISEQ outperforms the original

SISEQ as generates minimal test size.

In 2018, Nasser et al. proposed an enhanced

exploration capability via elitism (eFPA) (1) for its

counterpart FPA. Unlike all existing works, both

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

577

strategies can generate CAs and SCAs in the same

implementation. Moreover, these non-deterministic

strategies are reported SCAs up to t=6.

SCAs are used so far for testing graphical

user interfaces (26-28), testing a factory automation

system (21, 29), and combined with CAs to handle

multi-values sequence covering array (30).

DEO Strategy:

DEO strategy adopts the one-parameter-at-

a-time approach. Unlike the one-parameter-at-a-

time family that takes the parameter-values in order

for CAs generation, the proposed DEO search the

order dynamically for both horizontal extension and

vertical expansion. The DEO strategy is illustrated

in Fig. 1. In order to demonstrate the proposed DEO

strategy and demonstrate the correctness. an

illustrative example is to be considered for sequence

set= (0,1,2,3,4), t=3. The example uses the symbols

defined in Fig. 1. The DEO starts with empty π and

ts, t=3, n=5. The DEO denotes E1E2E3= [0,1,2],

then generates 3! combinations, appends them to ts,

as tabulated in Table 1. Next, i=4, and the Π set

consists of 3! combinations of sequences E1E2E3=

[1,2,3], [0,2,3] and [0,1,3]. Here, it should be

mentioned that there is no need to generate the

previously generated sequences (i.e., for E1E2E3=

[0,1,2]) since these combinations are already

covered in previous steps. Thus, the Π set for 3-way

combinations is listed in Fig. 2.

Figure 1. The proposed DEO strategy.

Table 1. The SCA (6, 3, 3) generated by DEO

strategy.
Test Case Number Test Case Tuples Covered

1 0, 1, 2 [0, 1, 2]

2 0, 2, 1 [0, 2, 1]

3 1, 0, 2 [1, 0, 2]

4 1, 2, 0 [1, 2, 0]

5 2, 0, 1 [2, 0, 1]

6 2, 1, 0 [2, 1, 0]

Figure 2. The Π set for 3-way combinations

when i=4.

Now, the horizontal extension starts. For

the first test case, the candidate positions for event

Algorithm DEO Test Case Generation (int t, SequenceSet ss) let ts be the test set;
1. {
2. initialize ts as an empty set;
3. let n be the size of ss;
4. let E1, E2, …, and En be the events in ss in an arbitrary order;
5. generate t! permutation (t-way combination of events) of the first t events;
6. append the generated tuples in step 4 to ts;
7. for (index i = t+1 .. n, step 1)
8. {
9. let π be t-way permutations of sequences set involving the event Ei

 and the t–1 events among the previous i–1 events;
10. // horizontal process for event Ei
11. for (each test case (τ) in ts)
12. {
13. starts from the end to the first position;
14. select a sequence position of Ei;
15. append Ei to τ (τ') such that τ' maximizes the number of tuples covered in π;
16. remove the t-way tuples included in τ' from π;
17. }// horizontal process
18. // vertical process for event Ei
19. while (π contains tuples)
20. {
21. choose the first tuple from π and do the exhaustive search for missing events

 such that the combined test case (τ) covers the maximum number of tuples
 in π set;

22. remove the t-way tuples included in τ from π;
23. append τ to ts;

24. } // vertical expansion process

25. } // for

26. return ts;

27. } //DEO

Π= [
 [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]],
 [[0, 2, 3], [0, 3, 2], [2, 0, 3], [2, 3, 0], [3, 0, 2], [3, 2, 0]],
 [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]]

]

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

578

(3) are 3,2,1, and 0 respectively (i.e., τ = 0, 1, 2, 3, τ

= 0, 1, 3, 2, τ = 0, 3,1, 2; and τ =3, 0, 1, 2

respectively). Since, the test case τ =0, 1, 2, 3

covers three tuples (i.e., [1,2,3], [0,2,3] and [0,1,3]),

this implies that τ’=0, 1, 2, 3. The remaining

candidate test cases also cover three tuples, thus, the

extension for the first test case is done due to fact

that the proposed DEO takes the first solution. Next,

the tuples covered by this test case are deleted from

the Π list. Similarly, for the second test case, the

candidate test cases are: τ =0, 2, 1, 3, τ =0, 2, 3, 1,

τ=0, 3, 2, 1, and τ =3, 0, 2, 1 respectively. The test

case “0, 2, 1, 3” covers only one tuple (i.e., [2, 0, 3])

in the remaining Π set. The test case “0, 2, 3, 1”

covers two tuples (i.e., [0,3,1] and [2,3,1]). The test

case “0, 3, 2, 1” covers three tuples (i.e., [0, 3, 1],

[0, 3, 2], and [3, 2,1]). Finally, the test case “3, 0, 2,

1” also covers three tuples (i.e., [3, 0, 1], [3, 0, 2],

and [3, 2, 1]). Thus, τ’=0, 3, 2, 1. Next, the tuples

covered by this test case are deleted from the Π list.

In similar way, the horizontal extension is continued

for the remaining test cases in the test set list (ts)

and the resulted SCA is tabulated in Table 2.

Table 2. The SCA (6, 3, 4) generated by DEO

strategy.

Test Case

Number

Test Case Tuples Covered

1 0, 1, 2, 3 [0 ,1 ,3], [0, 2, 3], [1, 2, 3]

2 0, 3, 2, 1 [0, 3, 1], [0, 3, 2], [3, 2, 1]

3 1, 3, 0, 2 [1, 3, 0], [1, 3, 2], [3, 0,2]

4 3, 1, 2, 0 [3, 1, 2], [3, 1, 0], [3, 2, 0]

5 2, 3, 0, 1 [2, 3, 0], [2, 3, 1], [3, 0, 1]

6 2, 1, 0, 3 [2, 1, 3], [2, 0, 3], [1, 0, 3]

After the horizontal extension, the Π set is

empty which implies that there is no vertical

expansion. Finally, for the last iteration (i.e., i=5),

and the Π set consists of 3! combinations of

sequences E1E2E3= [2, 3, 4], [1, 3, 4], [1, 2, 4], [0,

3, 4], [0, 2, 4], and [0,1,4]. The Π set for 3-way

combinations is listed in Fig. 3.

Figure 3. The Π set for 3-way combinations

when i=5.

The horizontal extension for the first six

test cases is tabulated in Table 3, in the same

manner, described previously. When the horizontal

extension has been finished, there are four

uncovered tuples in the Π set, namely: [[[1, 4, 3],

[3, 4, 1]], [[2, 1, 4], [4, 1, 2]]].

The vertical expansion starts with tuple [1,

4, 3] and does an exhaustive search for this missing

sequences (i.e., 0 and 2 in this case). This yields a

test case “0, 2, 1, 4, 3” which covers two tuples (i.e.,

[1, 4, 3], and [2, 1, 4]). Next, this test case is

appended to the test case list (i.e., test case number

7), and the tuples covered are deleted from the Π

set. By the same way, the final test case “3, 4, 1, 0,

2” which covers the remaining two tuples are

appended to the test case list (i.e., test case number

8), and the Π set is empty. Thus, during the vertical

expansion, the test cases are expanded to cover the

uncovered tuples in horizontal extension. The SCA

(8, 3, 5) is tabulated in Table 3.

Table 3. The SCA (8, 3, 5) generated by DEO strategy.

Test Case Number Test Case Tuples Covered

1 01234 [2, 3, 4], [1, 3, 4], [1, 2, 4],[0, 3, 4], [0, 2, 4], [0, 1, 4]

2 04321 [4, 3, 2], [4, 3, 1], [4, 2, 1],[0, 4, 3], [0, 4, 2], [0, 4, 1]

3 13402 [3, 4, 2], [1, 4, 2], [3, 4, 0],[4, 0, 2], [1, 4, 0]
4 31204 [3, 2, 4], [3, 1, 4], [3, 0, 4],[2, 0, 4], [1, 0, 4]

5 24301 [2, 4, 3], [2, 4, 1], [4, 3, 0],[2, 4, 0], [4, 0, 1]

6 42103 [4, 2, 3], [4, 1, 3], [4, 0, 3],[4, 2, 0], [4, 1, 0]

7 02143 [1, 4, 3], [2, 1, 4]

8 34102 [3, 4, 1], [4, 1, 2]

Results and Discussions:
In order to evaluate the performance of

DEO and make a comparison with existing works, it

is desired to adopt evaluation experiments. These

experiments are done partially in (22, 24, 25) and

extended in (1) to include the results of PA and ePA

strategies. This paper also extends the experiments

to make an evaluation of DEO and to facilitate the

comparison against existing works. As such, five

experiments are conducted to generate SCA (N, t,

n). In the first experiment, t=3 and n vary from 4 to

20. In the second experiment, t=4 and n vary from 5

to 20. In the third experiments, t=5 and n vary from

6 to 10. In the fourth experiment, t=6 and n vary

from 7 to 10. In the fifth experiment, t=7 and n vary

from 8 to 10. All these results are tabulated in

Π=[
[[2, 3, 4], [2, 4, 3], [3, 2, 4], [3, 4, 2], [4, 2, 3], [4, 3, 2]],
[[1, 3, 4], [1, 4, 3], [3, 1, 4], [3, 4, 1], [4, 1, 3], [4, 3, 1]],
[[1, 2, 4], [1, 4, 2], [2, 1, 4], [2, 4, 1], [4, 1, 2], [4, 2, 1]],
[[0, 3, 4], [0, 4, 3], [3, 0, 4], [3, 4, 0], [4, 0, 3], [4, 3, 0]],
[[0, 2, 4], [0, 4, 2], [2, 0, 4], [2, 4, 0], [4, 0, 2], [4, 2, 0]],
[[0, 1, 4], [0, 4, 1], [1, 0, 4], [1, 4, 0], [4, 0, 1], [4, 1, 0]]
]

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

579

Tables 4 till 8, respectively. In these tables for each

strategy, a shaded cell means the best size. The

unavailable results in the literature are marked as

NA. For non-deterministic strategies, the best (i.e.,

minimal size) is taken from the literature. As shown

in tabulated results, the size of SCA in DEO can be

started by t! and expanded logarithmically as the

number of events increases. In fact, when DEO

generates t! test cases it is considered absolute

minimal (i.e., lower bound). Moreover, the test

suites size for DEO is less than the half of the U and

Ur algorithms. There is no mathematical expression

to determine the upper bound due to NP-hardness

problem. Thus, finding an upper bound is done by

comparing existing strategies on a one-by-one basis.

In order to tackle the significant of DEO as a

minimization test case generation, we introduce the

delta (∆) as the difference in size between the

DEO’s result (NDEO) and the best-known result

(NBest) as given in Eq. 1. Thus, when ∆=0 this

means that DEO generates the same upper bound of

well-known results. When ∆ has a positive value, it

means that there is a diverging from a minimal

solution. Similarly, when ∆ has a negative value, it

means that DEO contributes to finding a new upper

bound for a minimal solution, the significant

increased as the value increased.

∆ = NDEO – NBest Equation (1)
Referring to Table 4 when t=3, BA, FPA,

eFPA, and DEO starts with lower boundary when

n=4; which is identical to the best solution of

EDIST-SA. Both FPA and eFPA outperforms

existing strategies when n=5. eFPA outperforms

existing strategies when n=8. Nevertheless, DEO

outperforms the other strategies for higher number

of events and produces new upper bounds for SCA

when n= 13, 14, 15, 16, 18, 19, and 20.

Table 4. Comparison between the state-of-the-art strategies for SCA (N, 3, 4≤n≤20).

SUT
U

(2)

Ur

(2)

BA

(22)

SCAT

(24)

TSEQ

(21)

SISEQ

(25)

mSISEQ

(25)

FPA

(1)

eFPA

(1)
DEO

Δ

SCA (N, 3, 4) 12 12 6 8 NA NA NA 6 6 6 0

SCA (N, 3, 5) 17 16 8 10 8 8 NA 7 7 8 +1

SCA (N, 3, 6) 20 18 9 12 10 10 NA 9 8 8 0

SCA (N, 3, 7) 23 22 10 12 12 10 NA 10 10 10 0

SCA (N, 3, 8) 26 24 11 12 12 12 NA 11 10 11 +1

SCA (N, 3, 9) 28 26 13 14 14 12 NA 12 11 11 0

SCA (N, 3, 10) 30 28 14 16 14 NA NA 13 12 12 0

SCA (N, 3, 11) 32 30 NA 16 14 NA NA 13 13 13 0

SCA (N, 3, 12) 33 30 NA 16 16 NA NA 14 13 13 0

SCA (N, 3, 13) 35 32 NA 18 16 NA NA 15 15 14 -1

SCA (N, 3, 14) 36 34 NA 18 16 NA NA 16 16 15 -1

SCA (N, 3, 15) 37 34 NA 20 18 NA NA 16 16 15 -1

SCA (N, 3, 16) 39 36 NA 18 18 NA NA 17 17 16 -1

SCA (N, 3, 17) 40 36 NA 20 20 NA NA 18 17 17 0

SCA (N, 3, 18) 41 38 NA 20 20 NA NA 18 18 17 -1

SCA (N, 3, 19) 42 38 NA 20 22 NA NA 19 19 18 -1

SCA (N, 3, 20) 42 38 NA 22 22 NA NA 20 20 19 -1

Referring to Table 5 when t=4, SCAT,

SISEQ, and DEO start with lower bound size when

n=5. BA, SCAT, TSEQ, FPA, and eFPA

outperforms DEO when n=6. mSISEQ outperforms

existing strategies when n=7and n=9. SISEQ,

mSISEQ, and eFPA outperform existing strategies

when n=8. Whilst, DEO outperforms the existing

strategies when 10≤n≤20. It should be mentioned

that the significant of DEO increases as the number

of events increased. Referring to Table 6 when t=5,

eFPA outperforms DEO when n=7. Whilst, DEO

outperforms the existing strategies and generates

new upper bound for SCA when n=6, 8, 9, and 10.

Referring to Table 7 when t=6, DEO

outperforms the existing strategies when 7≤n≤10

significantly and produces new upper bound for

SCA. There is a little attention for providing higher

degree of interaction for SCA in the literature (i.e.,

t>=7). For this reason, only DEO generates SCAs as

tabulated in Table 8. Thus, ∆ is kept empty when

t=7.

Unlike the previous works on CA, the

proposed DEO strategy makes the position of the

incoming sequence dynamically whilst the one-

parameter-at-time makes the position static.

Regarding the previous works on SCA, the DEO

strategy is the first implementation that adopts the

one-parameter-at-time approach. The adopting of

DEO for SCA generation not just reduced the

complexity but also contribute to find new upper

bounds of SCAs, namely: SCA (14, 3, 13), SCA

(15, 3, 14), SCA (15, 3, 15), SCA (15, 3, 16), SCA

(17,3, 18), SCA (18, 3, 19), SCA (19, 3, 20), SCA

(60, 4, 10), SCA (66, 4, 11), SCA (72, 4, 12), SCA

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

580

(78, 4, 13), SCA (83, 4, 14), SCA (86, 4, 15), SCA

(91, 4, 16), SCA (95, 4,17), SCA (99, 4, 18), SCA

(103, 4, 19), SCA (106, 4, 20), SCA (138, 5, 6),

SCA (234, 5, 8), SCA (280, 5, 9), SCA (324, 5, 10),

SCA (903, 6, 7), SCA (1265, 6, 8), SCA (1555, 6,

9), SCA (1987, 6, 10), SCA (6936, 7, 8),

SCA(9965, 7, 9), and SCA (12946, 7, 10).

Table 5. Comparison between the state-of-the-art strategies for SCA (N, 4, 5≤n≤20).

SUT
U

(2)

Ur

(2)

BA

(22)

SCAT

(24)

TSEQ

(21)

SISEQ

(25)

mSISEQ

(25)

FPA

(1)

eFPA

(1)
DEO

Δ

SCA (N, 4, 5) 54 54 28 24 26 24 39 29 28 24 0

SCA (N, 4, 6) 79 78 36 36 36 37 38 36 36 37 +1

SCA (N, 4, 7) 98 96 45 46 46 42 41 43 42 44 +3

SCA (N, 4, 8) 114 112 55 54 50 48 48 50 48 50 +2

SCA (N, 4, 9) 128 126 62 62 58 53 52 57 54 56 +4

SCA (N, 4, 10) 140 138 71 64 66 NA NA 63 61 60 -1

SCA (N, 4, 11) 151 148 NA 72 70 NA NA 67 68 66 -1

SCA (N, 4, 12) 160 158 NA 82 78 NA NA 74 74 72 -2

SCA (N, 4, 13) 169 166 NA 86 86 NA NA 79 79 78 -1

SCA (N, 4, 14) 177 174 NA 90 90 NA NA 84 84 83 -1

SCA (N, 4, 15) 184 180 NA 90 96 NA NA 90 89 86 -3

SCA (N, 4, 16) 191 188 NA 96 100 NA NA 97 97 91 -6

SCA (N, 4, 17) 197 194 NA 104 108 NA NA 101 103 95 -6

SCA (N, 4, 18) 203 200 NA 106 112 NA NA 106 105 99 -7

SCA (N, 4, 19) 209 204 NA 114 114 NA NA 109 110 103 -6

SCA (N, 4, 20) 214 210 NA 112 120 NA NA 114 115 106 -8

Table 6. Comparison between the state-of-the-art strategies for SCA (N, 5, 6 ≤n≤10).

SUT U

(2)

Ur

(2)

BA

(22)

SCAT

(24)

TSEQ

(21)

SISEQ

(25)

mSISEQ

(25)

FPA

(1)

eFPA

(1)

DEO Δ

SCA (N, 5, 6) 294 294 159 154 NA NA NA 148 152 138 -10

SCA (N, 5, 7) 437 436 212 212 NA NA NA 199 194 196 +2

SCA (N, 5, 8) 552 550 271 264 NA NA NA 247 240 234 -6

SCA (N, 5, 9) 648 646 329 324 NA NA NA 295 283 280 -3

SCA (N, 5, 10) 731 728 383 368 NA NA NA 344 344 324 -20

Table 7. Comparison between the state-of-the-art strategies for SCA (N, 6, 7 ≤n≤ 10).

SUT U

(2)

Ur

(2)

BA

(22)

SCAT

(24)

TSEQ

(21)

SISEQ

(25)

mSISEQ

(25)

FPA

(1)

eFPA

(1)

DEO Δ

SCA (N, 6, 7) NA NA NA NA NA NA NA 980 960 903 -57

SCA (N, 6, 8) NA NA NA NA NA NA NA 1301 1274 1265 -9

SCA (N, 6, 9) NA NA NA NA NA NA NA 1636 1628 1555 -73

SCA (N, 6, 10) NA NA NA NA NA NA NA 1998 2161 1987 -174

Table 8. Comparison between the state-of-the-art strategies for SCA (N, 7, 8≤n≤10).

Conclusions:

This paper proposed a strategy called DEO

based on one-event-at-a-time for t-way SCA test

data generation. The proposed strategy outperforms

most of the existing works as far as minimal test

size is concerned. In addition, unlike the existing

works, DEO can generate SCAs up to

t=7.Moreover, the significant of DEO increases as

the number of sequences (n) increases as well as the

strength of coverage (t) increases. Furthermore,

new upper bounds of SCAs are reported. Apart

from future works, we are currently studying some

variants for both horizontal extension and vertical

expansion which may lead to further minimization

to the test suite. Another direction for future work is

to make a hybrid strategy based on pre-generated

SCA and MVSCA.

SUT U

(2)

Ur

(2)

BA

(22)

SCAT

(24)

TSEQ

(21)

SISEQ

(25)

mSISEQ

(25)

FPA

(1)

eFPA

(1)

DEO Δ

SCA (N, 7, 8) NA NA NA NA NA NA NA NA NA 6936 -

SCA (N, 7, 9) NA NA NA NA NA NA NA NA NA 9965 -

SCA (N, 7, 10) NA NA NA NA NA NA NA NA NA 12946 -

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

581

Author's declaration:
- Conflicts of Interest: None.

- I hereby confirm that all the Figures and Tables

in the manuscript are mine. Besides, the Figures

and images, which are not mine, have been given

the permission for re-publication attached with

the manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in University of

Baghdad.

References:
1. Nasser AB, Zamli KZ, Alsewari AA, Ahmed BS. An

elitist-flower pollination-based strategy for

constructing sequence and sequence-less t-way test

suite. IJBIC, 2018, 12(2):115–127. DOI:

10.1504/IJBIC.2018.094223.

2. Chee YM, Colburn CJ, Horsley D, Zhou J. Sequence

covering arrays. SIDMA, 2013, 27(4): 1844–1861,

DOI: 10.1137/120894099.

3. Anand S, Burke EK, Chen TY, Clark J, Cohen MB,

Grieskamp W, et.al. An orchestrated survey of

methodologies for automated software test case

generation. J Syst Softw, 2013, 86(8): 1978-2001.

DOI: 10.1016/j.jss.2013.02.061.

4. Tai KC, Lei Y. A test generation strategy for pairwise

testing. IEEE T Softw Eng, 2002, 28(1):109-111.

DOI: 10.1109/32.979992.

5. Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J.

IPOG/IPOG-D: efficient test generation for multi-

way combinatorial testing. STVR, 2008, 18: 125-148.

DOI=http://dx.doi.org/10.1002/stvr.v18:3.

6. Younis MI, Zamli KZ. MIPOG-an efficient t-way

minimization strategy for combinatorial testing.

IJCTE, 2011, 3(3): 388-397.

7. Zamli KZ, Othman RR, Younis MI, Zabil MHM.

Practical adoptions of t-way strategies for interaction

testing. ICSECS, 2011,181:1-14. Springer, Berlin,

Heidelberg. DOI: https://doi.org/10.1007/978-3-642-

22203-0_1.

8. Cohen DM, Dalal SR, Fredman ML, Patton GC. The

AETG system: an approach to testing based on

combinatorial design. IEEE T Softw Eng, 1997,

23(7): 437–443. DOI: 10.1109/32.605761.

9. Hartman A, Raskin L. Problems and algorithms for

covering arrays. Discrete Math, 2004, 284: 149-156.

DOI: https://doi.org/10.1016/j.disc.2003.11.029.

10. Jenkins B. Jenny test tool. Available at:

http://www.burtleburtle.net./bob/math/jenny.html

(accessed on 13 June 2019).

11. Cohen MB. Designing test suites for software

interaction testing. Doctoral dissertation, University

of Auckland ,2004, Available at: https://cse.unl.edu

(accessed on 1 June 2019).

12. Zamli KZ, Klaib MFJ, Younis MI, Isa NAM,

Abdullah R. Design and implementation of a t-way

test data generation strategy with automated

execution tool support. Inform Sciences,

2011,181(9):1741-1758. DOI:

https://doi.org/10.1016/j.ins.2011.01.002.

13. Ahmed BS, Zamli KZ, Lim CP. Application of

particle swarm optimization to uniform and variable

strength covering array construction. Appl Soft

Comput, 2012, 12(4): 1330–1347.

14. Alsewari ARA, Zamli KZ. Design and

implementation of a harmony-search-based variable-

strength t-way testing strategy with constraints

support. Inform Softw Tech, 2012, 54(6):553–568.

15. Ahmed BS, Abdulsamad TS, Potrus MY.

Achievement of minimized combinatorial test suite

for configuration-aware software functional testing

using the cuckoo search algorithm. Inform Softw

Tech, 2015, 66(C):13-29. DOI: 10.1016/

j.infsof.2015.05.005.

16. Zamli KZ, Alkazemi BY, Kendall G. A tabu search

hyper-heuristic strategy for t-way test suite

generation. Appl Soft Comput, 2016, 44: 57–74.

DOI: https://doi.org/10.1016/j.asoc.2016.03.021.

17. Zamli KZ, Din F, Baharom S, Ahmed BS. Fuzzy

adaptive teaching learning-based optimization

strategy for the problem of generating mixed strength

t-way test suites. Eng Appl Artif Intel, 2017, 59: 35–

50. DOI:

https://doi.org/10.1016/j.engappai.2016.12.014.

18. Yang XS, Deb S, Fong S. Metaheuristic algorithms:

optimal balance of intensification and diversification.

Appl Math Inform Sci, 2014, 8(3): 977-983.

19. Alsewari AA, Muaza AA, Rassem TH, Tairan NM,

Shah H, Zamli KZ. One-parameter-at-a-time

combinatorial testing strategy based on harmony

search algorithm OPAT-HS. Adv Sci Lett, 2018, 24

(10): 7273-7277, DOI:

https://doi.org/10.1166/asl.2018.12927.

20. NIST WEB Site: Available at

https://csrc.nist.gov/Projects/Automated-

Combinatorial-Testing-for-Software/Event-Sequence-

Testing, (accessed on 1 June 2019).

21. Kuhn DR, Higdon JM, Lawrence JF, Kacker RN, Lei

Y. Combinatorial methods for event sequence testing.

ICST, 2012, pp. 601-609. DOI:

10.1109/ICST.2012.1.

22. Hazli MZM, Zamli KZ, Othman RR. Sequence-based

interaction testing implementation using bees

algorithm. ISCI, 2012, pp. 81-85.DOI:

10.1109/ISCI.2012.6222671.

23. Rahman M, Othman RR, Ahmad RB, Rahman MM.

Event driven input sequence t-way test strategy using

simulated annealing. ISMS, 2014, pp. 663-667. DOI:

10.1109/ISMS.2014.119.

24. Ahmad MZZ, Othman RR, Ali MSAR. Sequence

covering array generator (scat) for sequence based

combinatorial testing. IJAER, 2016, 11(8): 5984–

5991.

25. Rabbi KF. Combinatorial testing strategies based on

swarm intelligence. Ph.D. thesis, School of

Computing and Mathematics, Charles Sturt

University, August 2017.

26. Yuan X, Cohen MB, Memon AM. GUI interaction

testing: incorporating event context. IEEE T Softw

Eng, 2011, 37(4): 559–574.

27. Yilmaz C, Fouche S, Cohen MB, Porter A, Demiroz

G, Koc U. Moving forward with combinatorial

Open Access Baghdad Science Journal P-ISSN: 2078-8665

2020, 17(2):575-582 E-ISSN: 2411-7986

582

interaction testing. Comp, 2014, 47 (2): 37-45. DOI:

10.1109/MC.2013.408.

28. Rattliff ZB. Black box testing mobile applications

using sequence coverying arrays. BSc. Thesis, Texas

A&M University, May 2018, Available at:

https://oaktrust.library.tamu.edu/bitstream/handle/196

9.1/166475/RATLIFF-FINALTHESIS-

2018.pdf?sequence=1&isAllowed=y (accessed on 1

June 2019).

29. Musa J, Romli R, Yusoff N. An analysis on the

applicability of meta-heuristic searching techniques

for automated test data generation in automatic

programming assessment. Baghdad Sci J, 2019, 16:

515-533. DOI: 10.21123/bsj.2019.16.2(SI).0515.

30. Younis MI. MVSCA: multi-valued sequence

covering array, J Eng, 2019, 25 (11), pp. 82-91.DOI:

10.31026/j.eng.2019.11.0 7.

 استراتيجية ترتيب الأحداث الديناميكية لتوليد بيانات فحص مصفوفة التغطية المتسلسلة

 محمد عصام يونس

 العراق ،بغداد ،جامعة بغداد ،كلية الهندسة ،الحاسباتقسم هندسة

 :الخلاصة

من مجالات البحث النشطة في السنوات الأخيرة. بخلاف مصفوفة التغطية الاعتيادية (SCA) تعد مصفوفة التغطية المتسلسلة

(CA) الأعمال السابقة، في الورقة بمراجعة أحدث الاستراتيجيات ، يختلف ترتيب تسلسل العوامل في عملية إنشاء حالة الاختبار. تقوم هذه

بالإضافة إلى ذلك ، تتمتع معظم الاستراتيجيات الحالية NP-Hard. حيث أن العثور على الحد الأدنى لحجم مجموعة الاختبار يعتبر مشكلة

ية من خلال تبني أسلوب اختبار واحد في كل مرة. يعد الحد بترتيب عالٍ من التعقيد نظرًا لتوليد جميع التفاعلات التوافق SCA الخاصة بتوليد

عملية صعبة. بالإضافة إلى ذلك، يوفر هذا الحد من التعقيد دعما للحصول SCA واحد في وقت واحد لتوليد عاملمن التعقيد من خلال تبني

 Dynamic Eventتسمى ترتيب الاحداث الديناميكة جديدة SCA على قوة تغطية أعلى. وبمواجهة هذا التحدي، تقترح هذه الورقة استراتيجية

Order (DEO) والتي يتم فيها إنشاء حالة الاختبار باستخدام عامل واحد في وقت واحد. يقدم هذا البحث تفاصيل ، DEO مع مثال خطوة

راء مقارنة مع الاستراتيجيات الحسابية بخطوة لإظهار السلوك وإظهار صحة الاستراتيجية المقترحة. بالإضافة إلى ذلك، تقوم هذه الورقة بإج

المقترحة تتفوق على الاستراتيجيات الحالية من حيث الحد الأدنى لحجم الاختبار في معظم DEO الحالية. توضح النتائج العملية أن استراتيجية

المقترحة في DEO حيث نجحت استراتيجيةمع زيادة عدد التتابعات و / أو زيادة قوة التغطية. DEO الحالات. علاوة على ذلك، تزداد أهمية

في الواقع، أن الإستراتيجية المقترحة تعد SCA. في إيجاد حدود عليا جديدة ل DEO أخيرًا، نجحت إستراتيجية t = 7. حتى SCAs إنشاء

 واحد في الوقت الواحد المنفذة. عاملمستقبلية باعتماد فكرة ال وتطوير خوارزمياتقاعدة بحثية لتنفيذ

 .فحص ترابط_الترتيب ، التسلسل اختبار ،، اختبار متعدد طرق الترتيب اختبار الحدثالاندماجي ، الفحص لكلمات المفتاحية:ا

